JPS6111017A - Bio-signal processing system - Google Patents

Bio-signal processing system

Info

Publication number
JPS6111017A
JPS6111017A JP59133705A JP13370584A JPS6111017A JP S6111017 A JPS6111017 A JP S6111017A JP 59133705 A JP59133705 A JP 59133705A JP 13370584 A JP13370584 A JP 13370584A JP S6111017 A JPS6111017 A JP S6111017A
Authority
JP
Japan
Prior art keywords
peak
signal
time
order differential
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59133705A
Other languages
Japanese (ja)
Other versions
JPH0261250B2 (en
Inventor
克郎 岡本
赤井 孝至
将史 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59133705A priority Critical patent/JPS6111017A/en
Publication of JPS6111017A publication Critical patent/JPS6111017A/en
Publication of JPH0261250B2 publication Critical patent/JPH0261250B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は心電図等の生体信号の認識、計測を行う場合の
生体信号処理方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a biological signal processing method for recognizing and measuring biological signals such as electrocardiograms.

〔従来の技術〕[Conventional technology]

一般に生体の信号は、るる形状を持つ複数種の波の組合
せ、あるいはそれらの周期的な繰り返しで構成されてい
るが、その生体信号の性質を把握するにはそれらの検波
の基線(ゼロレベル)からの立ち上り時刻、基線へ戻る
時刻、ピーク生起時刻、あるいは変曲点を示す時刻等を
計測し、波の幅(時間間隔)や高さく電圧値)を求めて
、蜂波の形状を類推する方法が一般に行われている。
In general, biological signals are composed of a combination of multiple types of waves with a circular shape, or their periodic repetition, but in order to understand the nature of the biological signals, the baseline (zero level) of their detection The shape of the bee wave is estimated by measuring the time of rise from the peak, the time of return to the baseline, the time of peak occurrence, or the time of inflection point, and find the wave width (time interval) and height (voltage value) to estimate the shape of the bee wave. The method is commonly used.

しかし生体信号は、その電圧レベルが小さくハムなどの
高周波雑音が重畳し易いためその信号の計測を正確に行
うことは難かしいとされていた。例えば心電図を例にと
ると心電図信号は第2図に示すようにP、 Q几S、 
T、 U波と称される各線波から構成されているが、こ
の心電図信号を自動解析するにらたって従来は、その周
波数成分が高く、かつ振幅値が大きい為、検出が容易で
あるQR8波を中心として行われており、P波あるいは
T波の認識に関しては、雑音や基線動揺による影響のた
め正確な波形認識、計測は困難であった。
However, it has been considered difficult to accurately measure biological signals because their voltage levels are small and high-frequency noise such as hum is easily superimposed on them. For example, taking an electrocardiogram as an example, the electrocardiogram signal is P, Q, S, as shown in Figure 2.
It is composed of line waves called T and U waves, but when automatically analyzing this electrocardiogram signal, conventionally the QR8 wave, which has a high frequency component and a large amplitude value, is easy to detect. Regarding the recognition of P waves or T waves, accurate waveform recognition and measurement have been difficult due to the effects of noise and baseline fluctuations.

特に、不整脈などの解析の際にはP波の存在の有無、形
状などの正確な認識が必要となるがP波は周波数成分も
低く、また振幅値も小さいため筋電図やハムなどの混入
で信号成分が雑音に埋もれてしまいその弁別が難かしい
とされていた。またT波については、心筋異常等を診断
する場合に、S−T成分の傾向やT波の形状(陰性波や
2相性の区別)を認識することが必要であるが、S−T
成分には雑音が重畳し易く、また陰性(2相生)T波の
認識には基線動揺の鉱響を受け易いため、計測誤差が大
きくなるという欠点があった。
In particular, when analyzing arrhythmia, it is necessary to accurately recognize the presence or absence of P waves, their shape, etc., but since P waves have low frequency components and small amplitude values, electromyograms and hums may be mixed in. It was said that the signal components were buried in noise, making it difficult to distinguish them. Regarding T waves, when diagnosing myocardial abnormalities, it is necessary to recognize the tendency of the S-T component and the shape of the T wave (distinguishing between negative waves and biphasic waves).
This method has the disadvantage that noise tends to be superimposed on the components, and the recognition of negative (biphasic) T waves is susceptible to the mineral echoes of baseline oscillations, resulting in large measurement errors.

冑、従来このP波(T波)を検出するには以下の方式が
とられている。(1)心電図アナ−ログ信号をアナログ
ディジタル変換し、そのディジタル信号に対し、帯域通
過型のディジタルフィルタリング処理を行うことにより
P波やT波の生起時刻、終端時刻、ピーク生起時刻を決
定する方式、(2)心電図アナログ信号をアナログディ
ジタル変換し、そのディジタル原信号に対し、差分処理
を加えて一次微係数を求め傾きの変化が最大となる時刻
をP波やT波の生起時刻とする方式である。方式(1)
に於て使用されるディジタルフィルタをソフトウェアで
実現すると係数として精度が要求される小数点データを
必要とし、さらに高精度の乗除算処理を繰り返し実行す
るため、処理時間がかかり、必要なメモリも大容量のも
のを必要とする欠点があった。また、P波、T波を弁別
するためには異なった周波数特性を持つディジタルフィ
ルタを必要とした。方式(2)は原石電図信号に重畳し
た筋電図、ハムなど高周波雑音による影響を受け易く誤
った認識を行う可能性が大きかった。
Conventionally, the following method has been used to detect this P wave (T wave). (1) A method in which the occurrence time, termination time, and peak occurrence time of P waves and T waves are determined by converting the electrocardiogram analog signal into analog-to-digital conversion and performing band-pass digital filtering processing on the digital signal. , (2) A method in which the electrocardiogram analog signal is converted into analog-to-digital, and the original digital signal is subjected to differential processing to obtain the first-order differential coefficient, and the time at which the change in slope is maximum is determined as the occurrence time of the P wave or T wave. It is. Method (1)
If the digital filters used in these applications are implemented in software, they require highly accurate decimal point data as coefficients, and require repeated high-precision multiplication/division processing, which takes processing time and requires a large amount of memory. There was a drawback that it required something. Furthermore, in order to discriminate between P waves and T waves, a digital filter with different frequency characteristics is required. Method (2) is susceptible to high-frequency noise such as electromyography and hum superimposed on the raw electrogram signal, and there is a high possibility of erroneous recognition.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、従来の生体信号処理方式と比較して高
周波雑音や基線動揺の影響を受けずに波形の生起時刻、
終端時刻、ピーク生起時刻全正確にしかも同一構成で求
めることができ、さらに波形の形状を2次微分出力信号
のパターンからだけで認識できる生体信号処理方式を提
供することである。
The purpose of the present invention is to detect the waveform occurrence time without being affected by high frequency noise or baseline fluctuation compared to conventional biological signal processing methods.
It is an object of the present invention to provide a biological signal processing method that can accurately determine the termination time and the peak occurrence time with the same configuration, and can also recognize the shape of the waveform only from the pattern of the second-order differential output signal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、処理対象信号に2次微分フィルタリン
グ処理を加える操作と、2次微分出力された時系列信号
群よりピークを検出する操作と、検出されたピーク信号
系列の生起パターンにより原信号のパターンを類推し、
分類する操作と、2次微分ピーク信号系列より原信号の
生起時刻、終端時刻およびピーク生起時刻を求めさらに
原信号のピーク電圧値を計1Qtlする操作とにより構
成される生体信号処理方式が得られる。
According to the present invention, an operation of applying second-order differential filtering processing to a signal to be processed, an operation of detecting a peak from a time-series signal group outputted from the second-order differential, and an occurrence pattern of the detected peak signal sequence are performed to obtain an original signal. By analogy with the pattern of
A biosignal processing method is obtained which is comprised of an operation of classifying, and an operation of determining the occurrence time, termination time, and peak occurrence time of the original signal from the second-order differential peak signal sequence, and further calculating the peak voltage value of the original signal by 1 Qtl in total. .

〔発明の原理〕[Principle of the invention]

生体信号等の処理対象信号の波形の一周期の基本形を第
3図(a)と考えると、ω)は(a)及び(a)と極性
の反転する波形の連続したものであり、(C)は(a)
の波形が2つ連続した波形と考えることができる5、さ
らに一般の連続波形はこれらの波形が組み合せられて連
続的な周期を持って現われると考えてよい。そこでこの
処理対象信号に2次微分操作を加える。本発明にて利用
する2次微分フィルタの式を式(1)に示す。
Considering the basic form of one cycle of the waveform of a signal to be processed such as a biological signal as shown in FIG. ) is (a)
can be thought of as two consecutive waveforms5.Furthermore, a general continuous waveform can be thought of as a combination of these waveforms that appears with a continuous period. Therefore, a second-order differential operation is applied to this signal to be processed. The formula of the second-order differential filter used in the present invention is shown in formula (1).

+0 ・(JC&+2+3’! 2)+O・(”&+3
 +”k−3)+1 ・(”&+4+”&−4)+2 
・(”*+5+”1−s)ここで(xk )は第4図に
示すサンプリングされたアクタを示す。式(1)に示し
た通シ本フィルタは係数が簡単な整数(0,工ないしは
2)を示すため、加減算およびピットシフト演算のみで
処理が可能であり、高速かつ、良好な低減2次微分特性
を実現する特長を有している。
+0 ・(JC&+2+3'! 2)+O・(”&+3
+”k-3)+1 ・(”&+4+”&-4)+2
- ("*+5+"1-s) where (xk) indicates the sampled actor shown in FIG. Since the coefficients of this filter shown in Equation (1) are simple integers (0, 2, or 2), processing is possible using only addition, subtraction, and pit shift operations, and it is fast and has good reduced quadratic differentiation. It has the features that realize the characteristics.

第3図(a)山)(C)の形状を持つ信号に上記フィル
タリング操作を加えた出力結果を各々(a’ Xb’ 
X(!’ )に示す。
Figure 3 (a) Mountain) The output results of applying the above filtering operation to the signal having the shape of (C) are respectively (a'Xb'
It is shown in X (!').

得られた2次微分フィルタリング出力信号のピーク生起
時刻は各々原信号における生起時刻、終端時刻および生
起時刻ないしはその近傍の時刻を示しておシ、シかも上
記の良好な低減特性より原信号に高周波雑音等が重畳し
た場合でも、その影響を受けずに顕著なピークを示すた
め雑音から信号成分を弁別することが容易である。また
、原信号に基線動揺がある場合も、2次微分出力信号の
ピーク生起時刻に゛影響を及ぼすことはないので凍原波
形の計測が正確に行われる。さらに原信号のうち第3図
(a)(b)(C)の成分に対する2次微分出力信号成
分のピークが他の成分より顕著であることよ#)(a’
)(bつ(C′)に示しだピーク列の生起パターンを認
識することにより原波形(a)(b)(e)の形状を類
推することが可能である。ここで心電図を例にとると心
電図を構成する陣波成分のうちP波、T波は一般的に第
3図(a)(b)(e)のパターンのいずれかを示しく
a)を単峰性パターン(b)を2相性パターン(C)を
双峰性パターンと称する。各(a)(b)(e)の信号
においてP(T)波の2次微分出カバターンの一般形を
(C′)とすると(a’)(b’)は各々(C′)のP
lないしLはP5あるいはPlおよびP5が存在しない
場合の特殊波形と考えられるのでP波(T波)の2次微
分フィルタリング出力信号をそのピーク数、ピーク電圧
値ピーク時間間隔等から(a’) (b’) ((!’
)のパターンに分類することによシ心電図信号解析に必
要な区分と称する各P(T)波の生起時刻終端時刻、ビ
iり生起時刻を計測可能であり、さらにその分類された
パターンからP(T)波の形状が単峰性、2相性、双峰
性かを判断することが可能となる。
The peak occurrence time of the obtained second-order differential filtering output signal indicates the occurrence time, end time, and occurrence time or a time in the vicinity of the occurrence time in the original signal. Even when noise or the like is superimposed, it is easy to distinguish signal components from noise because it shows a noticeable peak without being affected by it. Further, even if there is baseline fluctuation in the original signal, it does not affect the peak occurrence time of the second-order differential output signal, so that the frozen ground waveform can be measured accurately. Furthermore, the peak of the second-order differential output signal component for the components shown in FIGS. 3(a), (b), and (C) of the original signal is more prominent than the other components.
) (bIt is possible to infer the shapes of the original waveforms (a), (b), and (e) by recognizing the occurrence pattern of the peak series shown in (C').Here, let us take an electrocardiogram as an example. Among the wave components that make up the electrocardiogram, P waves and T waves generally show one of the patterns shown in Figure 3 (a), (b), and (e). The biphasic pattern (C) is called a bimodal pattern. If the general form of the second-order differential output pattern of the P(T) wave in each signal (a), (b), and (e) is (C'), then (a') and (b') are the P of (C'), respectively.
Since I to L are considered to be special waveforms when P5 or Pl and P5 do not exist, the second-order differential filtering output signal of P wave (T wave) is calculated from its peak number, peak voltage value, peak time interval, etc. (a') (b') ((!'
), it is possible to measure the occurrence time, end time, and start time of each P(T) wave, which are called classifications necessary for electrocardiogram signal analysis. (T) It becomes possible to judge whether the wave shape is unimodal, biphasic, or bimodal.

そのためまず心電図原信号に関する2次微分出力信号よ
りQ RSK波に関する成分を除去ないしはQR8の生
起時刻を明確にしてP(T)液検出の際にQR8R波の
影響を及ぼさないようにする。
For this reason, first, the component related to the QRSK wave is removed from the second-order differential output signal related to the electrocardiogram original signal, or the time of occurrence of QR8 is clarified to avoid the influence of the QR8R wave when detecting the P(T) fluid.

これはBsn波群がその2次フィルタ出力において他の
出力よりも顕著な電圧値を示すためである。次に、2次
微分出力信号に重畳している雑音を計測し、その平均電
圧レベルを求める。原信号に混入した図やハムの電圧レ
ベルが高い場合、2次微分出力信号中においても雑音レ
ベルが大きくなるため、これがP(T)波信号成分の検
出精度に影響を及ぼさないようにピーク検出の為の閾値
を動的に設定できる電圧レベルによって決めている。
This is because the Bsn wave group exhibits a more prominent voltage value at its secondary filter output than other outputs. Next, the noise superimposed on the second-order differential output signal is measured, and its average voltage level is determined. If the voltage level of the graph or hum mixed in the original signal is high, the noise level will also be high in the second derivative output signal, so peak detection is performed to prevent this from affecting the detection accuracy of the P(T) wave signal component. The threshold value for this is determined by a dynamically settable voltage level.

この電圧レベルに相当する雑音閾値によって雑音レベル
以上にあるピーク系列を選択しその中からさらに電圧レ
ベルの絶対値が最大を示す時刻のピークを中心として前
後に存在するピークを複数個、選択する。この選択基準
としてはまず、最大電圧レベルを示す時刻の近傍一定時
間間隔内にらるピークを選び、ピークとピークの時間間
隔が定められた時間間隔の範囲に存在しないものは雑音
ないしはノツチとみなしふるい落す。こうして残ったピ
ーク系列のパターンが第3図(a)(b)(C)に示し
た2次微分出カバターンに合致するかを判別する。もし
、ピーク系列パターンがどれかに合致する場合は2次微
分出力信号ピーク生起時刻が各々原信号の生起時刻、終
端時刻、ピーク生起時刻ないしはこの近傍を示している
。原信号の性質によって、例えばT波の終端のようにそ
の変化が急岐でない場合、ピーク生起時刻が実際の区分
点よりずれを生じるのを補正する。01ビ一ク系列パタ
ーンにおいてピークが過不足を示し第3図(a’) (
b’) (eつのいずれにも合致しない場合、これを補
正してパターンの分類を行う。例えば第5図に示すよう
な2次微分出力信号上で原波形のピークと生起時刻を示
すパターンが得られた場合、b′  に相当するピーク
を再検出する為に雑音の閾値を下げてb′を求める。も
し、モデルパターンよりもピーク数が多い場合には時間
間隔、レベル等で、ピークの再検出を行い、ピーク数を
減少させる。
A peak series that is above the noise level is selected using a noise threshold corresponding to this voltage level, and from among the peak series, a plurality of peaks that exist before and after the peak at the time when the absolute value of the voltage level is the maximum are selected. The selection criteria is to first select peaks that are within a certain time interval near the time that indicates the maximum voltage level, and if the time interval between peaks does not exist within the specified time interval range, it is considered to be noise or a notch. Sift it down. It is determined whether the pattern of the peak series remaining in this way matches the second-order differential output cover pattern shown in FIGS. 3(a), 3(b), and 3(c). If the peak series pattern matches any of the peak occurrence times, the second-order differential output signal peak occurrence time indicates the origination time, end time, and peak occurrence time of the original signal, or the vicinity thereof, respectively. Depending on the nature of the original signal, if the change is not abrupt, such as at the end of a T wave, the deviation of the peak occurrence time from the actual dividing point is corrected. In the 01-beak series pattern, the peaks show excess and deficiency in Figure 3 (a') (
b') (If it does not match any of the e, correct this and classify the pattern. For example, if a pattern indicating the peak and occurrence time of the original waveform is found on the second-order differential output signal as shown in Figure 5. If the peak corresponding to b' is obtained, lower the noise threshold and find b' in order to re-detect the peak corresponding to b'.If there are more peaks than the model pattern, change the time interval, level, etc. of the peak. Perform re-detection and reduce the number of peaks.

〔実施例〕〔Example〕

次に本発明の一実施例を図面を参照して説明する。第1
図は本発明の一実施例を示す図で、1は2次微分ディジ
タルフィルタであり、心電図等生体信号にフィルタリン
グ操作を加える。2は雑音検出装置であり、ディジタル
フィルタによって出力された信号より雑音等解析に不要
な2次微分出力成分の信号の平均電圧値を検出するもの
である。
Next, one embodiment of the present invention will be described with reference to the drawings. 1st
The figure shows an embodiment of the present invention, in which 1 is a second-order differential digital filter, which applies filtering operations to biological signals such as electrocardiograms. Reference numeral 2 denotes a noise detection device, which detects the average voltage value of the signal of the second-order differential output component, which is unnecessary for noise analysis, from the signal output by the digital filter.

3はQR8波検出装置であり2次微分出力信号よりQR
8波に相当する成分を検出する。4は減算装置であシ、
2つの入力信号の差分を行う。5は雑音閾値レベル発生
装置であり、ピーク検出の為の閾値を決定する。6はピ
ーク検出装置であり、設定された閾値以上にあるピーク
を検出する。7は電圧レベル比較装置であり、ピーク検
出装置6で検出されたピーク電圧のレベルを比較する。
3 is a QR 8 wave detection device, which detects QR from the second-order differential output signal.
Detect components corresponding to 8 waves. 4 is a subtraction device,
Performs the difference between two input signals. 5 is a noise threshold level generator, which determines a threshold for peak detection. Reference numeral 6 denotes a peak detection device, which detects a peak that is above a set threshold value. Reference numeral 7 denotes a voltage level comparison device, which compares the levels of the peak voltages detected by the peak detection device 6.

8は最大レベル検出装置であり入力されたピークよシ最
大ピークを選択する。9はピークパターン生成装置であ
シ、ピーク検出装置tt、6で検出されたピーク列に基
づきパターンを生成する。10はパターン比較装置であ
り、ピークパターン生成装置9で得られたパターンをあ
らかじめ設定されたモデルパターンと比較する。11は
ピーク補正装置であシ、ピーク生起時刻の補正を行いピ
ーク時刻とビーク電圧値を出力する。12は閾値補正装
置であシバターン比較装置10でパターン比較された結
果に基きもし、パターンがモデルパターンと異なる場合
に閾値レベルを変化させる。13は原波形の生起時刻、
終端時刻の補正装置であシ、正確な区分点の時刻を出力
する。14は信号遅延装置であり、入力1言号を一定時
間、遅延する。
8 is a maximum level detection device which selects the maximum peak from the input peaks. Reference numeral 9 denotes a peak pattern generation device which generates a pattern based on the peak sequence detected by the peak detection device tt and 6. A pattern comparison device 10 compares the pattern obtained by the peak pattern generation device 9 with a preset model pattern. Reference numeral 11 denotes a peak correction device, which corrects the peak occurrence time and outputs the peak time and peak voltage value. Reference numeral 12 denotes a threshold value correction device which changes the threshold level based on the result of pattern comparison by the Shibataturn comparison device 10 if the pattern differs from the model pattern. 13 is the time of occurrence of the original waveform,
The terminal time correction device outputs the accurate division point time. 14 is a signal delay device, which delays one input word for a certain period of time.

次に本実施例の動作を説明する。まず心電図信号第6図
(a)は2次微分ディジタルフィルタ1でフィルタリン
グ操作が行われる。このフィルタリング操作においては
第6図中)に示すような出力信号が得られるので雑音検
出装置2において(b)の11区間に存在する雑音を検
出し雑音閾値レベル発生装置5においてピーク検出装置
6内に必要な雑音除去のだめの閾値電圧を設定する。Q
R8R8量検出装置3算装置4ではP(T)波検出の際
、不要なQR8R2O3次微分出力成分第6図区間t2
を除去する。ピーク検出装#6においては、t2算装置
4からの信号よシ、設定された雑音閾値tb+以上にお
るピークを検出する。これを第7図に示す。さらに電圧
レベル比較装置7、最大レベル検出装置8でピーク系列
のうちの最大電圧レベルにあるものを選択する。(第7
図P)パターン比較装置10はピークパターン生成装置
9において得られた第8図に示すようなピークの生成パ
ターンが第3図に示したパターンのいずれかと一致する
か否かを比較する。もし、パターンが一致する場合はピ
ーク補正装置11、時刻の補正装置13ヘトリガを発生
する。ピーク補正装置11では最大レベル検出装置8で
得られた2次微分出力最大ピークレベルの時刻に基づき
原波形の性質によシ必要あればその時刻の補正を行い、
原波形を参照し原波形のピーク生起時刻及びその電圧値
を出力する。
Next, the operation of this embodiment will be explained. First, the electrocardiogram signal shown in FIG. 6(a) is subjected to a filtering operation using a second-order differential digital filter 1. In this filtering operation, an output signal as shown in FIG. Set the threshold voltage for noise removal necessary for this purpose. Q
In the R8R8 quantity detection device 3 calculation device 4, when detecting the P(T) wave, unnecessary QR8R2O third-order differential output component Section t2 in Figure 6
remove. In the peak detection device #6, a peak that is equal to or higher than a set noise threshold value tb+ is detected from the signal from the t2 calculation device 4. This is shown in FIG. Further, a voltage level comparison device 7 and a maximum level detection device 8 select the peak series having the maximum voltage level. (7th
(Figure P) The pattern comparison device 10 compares whether the peak generation pattern shown in FIG. 8 obtained by the peak pattern generation device 9 matches any of the patterns shown in FIG. 3. If the patterns match, a trigger is generated to the peak correction device 11 and the time correction device 13. In the peak correction device 11, based on the time of the second-order differential output maximum peak level obtained by the maximum level detection device 8, the time is corrected if necessary depending on the nature of the original waveform.
Refers to the original waveform and outputs the peak occurrence time of the original waveform and its voltage value.

一方、時刻の補正装置13ではピーク検出装置6、ピー
クバター/生成装置9からのピークパターンよシ、原波
形の生起時刻、終端時刻を検出し原波形の性質により、
時刻の補正を行い、出力する。もし、パターン比較装置
においてモデルパターンと一致しない場合には、閾値補
正装置12にトリガ奮かけピーク検出用の雑音閾値を変
化させ雑音閾値レベル発生装置5に戻る。
On the other hand, the time correction device 13 detects the peak pattern from the peak detection device 6 and the peak butter/generation device 9, the origin time of the original waveform, and the end time.
Correct the time and output. If the pattern comparison device does not match the model pattern, the threshold correction device 12 is triggered to change the noise threshold for peak detection, and the process returns to the noise threshold level generation device 5.

〔発明の効果〕〔Effect of the invention〕

以上の様な方式を採用することによプ従米の方式と比較
して次のような効果がある。(1)本方式で採用した2
次微分ディジタルフィルタは加減45および遅延回路だ
けの簡単なlr、!l路構成で実現できるだめ従来のデ
ィジタルフィルタを利用したP■波波山出方式比較して
高速な波形検出が可能である。(2)本方式で採用した
2次微分グイジタルフイルタは良好な低域通過特性を持
つため、ハム、筋電信号等の高周波雑音を含んだ信号に
対しても高い検出精度を示す。(3)2次微分フィルタ
リング出力信号のみから、原信号の生起時刻、ピーク生
起時刻、終端時刻およびその近傍が検知できるので原信
号の保持、原信号の雑音処理等のための手段が不要にな
シ、構成が簡単になる。(4)外部から与えるパラメー
タの設定を変えるのみで同一の構成でP波、T波の検出
が可能であるため、信号処理装置全体の構成が簡単にな
る。
By adopting the above-mentioned method, there are the following effects compared to the pu-mei method. (1) 2 adopted in this method
The order differential digital filter is a simple lr with only an adder/subtractor 45 and a delay circuit,! It is possible to detect waveforms at high speed compared to the conventional P-wave peak detection method using a digital filter. (2) Since the second-order differential guidital filter employed in this method has good low-pass characteristics, it exhibits high detection accuracy even for signals containing high-frequency noise such as hum and myoelectric signals. (3) Since the occurrence time, peak occurrence time, termination time, and their vicinity of the original signal can be detected from only the second-order differential filtering output signal, there is no need for means for retaining the original signal or processing noise in the original signal. This simplifies the configuration. (4) Since P waves and T waves can be detected with the same configuration by simply changing the settings of externally applied parameters, the overall configuration of the signal processing device is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は生体信号
の例としての心電図信号を示す図、第3図は生体信号の
処理の原理を示す図、第4図は時系列で示された信号デ
ータを示す図、第51’Jは補正された信号波形を示す
図、第6図は心電図信号と2次微分フィルタリング処理
された信号を示す図、第7図はピーク検出の様子を示す
図、第8図は生成ビークパタ゛−ンを示す図。 躬4図 茶5区
Figure 1 is a diagram showing an embodiment of the present invention, Figure 2 is a diagram showing an electrocardiogram signal as an example of a biological signal, Figure 3 is a diagram showing the principle of processing biological signals, and Figure 4 is a time series diagram. Figure 51'J is a diagram showing the corrected signal waveform, Figure 6 is a diagram showing an electrocardiogram signal and a signal subjected to second-order differential filtering processing, and Figure 7 is a diagram showing the signal data shown in . FIG. 8 is a diagram showing the generated beak pattern. 4 zu tea 5 wards

Claims (1)

【特許請求の範囲】[Claims] 入力生体信号を受け2次微分フィルタリング処理するフ
ィルタ手段と、前記フィルタ手段の出力を受けピークを
検出するピーク検出手段と、前記ピーク検出手段からの
ピーク検出結果の時系列的変化により入力生体信号を所
定の分類に類推する分類手段と、前記分類手段の出力を
受け2次微分フィルタリング処理された信号を基に前記
入力生体信号におけるピーク生起時刻及びピーク電圧値
を計測する計測手段とを具備することを特徴とする生体
信号処理方式。
filter means for receiving an input biosignal and performing second-order differential filtering; peak detection means for receiving the output of the filter means and detecting a peak; The method includes a classification means that makes an analogy to a predetermined classification, and a measurement means that measures a peak occurrence time and a peak voltage value in the input biological signal based on a signal that has been subjected to a second-order differential filtering process after receiving the output of the classification means. A biosignal processing method featuring:
JP59133705A 1984-06-28 1984-06-28 Bio-signal processing system Granted JPS6111017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59133705A JPS6111017A (en) 1984-06-28 1984-06-28 Bio-signal processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59133705A JPS6111017A (en) 1984-06-28 1984-06-28 Bio-signal processing system

Publications (2)

Publication Number Publication Date
JPS6111017A true JPS6111017A (en) 1986-01-18
JPH0261250B2 JPH0261250B2 (en) 1990-12-19

Family

ID=15110961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59133705A Granted JPS6111017A (en) 1984-06-28 1984-06-28 Bio-signal processing system

Country Status (1)

Country Link
JP (1) JPS6111017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168016A (en) * 2007-01-15 2008-07-24 Fujifilm Corp Ultrasonic diagnostic apparatus, imt measurement method, and imt measurement program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168016A (en) * 2007-01-15 2008-07-24 Fujifilm Corp Ultrasonic diagnostic apparatus, imt measurement method, and imt measurement program

Also Published As

Publication number Publication date
JPH0261250B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
Chouhan et al. Total removal of baseline drift from ECG signal
CN106725450B (en) QRS complex detection method
US5521851A (en) Noise reduction method and apparatus
US5772603A (en) Device for filtering ECG signals
CN109381181B (en) End point detection method for electrocardiosignal characteristic waveform
CA1258099A (en) Egg with delta wave recognition by double
CN107303177B (en) Method and system for detecting T wave and P wave of electrocardiogram
JPS63226338A (en) System and method for removing pace pulse
AU2019101756A4 (en) Method for analyzing heart rate variability signal based on extremum energy decomposition method
US5048535A (en) Method and apparatus for detecting QRS complex of ECG
JPS6111017A (en) Bio-signal processing system
EP0058050B1 (en) Measuring method
US5479933A (en) Method and apparatus for processing ECG signals
JPS644328Y2 (en)
Froning et al. Problems and limitations of ECG baseline estimation and removal using a cubic spline technique during exercise ECG testing: recommendations for proper implementation
JPS58223927A (en) Data compression processor
JPH05212006A (en) Heartbeat interval measuring instrument
CN114624512A (en) Frequency modulation signal inverse triangle noise suppression and frequency measurement method
JP2556369B2 (en) Overshoot position detection method for analog waveforms
JPH0238214B2 (en)
JPS61206428A (en) System for detecting and removing archfact of living body
KR100458165B1 (en) Interpolation method of heart rate variability
RU2122349C1 (en) Method for detection of qrs-syndrome and detection of moment of its emergence
KR100484505B1 (en) Cut-off-frequency determining method for eliminating high frequency noise included in signal
RU2636905C1 (en) Method for analogue-digital parameter measurement at automatic fragmentation of electrocardiosignals