JPS61110065A - Fault section detecting method for gas-insulated electric equipment - Google Patents

Fault section detecting method for gas-insulated electric equipment

Info

Publication number
JPS61110065A
JPS61110065A JP23159684A JP23159684A JPS61110065A JP S61110065 A JPS61110065 A JP S61110065A JP 23159684 A JP23159684 A JP 23159684A JP 23159684 A JP23159684 A JP 23159684A JP S61110065 A JPS61110065 A JP S61110065A
Authority
JP
Japan
Prior art keywords
gas
magnetic field
current
sheath
electrical equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23159684A
Other languages
Japanese (ja)
Inventor
Koji Iko
位高 光司
Takuji Hara
拓司 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23159684A priority Critical patent/JPS61110065A/en
Publication of JPS61110065A publication Critical patent/JPS61110065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To detect a fault section, by mounting a magnetic sensor at a point where no sheath current flows or is very weak, if any, to measure the intensity of a magnetic field accompanied by a conductor current. CONSTITUTION:Metal sheaths 2 of a gas-insulated electric equipment C are connected through an insulation spacer 4 with flanges 3a and 3b provided integral at the end thereof. Moreover, they are allowed to communicate with each other with a bond bar 5 at two points, upper and lower or right and left, to let a sheath current flow. The magnetic field accompanied by the current in a conductor 1 is measured directly mounting a magnetic field sensor 6 on the insulation spacer 4 or a magnetic sensor 6' on the flange 3a as the sheath current is shut down in the direction at the right angle to the bond bar 5. In this manner, the fault section of the gas-insulated electric equipment C can be detected even in the case of a two-end solid bonding method, utilizing the connection of thermal sheath 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガス絶縁密閉母線、管路気中ケーブル線路等の
ガス絶縁電気機器の事故区間を磁界センサを用いて検出
する方法に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention relates to a method for detecting fault sections of gas-insulated electrical equipment such as gas-insulated hermetic busbars, conduit aerial cable lines, etc. using magnetic field sensors. .

(従来技術) ガス絶縁密閉母線や管路気中ケーブル線路のように内部
導体とその外周上の金属シースが絶縁スペーサを介して
同心状に配置され、金gA/−入内に絶縁ガスを封入し
て構成されたガス絶縁電気機器において、その事故区間
を検出する原理を第3図に示す。
(Prior art) As in a gas-insulated hermetically sealed busbar or a conduit aerial cable line, an internal conductor and a metal sheath on its outer periphery are arranged concentrically with an insulating spacer in between, and an insulating gas is sealed inside the gold conductor. Figure 3 shows the principle of detecting an accident zone in gas-insulated electrical equipment constructed as follows.

第3図において、(C)はガス絶縁電気機器で(1)は
その内部導体、■は金属/−ス、(eA)(sB)は金
属シース■上の長さ方向に離れた位置に取付けたBSO
(Bi+2SiO2o) 、Zn5e等の磁界センサ、
IA、IBは磁界センサ(fiA)([iBlを取付け
た位置での導体電流である。
In Figure 3, (C) is a gas-insulated electrical device, (1) is its internal conductor, ■ is a metal/-base, and (eA) and (sB) are metal sheaths. TA BSO
(Bi+2SiO2o), magnetic field sensors such as Zn5e,
IA and IB are the conductor currents at the position where the magnetic field sensor (fiA) ([iBl) is installed.

しかして、磁界センサ(GA)(SB)により導体電流
に伴う磁界の強さを検出してそれぞれの地点における導
体電流(IA)(IB)を計測するが、この際IA−I
B=Oなら外部事故でガス絶縁電気機器(C)の事故で
はなく、IA−IB≠0ならガス絶縁電気機7S (C
)の内部事故であることがわかる。
Therefore, the magnetic field sensors (GA) (SB) detect the strength of the magnetic field accompanying the conductor current and measure the conductor current (IA) (IB) at each point.
If B=O, it is an external accident and not a gas-insulated electrical equipment (C) accident, and if IA-IB≠0, it is a gas-insulated electrical equipment 7S (C).
) It turns out that it was an internal accident.

(解決しようとする問題点) 上述の事故区間検出の原理が働(条件は、導体電流に伴
う磁界が金属シース■の外に謡洩していることで、これ
により磁界センサによる計測が可能となる。従って片端
接地方式のガス絶縁電気機器の場合は検出可能であるが
、第4図に示すように3相のガス絶縁電気機器(C1)
(C2)(C3)が両端でソリッドボンド■されている
場合には、金1i1ノース■には導体電流をキャンセル
するような位相が逆で絶対値が略等しい電流が流れて外
部に磁界がもれず、金属ノース■の外側に単に磁界セン
サを取付けただけでは原理が働かない。
(Problem to be solved) The above-mentioned fault zone detection principle works (the condition is that the magnetic field accompanying the conductor current leaks outside the metal sheath), which makes it possible to measure it with the magnetic field sensor. Therefore, it is possible to detect gas insulated electrical equipment with one end grounded, but as shown in Figure 4, it is possible to detect gas insulated electrical equipment with three phases (C1).
When (C2) and (C3) are solid bonded at both ends, a current with opposite phase and approximately equal absolute value that cancels the conductor current flows through the gold 1i1 north, and an external magnetic field is generated. Simply attaching a magnetic field sensor to the outside of the metal north (■) does not work.

しかも最近のガス絶縁電気機器、特に超高圧系では両端
ソリッドボンド方式が大部分で、その対策が望まれてい
た。
Moreover, most recent gas-insulated electrical equipment, especially ultra-high voltage systems, use solid bonding at both ends, and a countermeasure has been desired.

(問題点を解決するための手段) 本発明は上述の問題点を解決し、金属シースの接続部を
利用して両端ソリッドボンド方式の場合にも検出可能な
ガス絶縁電気i器の事故区間検出方法を提供するもので
、金属/−スがその端mくに設けたフランツにより接続
されており、がっ/−スミ流を流す目的でボッドバーで
連結されている場合、シース電流が流れないがもしくは
極(微弱な個所に磁界センサを取付け、導体電流に伴う
磁界の強さを測定して事故区間を検出することを特徴と
するものである。
(Means for Solving the Problems) The present invention solves the above-mentioned problems, and detects fault sections in gas-insulated electric appliances that can be detected even in the case of solid bonding at both ends by using the metal sheath connection. The method provides a method in which when metal/- sheaths are connected by flantz provided at their ends and are connected by a bodbar for the purpose of flowing a sheath current, the sheath current does not flow or The feature is that a magnetic field sensor is attached to a weak point at the pole, and the strength of the magnetic field accompanying the conductor current is measured to detect the accident zone.

(実施例1) 第1図は本発明の第1の実施例の斜視図を示す。(Example 1) FIG. 1 shows a perspective view of a first embodiment of the invention.

ガス絶縁電気機器(C)の金属シース■はその端部に一
体に設けたフランツ(3^)(3桐により絶縁スペーサ
(4)を介して接続されており、ノース電流を流すため
上下又は左右の2個所でボンドバー■によ   “り連
結されている。
The metal sheath ■ of the gas-insulated electrical equipment (C) is connected via an insulating spacer (4) by a Franz (3^) (3 paulownia) integrally provided at its end, and the metal sheath It is connected by bond bar ■ at two points.

この場合ボンドバー■の直角方向はシース電流が遮断さ
れているため絶縁スペーサ4)上に磁界センサ(6)を
取付けるか、又はフランツ(3^)上に磁界センナ(8
′)を取付けることにより導体(1)電流に伴う磁界を
直接計i!tllすることができる。
In this case, since the sheath current is cut off in the direction perpendicular to the bond bar ■, the magnetic field sensor (6) is installed on the insulating spacer 4), or the magnetic field sensor (8
') By attaching the conductor (1), the magnetic field accompanying the current can be directly measured i! tll can be done.

第6図はこのように磁界センサを取付けたガス絶縁電気
機器(C)の説明図で、磁界センサ(Ha)(Gn)を
用いれば事故がガス絶縁機器(C)内部かそれとも外部
かを検出することができる。又各接続部に取付けたすべ
ての磁界センサ(ail)(64)(6c)・・・・・
([in)を用いれば8a−16,16−6c・・・・
・と各区間毎のどこでII故が発生したかを検出するこ
とができる。
Figure 6 is an explanatory diagram of gas insulated electrical equipment (C) with a magnetic field sensor installed in this way.If the magnetic field sensor (Ha) (Gn) is used, it can be detected whether the accident is inside or outside the gas insulated equipment (C). can do. Also, all magnetic field sensors (ail) (64) (6c) attached to each connection part...
If you use ([in), 8a-16, 16-6c...
・It is possible to detect where the II failure occurred in each section.

(実施例2) 第2図は本発明の他の実施例の斜視図を示し、この場合
は、金属シース■は絶縁スペーサ(4)を介することな
くその端部に一体に設けたフランジ(:+13j!I)
により直接接続されている。なお/−スミ流を流すため
のボンドバー■が設けられているのは第1図の場合と同
様である。
(Embodiment 2) Fig. 2 shows a perspective view of another embodiment of the present invention, in which the metal sheath (2) has a flange (: +13j!I)
directly connected. Note that the bond bar (2) for flowing the ink flow is provided as in the case of FIG. 1.

本実施例の場合、シース電流■の電流分布は第5図の通
りで、2つのボンドバー(5)の間のシース電流の流れ
ないフランツ(3^)上の部分(9に磁界センサ■を取
付けることによって導体電流に伴う磁界を直接計測する
ことができる。このように磁界センサを取付けたガス絶
8電気機器において事故区間を検出するのは実施例1の
場合と同様である。
In the case of this example, the current distribution of the sheath current ■ is as shown in Fig. 5, and the magnetic field sensor ■ is attached to the part (9) above the Franz (3^) where the sheath current does not flow between the two bond bars (5). By doing this, the magnetic field associated with the conductor current can be directly measured. Detecting the fault zone in the gas-free electric appliance equipped with the magnetic field sensor in this manner is the same as in the first embodiment.

(発明の効果) 上述した本発明のガス絶縁電気機器の事故区間検出方法
によれば、両端でソリッドボッドされていても検出可能
であり、又絶縁スペーサ、フランツ等の外側に磁界セン
サを取付けるので線路の施工後でも取付けることが出来
る等の利点がある。
(Effects of the Invention) According to the above-mentioned method for detecting an accident zone in gas-insulated electrical equipment of the present invention, it is possible to detect even if solid bodies are formed at both ends, and since a magnetic field sensor is attached to the outside of the insulating spacer, Franz, etc. It has the advantage of being able to be installed even after the track is constructed.

【図面の簡単な説明】[Brief explanation of drawings]

jS1図及び第2図は本発明のガス絶縁電気機器の事故
区間検出方法の実施例の説明のための斜視図、第3図は
事故区間検出の原理の説明図、刃4図は両端ソリッドボ
ンドの説明図、第5図はシース電流分布の一例の説明図
、第6図は本発明による事故区間検出の説明図をそれぞ
れ示す。 C・・・ガス絶8電気機器、1・・・内部導体、2・・
・金属シース、3^、 3J!J・・・フランツ、4・
・・絶縁スベーサ、5・・・ボンドバー、6・・・磁界
センサ。 才1図 才2凹
jS1 and 2 are perspective views for explaining an embodiment of the fault section detection method for gas insulated electrical equipment of the present invention, FIG. 3 is an explanatory diagram of the principle of fault section detection, and blade 4 is a solid bond at both ends. FIG. 5 is an explanatory diagram of an example of sheath current distribution, and FIG. 6 is an explanatory diagram of fault section detection according to the present invention. C... Gas-free 8 electrical equipment, 1... Internal conductor, 2...
・Metal sheath, 3^, 3J! J... Franz, 4.
... Insulation spacer, 5... Bond bar, 6... Magnetic field sensor. Sai 1 figure Sai 2 concave

Claims (3)

【特許請求の範囲】[Claims] (1)内部導体とその外周上の金属シースが同心状に配
置され、金属シース内に絶縁ガスを封入したガス絶縁電
気機器において、上記金属シースがその端部に設けたフ
ランジにより接続されており、かつシース電流を流す目
的でボンドバーで連結されている場合、シース電流が流
れないかもしくは極く微弱な個所に磁界センサを取付け
、導体電流に伴う磁界の強さを測定して事故区間を検出
することを特徴とするガス絶縁電気機器の事故区間検出
方法。
(1) In gas-insulated electrical equipment in which an internal conductor and a metal sheath on its outer periphery are arranged concentrically and an insulating gas is sealed within the metal sheath, the metal sheath is connected by a flange provided at its end. , and are connected with a bond bar for the purpose of flowing sheath current, install a magnetic field sensor at a location where sheath current does not flow or is extremely weak, and measure the strength of the magnetic field accompanying the conductor current to detect the fault area. A method for detecting an accident section of gas-insulated electrical equipment, characterized by:
(2)フランジ上の、ボンドバーから遠ざかりシース電
流の影響の少ない個所に磁界センサを取付けたことを特
徴とする特許請求の範囲第1項記載のガス絶縁電気機器
の事故区間検出方法。
(2) A method for detecting an accident zone in gas-insulated electrical equipment according to claim 1, characterized in that a magnetic field sensor is mounted on the flange at a location far from the bond bar and less affected by the sheath current.
(3)フランジ間に挟み込まれている絶縁スペーサに磁
界センサを取付けたことを特徴とする特許請求の範囲第
1項記載のガス絶縁電気機器の事故区間検出方法。
(3) A method for detecting an accident zone in gas-insulated electrical equipment according to claim 1, characterized in that a magnetic field sensor is attached to an insulating spacer sandwiched between flanges.
JP23159684A 1984-11-02 1984-11-02 Fault section detecting method for gas-insulated electric equipment Pending JPS61110065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23159684A JPS61110065A (en) 1984-11-02 1984-11-02 Fault section detecting method for gas-insulated electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23159684A JPS61110065A (en) 1984-11-02 1984-11-02 Fault section detecting method for gas-insulated electric equipment

Publications (1)

Publication Number Publication Date
JPS61110065A true JPS61110065A (en) 1986-05-28

Family

ID=16925990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23159684A Pending JPS61110065A (en) 1984-11-02 1984-11-02 Fault section detecting method for gas-insulated electric equipment

Country Status (1)

Country Link
JP (1) JPS61110065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637116A (en) * 1986-06-25 1988-01-13 関西電力株式会社 Failure detector of enclosed electric equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637116A (en) * 1986-06-25 1988-01-13 関西電力株式会社 Failure detector of enclosed electric equipment

Similar Documents

Publication Publication Date Title
US10712372B2 (en) Current measurement device, manufacturing method, protection module and differential circuit breaker including such a device
JPS61110065A (en) Fault section detecting method for gas-insulated electric equipment
JP2737056B2 (en) Shielding method for physical quantity measurement system of movable high voltage body
JPH06235748A (en) Fault locator for power cable
JPH0347415Y2 (en)
WO2020162325A1 (en) Disconnection detection device
JPH0347416Y2 (en)
JPS62168073A (en) Monitoring method for power-transmission line
JPH0495781A (en) Detecting method for point of accident of power cable line
JPS6183975A (en) Apparatus for discriminating accident section of power cable
JP2572418B2 (en) Power receiving substation equipment
JPH1019969A (en) Partial discharge measuring method
JPH0161007B2 (en)
JPH0312007Y2 (en)
US20140176118A1 (en) Differential Current Sensor
SU855849A1 (en) Overhead electric power transmission line with antenna sensor of voltage of zero sequence
JPS6027864A (en) Magnetic field measurement for compressed gas insulated cable
JPH0646187Y2 (en) Supporting device for anticorrosion layer protection element for power cable
JPS60233574A (en) Accident point detecting device of single core metallic sheath cable
KR102072360B1 (en) Device measuring the force of electronic attraction on two-bundle conductor of overhead transmission line
JPS6217665A (en) Apparatus for detecting earthing troubled position of gas insulating machinery
JP2524039Y2 (en) Control device having optical fiber signal line
JPH0382327A (en) Gas insulation type electric facility
JP3568721B2 (en) Impedance bond
JP2000284016A (en) Method for detecting ground-fault point in trolley power transmission line