JPS61109378A - Solid-state image pick-up device - Google Patents

Solid-state image pick-up device

Info

Publication number
JPS61109378A
JPS61109378A JP59230948A JP23094884A JPS61109378A JP S61109378 A JPS61109378 A JP S61109378A JP 59230948 A JP59230948 A JP 59230948A JP 23094884 A JP23094884 A JP 23094884A JP S61109378 A JPS61109378 A JP S61109378A
Authority
JP
Japan
Prior art keywords
drive circuit
solid
driven
goes
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59230948A
Other languages
Japanese (ja)
Inventor
Kazumasa Hasegawa
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59230948A priority Critical patent/JPS61109378A/en
Publication of JPS61109378A publication Critical patent/JPS61109378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To divide a driving output, to drive a picture element and to execute at high speed and with high resolution by connecting plural logical gates to one output terminal of the driving circuit and applying a different selecting pulse to a gate. CONSTITUTION:During the period of the time t1-t3, an electric potential of an output terminal 114 of the driving circuit 101 goes to 'H'. During the time t1-t2, a selecting pulse 503 impressed to a terminal 117 goes to 'H', an output signal 505 of a logical gate 102 goes to 'H' and a picture element 108 is driven. During the period t2 t3, a selecting pulse 504 impressed to a terminal 118 goes to 'H', an output signal 506 of a logical gate 103 goes to 'H' and a picture element 109 is driven. In the same way, During the respective periods t3 t4 and t4 t5, picture elements 110 and 111 are respectibely driven. The above- mentioned action is repeated, a picture element 113 is driven and thereafter, the scanning of one line is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体撮像装置、特に駆動回路内蔵型置体操像装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a solid-state imaging device, and particularly to a stationary imaging device with a built-in drive circuit.

〔従来の技術〕[Conventional technology]

近年、固体撮像装置の開発が盛んであり、高速動作及び
高解像度の固体撮像装置が多数発表濾ねている。
In recent years, development of solid-state imaging devices has been active, and many high-speed operation and high-resolution solid-state imaging devices have been announced.

従来の駆動回路内蔵型−次元固体撮像装置は、第2図に
示ばれる如く駆動回路(シフトレジスタ)の出力信号を
そのまま画素へ送り込み、画素の駆動を行っていた。同
図において201はシフトレジスタによる駆動回路、2
02乃至205け画素、206乃至209はシフトレジ
スタ200の出力端子である1゜第3図に1画素の等価
回路を示す。301け薄膜トランジスタによるアナログ
スイッチ、302け感光体薄膜による光電変換素子、3
03け正電源、304は負電源、305はアナログスイ
ッチ301の開閉を制御する信号入力端子で、305が
それぞれシフトレジスタ201の出力端子206乃至2
09 K接続されている。
In the conventional one-dimensional solid-state imaging device with a built-in drive circuit, as shown in FIG. 2, the output signal of the drive circuit (shift register) is directly sent to the pixel to drive the pixel. In the figure, 201 is a drive circuit using a shift register;
02 to 205 pixels and 206 to 209 are output terminals of the shift register 200. An equivalent circuit of one pixel is shown in FIG. Analog switch with 301 thin film transistors, photoelectric conversion element with 302 photoreceptor thin films, 3
03 is a positive power supply, 304 is a negative power supply, 305 is a signal input terminal that controls opening/closing of the analog switch 301, and 305 is the output terminal 206 to 2 of the shift register 201, respectively.
09 K connected.

第4図に第2図従来固体撮像装置の駆動電圧波形の例を
示す。401. 402. 403はそれぞれシフトレ
ジスタ201の出力端子206. 207. 208に
印加される電圧波形である。305に印加される霊位が
ハイの時アナログスイッチ301が導通するものとすれ
ば、時刻tl乃至t20期間に画素202、t2乃至t
3の期間に画素203、t3乃至t4の期間に画素20
4より、光信号が読み出シh、る。
FIG. 4 shows an example of the drive voltage waveform of the conventional solid-state imaging device shown in FIG. 401. 402. 403 are the output terminals 206 . 207. This is a voltage waveform applied to 208. If it is assumed that the analog switch 301 is conductive when the spiritual power applied to the pin 305 is high, the pixel 202, t2 to t during the period from time tl to t20.
Pixel 203 during period t3 and pixel 20 during period t3 to t4.
4, the optical signal is read out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術′に、I、−いては、以下に述
べろ如き問題点がある。
However, the above-mentioned prior art has problems as described below.

まず、画素のv葡速度が、シフトリ2フ22010重(
・作速度で制限ζハる。こわけ、駆動回路にポリシリコ
ンをチャネル部に用1−tyた薄膜トランジスタc以下
、TPTと示す)を用いた時に特に問題となる。といへ
のもポリシリコンTPTにおいてて、オン状態の宵流が
M OS )ランノスタ等に比べて極端に小プいため、
シフトレジスタの動作速度も、ポリシリコンTPTを用
いた場合にはたいへん遅いものとなる。このため、画素
の駆動速度及び1ライン走査速度もたいへん遅いものに
制限これ、高速読み出しが不可能と4「る。
First, the speed of the pixel is 22010 times the shift lift (
・Limited by speed of operation. This is especially a problem when a thin film transistor (hereinafter referred to as TPT) whose channel portion is made of polysilicon is used in the drive circuit. In addition, in polysilicon TPT, the current in the on state is extremely small compared to MOS) Lannostar etc.
The operating speed of the shift register is also very slow when polysilicon TPT is used. For this reason, the pixel drive speed and one line scanning speed are limited to very slow speeds, making high-speed readout impossible.

また、画素数と同じ段数のシフトレジスタが必要である
。これも駆動回路にポリシリコンTPTを用いた場合性
に問題となる。ポリシリコンTFTけ前述の如く駆動能
力が劣るため、画素の駆動においても大きなサイズのT
PTが必要となる。
Furthermore, a shift register with the same number of stages as the number of pixels is required. This also becomes a problem when polysilicon TPT is used in the drive circuit. As mentioned above, polysilicon TFTs have inferior driving ability, so large TFTs are used to drive pixels.
PT is required.

このため、シフトレジスタ1段あたりのセルサイズも大
きなものが必要で、例先ば、解像度Br1ot/mmに
対応するセルサイズは125 X 1000 (μm2
)が必要である。づらに高解像度化し、16 dot/
mm にするとそれに対応するシフトレジスタセルサイ
ズは60x 3000 (μm2′)以上になることが
予想はれ、チップ面積が大きく、素子数も倍増するため
、歩留りやコスト面で大いに不利となる。ζらに高解像
度化したり二次元固体撮像装置への適用を考えると、こ
の点だけで実現不可能となる。
For this reason, a large cell size is required per stage of shift register. For example, the cell size corresponding to the resolution Br1ot/mm is 125 x 1000 (μm2
)is necessary. Extremely high resolution, 16 dots/
mm 2 , the corresponding shift register cell size is expected to be 60×3000 (μm 2 ') or more, which increases the chip area and doubles the number of elements, which is very disadvantageous in terms of yield and cost. This point alone makes it impossible to achieve high resolution and application to two-dimensional solid-state imaging devices.

r問題点を解決するための手段〕 以上述べた如き問題点を解決するため、木兄明け、駆動
回路の出力端子1個につき複数の論理ゲートを接続し、
該論理ゲートにおのおの昂なる選択パルスを加え、該論
理ゲートの出力信号で画素を駆動することを時機とする
。           ′〔作用〕 本発明の上記の構成によれば、駆動回路の出力端子1個
につき複数の論理ノビートを接続し、該論理ゲー)Kお
のおの異なる選択パルスを加先乙ことにより、該、@動
回路の出力信号を分割してとり出すことが可能となる。
Measures for Solving Problems] In order to solve the above-mentioned problems, Akihiro Kinoshita connected a plurality of logic gates to each output terminal of the drive circuit,
It is time to apply a selection pulse to each of the logic gates and drive the pixels with the output signals of the logic gates. [Function] According to the above configuration of the present invention, a plurality of logic beats are connected to each output terminal of the drive circuit, and a different selection pulse is applied to each of the logic games. It becomes possible to divide and extract the output signal of the circuit.

づらに、画素部” F Tのゲート容量が、駆動回路内
TPTのゲート容量より小でいため、駆動回路の@1作
上限周波数より大きな周波数で画素部f:@J1動する
ことができる。このため読み出11時間の短縮化、即ち
読み出し速度の高速化が可能となる。
On the other hand, since the gate capacitance of the pixel section FT is smaller than the gate capacitance of the TPT in the drive circuit, the pixel section f:@J1 can operate at a frequency higher than the upper limit frequency of the drive circuit's @1 operation. Therefore, it is possible to shorten the readout time by 11 hours, that is, to increase the readout speed.

また、付加中る論理ゲート数の総和と画素数が同一であ
ることに着目すわば、駆動回路(シフトレジスタ)の段
数は画素数より少なくなることがわかる。シフトレジス
タ出力端子に接H6をれる論理ゲートの個数fNとすれ
ば、シフトレジスタの段数は(画素fllN )でよい
。このため、従来例において起こっていた高解像度化に
伴)素子数及びチップサイズの増大が太いに緩和できる
ばかりでなく、現行解像度固体撮像装置に本発明を適用
しても、素子数及びチップサイズの減少により、低コス
ト化が実現ばれる。
Furthermore, if we pay attention to the fact that the total number of added logic gates is the same as the number of pixels, it can be seen that the number of stages of the drive circuit (shift register) is smaller than the number of pixels. If the number of logic gates connected to the shift register output terminal H6 is fN, then the number of stages of the shift register may be (pixel fllN). For this reason, not only can the increase in the number of elements and chip size (as a result of higher resolution) that occurred in conventional examples be significantly alleviated, but even when the present invention is applied to current resolution solid-state imaging devices, the increase in the number of elements and chip size As a result, cost reduction is realized.

〔実施例〕〔Example〕

第1図に本発明の実施例を示す。同図において101け
シフトレジスタによる@動回路、102乃至107は付
加プれた論理ゲートで、便宜上ANDゲートと考えるこ
とにする。10B乃至113は画素、114乃至116
は駆動回路101の出力端子、117及び118はそれ
ぞれ論理ゲートに加える選択パルスを加える端子、11
9乃至124はそれぞれ論理ゲート102乃至107の
出力端子である。
FIG. 1 shows an embodiment of the present invention. In the figure, an @-operation circuit is made up of a 101-digit shift register, and 102 to 107 are additional logic gates, which will be considered as AND gates for convenience. 10B to 113 are pixels, 114 to 116
is an output terminal of the drive circuit 101, 117 and 118 are terminals that apply selection pulses to be applied to the logic gates, and 11
9 to 124 are output terminals of logic gates 102 to 107, respectively.

第5図は第1図本発明固体撮像装置の駆動電圧波形の例
である。同図において501及び502けイれぞれ駆動
回路101の出力端子114及び115に印加これる電
圧波形、503汲び504けそれぞれ選択パルス入力端
子117及び118に印加これる選択パルスの電圧波形
、505. 506. 507. 508はそわぞれ論
理ゲートの出力端子119 、 120 、 121 
、122に出力される信号電圧波形である。時刻tl乃
至t、1の期間に駆動回路101の出力端子114の官
位がハイとなる。この間、tl乃至t2の期間において
は、117に印加される選択パルス503がハイとなる
ため、論理ゲート102の出力信号SOSがハイとなり
画素10B 7)f 1If7動をれる。t2乃至ts
(f)期間には118に印加ばれる選択パルス504が
ハイとなるため一輪理ゲート103の出力信号506が
ノ・イとなり、画素1097′+8駆師はれる。同様に
時刻L3乃至14. 、1+乃至tsの期間にそれぞれ
画素110. 111が駆動これる。以上の動作を繰り
返し、画素113の駆動が終了すると、1ラインの走査
が兇了する。第1回置体撮像装置は、駆動回路101の
(駆動周波数の2倍の周波数で画素を駆動している例で
ある。
FIG. 5 is an example of a driving voltage waveform of the solid-state imaging device of the present invention shown in FIG. In the figure, voltage waveforms 501 and 502 are applied to the output terminals 114 and 115 of the drive circuit 101, respectively, and voltage waveforms of selection pulses 503 and 504 are applied to the selection pulse input terminals 117 and 118, respectively. 505. 506. 507. 508 are the output terminals 119, 120, 121 of the logic gates, respectively.
, 122. During the period from time tl to time t,1, the output terminal 114 of the drive circuit 101 becomes high. During this period, in the period from tl to t2, the selection pulse 503 applied to the pixel 117 becomes high, so the output signal SOS of the logic gate 102 becomes high and the pixel 10B 7)f1If7 moves. t2 to ts
During the period (f), the selection pulse 504 applied to the pixel 118 becomes high, so the output signal 506 of the one-wheel gate 103 becomes NO, and the pixel 1097'+8 is activated. Similarly, times L3 to 14. , 1+ to ts, respectively. 111 is driven. When the above operations are repeated and driving of the pixels 113 is completed, scanning of one line is completed. The first body imaging device is an example in which pixels are driven at a frequency twice the driving frequency of the driving circuit 101.

第6図は本発明の応用例である。同図において第1図と
同一の記号は第1図と同一のものを表わす。601乃至
609け論理ゲート、611乃至619け画素、621
乃至629け論理ゲート群、601乃至609の出力端
子、630. 631. 632は論理ゲートに選択パ
ルスを加える端子である。
FIG. 6 shows an example of application of the present invention. In this figure, the same symbols as in FIG. 1 represent the same things as in FIG. 1. 601 to 609 logic gates, 611 to 619 pixels, 621
Groups of logic gates 629 to 629, output terminals 601 to 609, 630. 631. 632 is a terminal that applies a selection pulse to the logic gate.

噴7図は第6図面体撮像装置の駆動電圧波形の例である
。同図において701及び702けそれぞれ駆動回路1
01の出力端子114及び115に出力される電圧波形
、703. 704. 705はそれぞれ選択パルス入
力端子630. 631. 632に印加される選択パ
ルスの常圧波形、706. 707. 708. 70
9,710゜711はそれぞわ論理ゲートの出力端子6
21. 622゜625、 624. 625. 62
6に出力ばれる信号の電圧波形である。時刻り乃至t4
の間、駆動回路101の出力端子114に出力これる信
号は)・イとなり、この間tl乃至12.12乃至13
. 1.乃至t4の期間にはそれぞれ論理ゲー) 60
1 、 602 、 603 ′VCより114の信号
が選択ばれ、論理ゲート出力端子621.622626
に出力てれる信号706. 707. 708がそれぞ
れハイとなり、画素1!111. 612. 613が
駆動ばhる。同様にt4乃至1..1.乃至16.16
乃至t7の期間にそれぞれ画素614.  /115.
 616が駆動はれる。
Figure 7 is an example of the driving voltage waveform of the imaging device shown in Figure 6. In the same figure, 701 and 702 each have a drive circuit 1.
Voltage waveform output to output terminals 114 and 115 of 01, 703. 704. 705 are respective selection pulse input terminals 630. 631. normal pressure waveform of the selection pulse applied to 632, 706. 707. 708. 70
9,710°711 are the output terminals 6 of the logic gates respectively.
21. 622°625, 624. 625. 62
This is the voltage waveform of the signal output to 6. Time to t4
During this period, the signal outputted to the output terminal 114 of the drive circuit 101 becomes )・a, and during this period tl to 12.12 to 13.
.. 1. Logic games during periods from t4 to t4) 60
1, 602, 603' Signal 114 is selected from VC, and logic gate output terminal 621.622626
A signal 706. 707. 708 go high, and pixels 1!111. 612. 613 is activated. Similarly, from t4 to 1. .. 1. ~16.16
Pixel 614 . /115.
616 is driven.

以上述べた如き動作を繰り返し、画素は駆動ahてゆ〈
。第6図面体撮像装置は、駆動回路101の駆動周波数
の3倍の周波数で画素を駆動している例である。また、
この例においては、該駆動回路の段数は全画素数の6分
の1で済み、チップ面積縮小の効果が太きい。
By repeating the operations described above, the pixels are driven.
. The imaging device shown in the sixth figure is an example in which pixels are driven at a frequency three times the driving frequency of the driving circuit 101. Also,
In this example, the number of stages of the drive circuit is only one-sixth of the total number of pixels, and the effect of reducing the chip area is significant.

第8図も本発明の応用例で、この例における植機は選択
パルスドライバーを固体撮像装置内にTFTで作り込ん
だことにある。同図において、館1図と同一の記号は第
1図と同一のものを表わす。
FIG. 8 is also an application example of the present invention, and the implant in this example is that a selective pulse driver is built into a solid-state imaging device using a TFT. In this figure, the same symbols as in Figure 1 represent the same things as in Figure 1.

801けインバーターで、選択パルス入力端子802に
印加される選択パルス信号を反転ジせ、論理ゲートに加
える。TFT%性が向上することにより第8図の如き実
施例が可能となり、本発明固体描像装置の実装端子数を
減少シせることができた。
An 801 inverter inverts the selection pulse signal applied to the selection pulse input terminal 802 and applies it to the logic gate. By improving the TFT % property, the embodiment shown in FIG. 8 became possible, and the number of mounting terminals of the solid-state imaging device of the present invention could be reduced.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、駆動回路の出力端子
1個につき複数の論理/y’−)を接続し、該論理ゲー
トに卦のおの異なる選択パルスを加えることにより、該
駆動回路の出力信号全分割して画素を駆動することが可
能となる。この時、画素部TPTのゲート容量が駆動回
路内TPTのゲート容量よねかなり小さいため、駆動回
路の動作上限周波数より高い周波数で画素を1駆動する
ことができる。また1、駆動回路の段数は、該駆動回路
の出力端子1個に接PR,テれる論理ゲートの個数をN
とすると、(画素VN)でよい。
As described above, according to the present invention, by connecting a plurality of logics /y'-) to one output terminal of the drive circuit and applying different selection pulses to the logic gates, the drive circuit It becomes possible to drive pixels by completely dividing the output signal of . At this time, since the gate capacitance of the pixel portion TPT is considerably smaller than the gate capacitance of the TPT in the drive circuit, the pixel can be driven once at a frequency higher than the operating upper limit frequency of the drive circuit. 1. The number of stages of the drive circuit is the number of logic gates connected to one output terminal of the drive circuit.
Then, (pixel VN) may be sufficient.

このため、−次元固体撮像装置においては、本発明を用
いることにより、高速化及び高解度化が実現これた。ま
た、本発明を用いることにより、素子数及び固体撮像装
置チップ面積も小さく吋ることか可能となり、低コスト
化が実現された。駆動回路にポリシリコンTPTを用い
た場合は、動作速度も遅く、チップ面積も大きなものが
必要であるため、本発明によりもたらされる効果が特に
大きい。
Therefore, in the -dimensional solid-state imaging device, by using the present invention, higher speed and higher resolution have been realized. Further, by using the present invention, it is possible to reduce the number of elements and the chip area of the solid-state imaging device, thereby realizing cost reduction. When polysilicon TPT is used for the drive circuit, the operating speed is slow and a large chip area is required, so the effects brought about by the present invention are particularly large.

濾らに本発明は1画素ピッチが短く高速駆動の必要な、
駆動回路内蔵型二次元固体撮像装置にも適用され、その
もたらす効果は大きい。
Furthermore, the present invention has a short pixel pitch and requires high-speed driving.
It is also applied to a two-dimensional solid-state imaging device with a built-in drive circuit, and its effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための図。 101・・・・・・駆動回路 102乃至107・・・・・・論理ゲート108乃至1
13・・・・・・画素 第2図は従来の固体撮像装置を説明するための図。 第3図は1画素の等何回路を示した図。 第4図は従来の固体撮像装置(第2図)の駆動電圧波形
の一例。 第5図は本発明の実施例(第1図)の固体撮像装置の駆
動電圧波形の一例。 第6図及び第7図は本発明の応用例を説明するための図
FIG. 1 is a diagram for explaining the present invention in detail. 101...Drive circuits 102 to 107...Logic gates 108 to 1
13... Pixel FIG. 2 is a diagram for explaining a conventional solid-state imaging device. FIG. 3 is a diagram showing an equal number of circuits for one pixel. FIG. 4 shows an example of the drive voltage waveform of the conventional solid-state imaging device (FIG. 2). FIG. 5 is an example of a driving voltage waveform of the solid-state imaging device according to the embodiment of the present invention (FIG. 1). FIG. 6 and FIG. 7 are diagrams for explaining an application example of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上に感光体薄膜による光電変換素子、及び薄
膜トランジスタによる駆動回路を有する固体撮像装置に
おいて、該駆動回路の出力端子1個につき複数の論理ゲ
ートを接続し、該論理ゲートにおのおの異なる選択パル
スを加え、該論理ゲートの出力信号で画素を駆動するこ
とを特徴とする固体撮像装置。
In a solid-state imaging device having a photoelectric conversion element made of a photoreceptor thin film on an insulating substrate and a drive circuit made of a thin film transistor, a plurality of logic gates are connected to each output terminal of the drive circuit, and a different selection pulse is applied to each logic gate. In addition, a solid-state imaging device characterized in that a pixel is driven by an output signal of the logic gate.
JP59230948A 1984-11-01 1984-11-01 Solid-state image pick-up device Pending JPS61109378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59230948A JPS61109378A (en) 1984-11-01 1984-11-01 Solid-state image pick-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59230948A JPS61109378A (en) 1984-11-01 1984-11-01 Solid-state image pick-up device

Publications (1)

Publication Number Publication Date
JPS61109378A true JPS61109378A (en) 1986-05-27

Family

ID=16915820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59230948A Pending JPS61109378A (en) 1984-11-01 1984-11-01 Solid-state image pick-up device

Country Status (1)

Country Link
JP (1) JPS61109378A (en)

Similar Documents

Publication Publication Date Title
US10923008B2 (en) Shift register and method of driving the same, gate driving circuit, and display device
TWI295793B (en) Display device and driving device
US10770162B2 (en) Shift register, driving circuit and display device
US4392158A (en) Interlaced solid-state imaging device
JPH1185111A (en) Liquid crystal display element
US8139708B2 (en) Shift register
US11244595B2 (en) Shift register unit comprising input circuit, first control circuit, blanking control circuit, first output circuit, and second output circuit, driving method, gate driving circuit, and display device
WO2021169761A1 (en) Gate driving circuit and display device
US20210366352A1 (en) Gate Driver Circuit, Display Device and Driving Method
CN108806630A (en) Shift register, gate driving circuit and display device
GB2134686A (en) Driver circuit for matrix type display device
CN111402774A (en) Shift register unit and driving method thereof, gate drive circuit and display device
US11688318B2 (en) Shift register unit comprising input circuit, first control circuit, blanking control circuit, first output circuit, and second output circuit, driving method, gate driving circuit, and display device
JPS60182488A (en) Electronic circuit for driving
US10997890B2 (en) Shift register, a gate driver circuit and a display device
JP2006323040A (en) Semiconductor integrated circuit and semiconductor integrated circuit for driving liquid crystal display
WO2020034856A1 (en) Shift register unit, driving method, gate driving circuit, and display device
US5105450A (en) Charge transfer device having alternating large and small transfer electrodes
TW200828228A (en) Shift register and liquid crystal display device
JP3146959B2 (en) Liquid crystal display device and shift register circuit thereof
JPS61109378A (en) Solid-state image pick-up device
JP2591299B2 (en) Scanning circuit and driving method thereof
CN114220376B (en) GOA circuit and display panel
JP2852929B2 (en) Photoelectric conversion device
JPH07104661B2 (en) Thin film scanning circuit