JPS61108846A - Method for controlling fuel supply of internal-combustion engine - Google Patents

Method for controlling fuel supply of internal-combustion engine

Info

Publication number
JPS61108846A
JPS61108846A JP23032684A JP23032684A JPS61108846A JP S61108846 A JPS61108846 A JP S61108846A JP 23032684 A JP23032684 A JP 23032684A JP 23032684 A JP23032684 A JP 23032684A JP S61108846 A JPS61108846 A JP S61108846A
Authority
JP
Japan
Prior art keywords
value
engine
absolute pressure
intake passage
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23032684A
Other languages
Japanese (ja)
Inventor
Fumio Yatabe
谷田部 文夫
Takafumi Nishikawa
西川 孝文
Masamichi Ueno
上野 雅通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP23032684A priority Critical patent/JPS61108846A/en
Publication of JPS61108846A publication Critical patent/JPS61108846A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve drivability under the condition where an absolute pressure detecting value in an intake passage is larger than an absolute pressure discriminating value in the intake passage by comparing the discriminating value determined according to an atmospheric pressure detecting value with the detecting value and by correcting the increase of fuel and stopping exhaust reflux. CONSTITUTION:In engine operation, an engine running condition is discriminated by an ECU5 according to various running parameters and opening of an exhaust reflux valve 19 is adjusted by controlling a solenoid valve 22 controlling exhaust reflux amount. And fuel injection time corresponding to an engine operating condition is calculated to drive to control a fuel injection valve 6. In this case, an absolute pressure discriminating value in an intake passage is determined according to the atmospheric pressure value detected by an atmospheric pressure sensor 14. And an absolute pressure in an intake passage 2 is detected by an absolute pressure sensor 8. The discriminating value and the detecting value of the absolute pressure are compared by the ECU5, and when the detecting value is larger than the discriminating value, fuel amount supplied to an engine 1 is increased and reflux of exhaust is controlled to be stopped.

Description

【発明の詳細な説明】 (技術分野) 本発明は排気還流制御装置を備える内燃エンジンの高負
荷運転時の燃料供給制御方法に関し、特に高地等の低大
気圧条件下の高負荷運転時にエンジン運転性能の最適化
を図った燃料供給制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fuel supply control method during high load operation of an internal combustion engine equipped with an exhaust gas recirculation control device, and particularly relates to a fuel supply control method during high load operation of an internal combustion engine equipped with an exhaust gas recirculation control device. This invention relates to a fuel supply control method that optimizes performance.

(発明の技術的背景とその問題点) エンジンの吸気管内絶対圧が所定の判別値以上となる高
負荷運転時にはエンジンに供給する燃料量を増量して高
出力を得るようにした燃料供給制御方法が例えば特開昭
57−137633号により知られている。
(Technical background of the invention and its problems) A fuel supply control method that increases the amount of fuel supplied to the engine to obtain high output during high-load operation when the absolute pressure in the intake pipe of the engine exceeds a predetermined determination value. is known, for example, from JP-A-57-137633.

斯かる燃料供給制御方法において、エンジンを高地等の
低大気圧条件下で運転する場合、大気圧の低下によりス
ロットル弁が全開される高負荷運転時の吸気管内絶対圧
も低下する。このため、前記判別値を標準大気圧条件下
で設定し、これを低大気圧条件下でエンジンを運転した
場合の高負荷運転状態の判別に適用すると、エンジンに
供給する燃料量の増量を必要とする高負荷運転状態であ
っても吸気管内絶対圧値が判別値を越えないために前記
増量がなされず、エンジンの出力が不足するという不都
合が生じる。従って、上述の判別値は大気圧に応じて設
定するので望ましい。
In such a fuel supply control method, when the engine is operated under low atmospheric pressure conditions such as at high altitudes, the absolute pressure in the intake pipe during high-load operation when the throttle valve is fully opened due to the decrease in atmospheric pressure also decreases. Therefore, if the above-mentioned discrimination value is set under standard atmospheric pressure conditions and applied to determine high-load operating conditions when the engine is operated under low atmospheric pressure conditions, it will be necessary to increase the amount of fuel supplied to the engine. Even in a high-load operating state, the intake pipe absolute pressure value does not exceed the discrimination value, so the increase is not performed, resulting in a problem that the engine output is insufficient. Therefore, it is desirable that the above-mentioned discrimination value be set according to the atmospheric pressure.

一方、内燃エンジンの運転中、その排気の一部を排気還
流路を介して吸気通路に還流させて混合気の燃焼温度の
過上昇を抑制し、大気汚染の一要因となる窒素酸化物(
NOx)の発生を防止する方法(以下これをrEGRJ
と言う)は既に広く知られている。そして、排気還流量
の制御方法としては、排気還流路の途中に配設された排
気還流弁の弁リフト目標量を吸気管内絶対圧及びエンジ
ン回転数に応じて設定し、この弁リフト目標量と実弁リ
フト量の差を零にする様にして排気還流量を制御する方
法が例えば特開昭58−82057号により知られてい
る。
On the other hand, while an internal combustion engine is operating, a portion of its exhaust gas is returned to the intake passage via the exhaust gas recirculation path to suppress the excessive rise in the combustion temperature of the air-fuel mixture, thereby reducing the amount of nitrogen oxides (which are one of the causes of air pollution).
A method for preventing the generation of NOx (hereinafter referred to as rEGRJ)
) is already widely known. As a method of controlling the amount of exhaust gas recirculation, the target amount of valve lift of the exhaust recirculation valve disposed in the middle of the exhaust recirculation path is set according to the absolute pressure in the intake pipe and the engine speed, and this target amount of valve lift and A method of controlling the exhaust gas recirculation amount by reducing the difference in actual valve lift amount to zero is known, for example, from Japanese Patent Laid-Open No. 82057/1983.

斯かる排気還流制御方法において、高地等の低大気圧条
件下で運転する場合、排気還流を行う必要のない運転状
態にあるにも拘らず排気還流を実行するという不都合が
生じ得る。特に高負荷運転時の場合のように、エンジン
に供給する燃料量の増量を行った場合には混合気のリッ
チ化により燃焼温度が低下し、NOxの発生量が減少す
る。従って、燃料量の増量を行っている場合には排気還
流を行う必要はなく、むしろ排気還流を行うことにより
、高出力が得られないという不都合が生じる。
In such an exhaust gas recirculation control method, when operating under low atmospheric pressure conditions such as at high altitudes, there may be an inconvenience that exhaust gas recirculation is executed even though the exhaust gas recirculation is not required. In particular, when the amount of fuel supplied to the engine is increased, such as during high-load operation, the combustion temperature is lowered by enriching the air-fuel mixture, and the amount of NOx generated is reduced. Therefore, when the amount of fuel is increased, there is no need to perform exhaust gas recirculation, and rather, by performing exhaust gas recirculation, a disadvantage arises in that high output cannot be obtained.

(発明の目的) 本発明は斯かる不都合を解決するためになされたもので
、高地等の低大気圧条件下における高負荷運転時のエン
ジン運転性能の最適化を図った燃料供給制御方法を提供
することを目的とする。
(Object of the Invention) The present invention has been made to solve such inconveniences, and provides a fuel supply control method that optimizes engine operating performance during high-load operation under low atmospheric pressure conditions such as at high altitudes. The purpose is to

(発明の構成) 斯かる目的を達成するために、本発明に依れば。(Structure of the invention) According to the present invention, to achieve such an objective.

内燃エンジンの運転状態に応じて排気ガスの一部を吸気
通路内に還流させると共に所要量の燃料をエンジンに供
給する燃料供給制御において、大気圧を検出し、検出し
た大気圧値に応じて吸気通路内絶対圧判別値を決定し、
前記吸気通路内の絶対圧を検出し、検出した吸気通路内
絶対圧値と前記吸気通路内絶対圧判別値とを比較し、前
記吸気管内絶対圧検呂値が前記吸気通路内判別値より大
きいとき、内燃エンジンに供給する燃料量を増量補正す
ると共に前記排気の還流を停止することを特徴とする内
燃エンジンの燃料供給制御方法が提供される。
In fuel supply control that recirculates part of the exhaust gas into the intake passage and supplies the required amount of fuel to the engine depending on the operating state of the internal combustion engine, atmospheric pressure is detected and the intake air is recirculated according to the detected atmospheric pressure value. Determine the absolute pressure discrimination value in the passage,
The absolute pressure in the intake passage is detected, the detected absolute pressure value in the intake passage is compared with the absolute pressure discrimination value in the intake passage, and the absolute pressure value in the intake pipe is greater than the discrimination value in the intake passage. There is provided a fuel supply control method for an internal combustion engine, characterized in that the amount of fuel supplied to the internal combustion engine is increased and the recirculation of the exhaust gas is stopped.

(発明の実施例) 以下本発明の実施例を図面を参照して説明する。(Example of the invention) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法が適用される排気還流制御装置を
装備した内燃エンジンを示す全体構成図であり、符号1
は例えば4気筒の内燃エンジンを示し、エンジン1には
吸気管(吸気通路)2が接続され、吸気管2の途中には
スロットル弁3が設けられている。スロットル弁3には
スロットル弁開度(θTH)センサ4が連結されてスロ
ットル弁3の弁開度を電気的信号に変換し電子コントロ
ールユニット(以下rECUJと言う)5に送るように
されている。
FIG. 1 is an overall configuration diagram showing an internal combustion engine equipped with an exhaust gas recirculation control device to which the method of the present invention is applied, and the reference numeral 1 is
shows, for example, a four-cylinder internal combustion engine, an intake pipe (intake passage) 2 is connected to the engine 1, and a throttle valve 3 is provided in the middle of the intake pipe 2. A throttle valve opening (θTH) sensor 4 is connected to the throttle valve 3 to convert the valve opening of the throttle valve 3 into an electrical signal and send it to an electronic control unit (hereinafter referred to as rECUJ) 5.

吸気管2のエンジン1とスロットル弁3間には燃料噴射
弁6が設けられている。この燃料噴射弁6は吸気管2の
図示しない吸気弁の少し上流側に各気筒ごとに設けられ
ており、各噴射弁6は図示しない燃料ポンプに接続され
ていると共にECU3に電気的に接続されて、ECU3
からの信号によって燃料噴射の開弁時間が制御される。
A fuel injection valve 6 is provided in the intake pipe 2 between the engine 1 and the throttle valve 3. This fuel injection valve 6 is provided for each cylinder slightly upstream of an intake valve (not shown) in the intake pipe 2, and each injection valve 6 is connected to a fuel pump (not shown) and electrically connected to the ECU 3. Well, ECU3
The valve opening time of the fuel injection is controlled by the signal from the.

一方、スロットル弁3の下流には管7を介して絶対圧(
PBA)センサ8が設けられており、この絶対圧センサ
8によって電気的信号に変換された絶対圧信号は前記E
CU3に送られる。
On the other hand, the absolute pressure (
PBA) sensor 8 is provided, and the absolute pressure signal converted into an electrical signal by this absolute pressure sensor 8 is
Sent to CU3.

エンジン本体1にはエンジン水温(T w)センサ9が
設けられ、このセンサ9はサーミスタ等から成り、エン
ジン冷却水が充満したエンジン気筒周壁内に装着されて
、その検出水温信号をECU3に供給する。
The engine main body 1 is provided with an engine water temperature (Tw) sensor 9, which is made of a thermistor, etc., and is installed in the circumferential wall of the engine cylinder filled with engine cooling water, and supplies its detected water temperature signal to the ECU 3. .

エンジン回転数センサ(以下rNeセンサ」と言う)1
0がエンジンの図示しないカム軸周囲又はクランク軸周
囲に取付けられており、エンジン回転数信号、即ちエン
ジンのクランク軸の180@回転毎に所定クランク角度
位置で発生するパルス信号を出力するものであり、この
パルス信号はECU3に送られる。
Engine speed sensor (hereinafter referred to as rNe sensor) 1
0 is attached around the camshaft or crankshaft (not shown) of the engine, and outputs an engine rotational speed signal, that is, a pulse signal that occurs at a predetermined crank angle position every 180 rotations of the engine crankshaft. , this pulse signal is sent to the ECU 3.

エンジン1の排気管(排気通路)11には三元触媒12
が配置され排気ガス中のHC,Go及びN Ox成分の
浄化作用を行う。この三元触媒12の上流側には02セ
ンサ13が排気管11に挿着されこの02センサ13が
排気中の酸素濃度を検出しその検出値信号をECU3に
供給する。
A three-way catalyst 12 is provided in the exhaust pipe (exhaust passage) 11 of the engine 1.
is arranged to purify HC, Go and NOx components in the exhaust gas. An 02 sensor 13 is inserted into the exhaust pipe 11 upstream of the three-way catalyst 12, and this 02 sensor 13 detects the oxygen concentration in the exhaust gas and supplies the detected value signal to the ECU 3.

更に、ECU3には大気圧セサン14が接続されこの大
気圧センサ14は大気圧を検出しその検出値信号をEC
U3に供給する。
Furthermore, an atmospheric pressure sensor 14 is connected to the ECU 3, and this atmospheric pressure sensor 14 detects the atmospheric pressure and sends the detected value signal to the EC.
Supply to U3.

排気管11を吸気管2に接続するように排気還流通路1
8が設けられ、この通路18の途中には排気還流弁19
が設けられている。この排気還流弁19は負圧応動弁で
あって、主として、通路18を開閉可能に配された弁体
19aと、弁体に連結され、後述する電磁弁22により
導入される負圧により作動するダイアフラム19bと、
ダイアフラム19bを閉弁方向に付勢するばね19cと
より成る。該ダイアフラム19bにより画成される負圧
室19bには連通路20が接続され、吸気管2−内の負
圧が該連通路20の途中に設けられた常閉型電磁弁22
を介して導入されるようにされ。
The exhaust recirculation passage 1 connects the exhaust pipe 11 to the intake pipe 2.
8 is provided, and an exhaust gas recirculation valve 19 is provided in the middle of this passage 18.
is provided. The exhaust gas recirculation valve 19 is a negative pressure responsive valve, and is mainly operated by the negative pressure introduced by a valve body 19a arranged to be able to open and close the passage 18 and a solenoid valve 22, which is connected to the valve body and will be described later. diaphragm 19b;
It consists of a spring 19c that biases the diaphragm 19b in the valve closing direction. A communication passage 20 is connected to the negative pressure chamber 19b defined by the diaphragm 19b, and the negative pressure in the intake pipe 2- is controlled by a normally closed solenoid valve 22 provided in the middle of the communication passage 20.
Been introduced through.

大気室11eは大気に連通している。更に、連通路20
には電磁弁22の下流側にて大気連通路23が接続され
、該連通路23の途中に設けられたオリフィス21を介
して大気圧が連通路20に、次いで上記負圧室に導入さ
れるようにされている。
The atmospheric chamber 11e communicates with the atmosphere. Furthermore, the communication path 20
An atmospheric communication passage 23 is connected downstream of the solenoid valve 22, and atmospheric pressure is introduced into the communication passage 20 and then into the negative pressure chamber through an orifice 21 provided in the middle of the communication passage 23. It is like that.

前記電磁弁22はECU3に接続され、ECU3からの
オン−オフの時間比が変化する駆動信号によって作動し
、排気還流弁19の弁体のリフト動作及びその速度を制
御する。
The electromagnetic valve 22 is connected to the ECU 3 and is operated by a drive signal from the ECU 3 whose on-off time ratio changes, thereby controlling the lift operation and speed of the valve body of the exhaust recirculation valve 19.

排気還流弁19には弁リフトセンサ24が設けられてお
り、弁19の弁体の作動位置を検出し、その検出値信号
をECU3に送るようにされている。
The exhaust gas recirculation valve 19 is provided with a valve lift sensor 24 that detects the operating position of the valve body of the valve 19 and sends a detected value signal to the ECU 3.

ECU3は前述の各種センサからのエンジンパラメータ
信号に応じてエンジン運転状態を判別し、判別した運転
状態が排気を還流すべき運転状態であるとき、吸気管内
絶対圧検出値PBAとエンジン回転数値Neに応じて排
気還流弁19の弁開度目標値LQMDを設定する。第2
図は吸気管内絶対圧PBA及びエンジン回転数Neで与
えられるリフトマツプを示し、ECU3はこのマツプか
ら前述の弁開度目標値LCMDを読み出す。そして、こ
の弁開度目標値LQMDと弁リフトセンサ24により検
出された実弁開度値LAC〒とを比較し、その偏差の絶
対圧が零になる様に電磁弁22を作動させる駆動信号を
電磁弁22に供給する。
The ECU 3 determines the engine operating state according to the engine parameter signals from the various sensors described above, and when the determined operating state is an operating state in which exhaust gas should be recirculated, the ECU 3 changes the intake pipe absolute pressure detection value PBA and the engine rotation value Ne. The valve opening target value LQMD of the exhaust gas recirculation valve 19 is set accordingly. Second
The figure shows a lift map given by the intake pipe absolute pressure PBA and the engine speed Ne, and the ECU 3 reads the above-mentioned valve opening target value LCMD from this map. Then, this valve opening target value LQMD is compared with the actual valve opening value LAC detected by the valve lift sensor 24, and a drive signal is generated to operate the solenoid valve 22 so that the absolute pressure of the deviation becomes zero. It is supplied to the solenoid valve 22.

電磁弁22が付勢されて連通路20が開成されるとスロ
ットル弁3下流の吸気管内負圧Psが排気還流弁19の
負圧室19dに導入されダイアフラム19bの両面に作
用する差圧は大きくなりダイアフラム19bはばね19
cに抗して上方に偏位し、弁体19aの弁開度は大きく
なる。逆に電磁弁22が消勢されると負圧室19dには
大気連通路23を介する大気圧だけが導入されて弁体1
9aを閉じ側に偏位させる。このようにして排気還流弁
19のリフト量が制御され、所要量の排気ガスを吸気管
2に還流させる。
When the solenoid valve 22 is energized and the communication passage 20 is opened, the negative pressure Ps in the intake pipe downstream of the throttle valve 3 is introduced into the negative pressure chamber 19d of the exhaust recirculation valve 19, and the differential pressure acting on both sides of the diaphragm 19b becomes large. The diaphragm 19b is the spring 19
c, and the valve opening of the valve body 19a increases. Conversely, when the solenoid valve 22 is deenergized, only atmospheric pressure is introduced into the negative pressure chamber 19d via the atmospheric communication passage 23, and the valve body 1
9a is deflected to the closed side. In this way, the lift amount of the exhaust gas recirculation valve 19 is controlled, and a required amount of exhaust gas is recirculated to the intake pipe 2.

更に、ECU3は上述の各種センサからのエンジンパラ
メータ信号等に基づいてエンジン運転状態を判別し、以
下に示す式で与えられる燃料噴射弁6の燃料噴射時間T
 o g Tを演算する。
Furthermore, the ECU 3 determines the engine operating state based on the engine parameter signals from the various sensors mentioned above, and determines the fuel injection time T of the fuel injection valve 6 given by the formula shown below.
Calculate o g T.

Togt=TiXKwotXKo、XK1+K。Togt=TiXKwotXKo, XK1+K.

ここにTiは基本燃料噴射時間を示し、この基本燃料噴
射時間Tiは吸気管内絶対圧PBAとエンジン回転数N
eに応じて設定される。KWOTは本発明に斯かる高負
荷運転時のリッチ化係数であり、その値は後述する制御
プログラムにより設定される。Ko、はエンジンがクロ
ーズトループ運転領域にあるとき02センサ13によっ
て検出される排気ガス中の酸素濃度に応じて設定され、
エンジンが高負荷運転領域等のオープンループ運転領域
にあるとき例えば値1.0に設定される補正係数である
。K工及びに2は夫々前述の各種センサ、即ち、スロッ
トル弁開度センサ4、絶対圧センサ8、エンジン水温セ
サン9.Neセサン10゜02セサン13及び大気圧セ
ンサ14からのエンジンパラメータ信号に応じて演算さ
れる補正係数及び補正変数であって、エンジン運転状態
に応じ。
Here, Ti indicates the basic fuel injection time, and this basic fuel injection time Ti is determined by the intake pipe absolute pressure PBA and the engine rotation speed N.
It is set according to e. KWOT is the enrichment coefficient during high-load operation according to the present invention, and its value is set by a control program described later. Ko, is set according to the oxygen concentration in the exhaust gas detected by the 02 sensor 13 when the engine is in the closed loop operating region,
This is a correction coefficient that is set to a value of 1.0, for example, when the engine is in an open-loop operation region such as a high-load operation region. K and 2 are the various sensors mentioned above, namely, the throttle valve opening sensor 4, the absolute pressure sensor 8, and the engine water temperature sensor 9. A correction coefficient and a correction variable that are calculated according to the engine parameter signals from the Ne Sesan 10°02 Sesan 13 and the atmospheric pressure sensor 14, and according to the engine operating state.

始動特性、排気ガス特性、燃費特性、エンジン加速特性
等の諸特性が最適なものとなるように所定の演算式に基
づいて演算される。
Various characteristics such as starting characteristics, exhaust gas characteristics, fuel consumption characteristics, engine acceleration characteristics, etc. are calculated based on a predetermined calculation formula so as to be optimal.

ECU3は、上述のようにして求めた燃料噴射時間TO
UTに基づいて燃料噴射弁6を開弁させる駆動信号を燃
料噴射弁6に供給する。
The ECU 3 calculates the fuel injection time TO obtained as described above.
A drive signal for opening the fuel injection valve 6 is supplied to the fuel injection valve 6 based on the UT.

第3図は第1図のECU3内部の回路構成を示す図で、
Neセンサ10からのエンジン回転数信号は波形整形回
路501で波形整形された後、中央処理装置C以下rC
PUJと言う)503に後述の第4図及び第7図のフロ
ーチャート記載のプログラムを開始させる割込信号とし
て供給されると共にMeカウンタ502にも供給される
。Meカウンタ502は、Neセンサ10からの前回所
定クランク角度位置信号の入力時から今回所定クランク
角度位置信号の入力時までの時間間隔を計数するもので
、その計数値Meはエンジン回転数Neの逆数に比例す
る。Meカウンタ502はこの係数値Meをデータバス
510を介してCPU503に供給する。
FIG. 3 is a diagram showing the circuit configuration inside the ECU 3 of FIG.
After the engine rotation speed signal from the Ne sensor 10 is waveform-shaped by a waveform shaping circuit 501, it is sent to the central processing unit C and below rC.
PUJ) 503 as an interrupt signal to start a program described in the flowcharts of FIGS. 4 and 7, which will be described later, and is also supplied to the Me counter 502. The Me counter 502 counts the time interval from the input of the previous predetermined crank angle position signal from the Ne sensor 10 to the input of the current predetermined crank angle position signal, and the counted value Me is the reciprocal of the engine rotation speed Ne. is proportional to. Me counter 502 supplies this coefficient value Me to CPU 503 via data bus 510.

スロットル弁開度センサ4.絶対圧センサ8、エンジン
水温センサ9,02センサ13、大気圧センサ14等の
各種センサからの夫々の出力信号はレベル修正回路50
4で所定電圧レベルに修正された後、マルチプレクサ5
05により順次A/Dコンバータ506に供給される。
Throttle valve opening sensor 4. The respective output signals from various sensors such as the absolute pressure sensor 8, the engine water temperature sensor 9, 02 sensor 13, and the atmospheric pressure sensor 14 are sent to the level correction circuit 50.
After being corrected to the predetermined voltage level at 4, multiplexer 5
05 are sequentially supplied to the A/D converter 506.

A/Dコンバータ506は前述の各センサからの出力信
号を順次デジタル信号に変換して該デジタル信号をデー
タバス510を介してCPU503に供給する。
The A/D converter 506 sequentially converts the output signals from the aforementioned sensors into digital signals and supplies the digital signals to the CPU 503 via the data bus 510.

CPU503は、更に、データバス510を介してリー
ドオンリメモリ(ROM)507、ランダムアクセスメ
モリ(RAM)50B及び駆動回路509、!511に
接続されており、RAM508はCPU503での演算
結果等を一時的に記憶し、ROM507はCPU503
で実行される後述する制御プログラム等を記憶している
The CPU 503 further connects a read-only memory (ROM) 507, a random access memory (RAM) 50B, and a drive circuit 509, ! via a data bus 510. 511, the RAM 508 temporarily stores the calculation results etc. of the CPU 503, and the ROM 507 is connected to the CPU 503.
The control program, which will be described later, is stored therein.

CPU503は、後述するようにこの制御プログラムに
従い、各種エンジンパラメータに応じてエンジンの運転
状態を判別し、排気還流量を制御する電磁弁22の制御
信号を駆動回路511に供給すると共に、エンジンの運
転状態に応じた燃料噴射弁6の燃料噴射時間TOuTを
演算し、この演算値をデータバス510を介して駆動回
路509に供給する。駆動回路509は前記演算値に応
じて燃料噴射弁6を開弁させる駆動信号を該噴射弁6に
供給し、駆動回路511は電磁弁22をオン−オフさせ
る駆動信号を電磁弁22に供給する。
In accordance with this control program as described later, the CPU 503 determines the operating state of the engine according to various engine parameters, supplies a control signal for the electromagnetic valve 22 that controls the amount of exhaust gas recirculation to the drive circuit 511, and controls the operation of the engine. The fuel injection time TOuT of the fuel injection valve 6 is calculated according to the state, and this calculated value is supplied to the drive circuit 509 via the data bus 510. The drive circuit 509 supplies the fuel injection valve 6 with a drive signal that opens the fuel injection valve 6 according to the calculated value, and the drive circuit 511 supplies the solenoid valve 22 with a drive signal that turns the solenoid valve 22 on and off. .

第4図は、第3図のCPU503で前記Neセンサ10
からの割込信号の発生毎に実行され、エンジンが第5図
の斜線で示す高負荷運転領域にある場合に適用されるリ
ッチ化係数値KWOTの設定手順を示すフローチャトで
ある。
FIG. 4 shows how the Ne sensor 10 is operated by the CPU 503 in FIG.
6 is a flowchart illustrating a procedure for setting the enrichment coefficient value KWOT, which is executed every time an interrupt signal is generated from the engine and is applied when the engine is in the high-load operating region shown by diagonal lines in FIG. 5.

先ず、ステップ401ではエンジン回転数Neが所定回
転数値N)IOP(例えば3000rpm)より大きい
か否かを判別し1判別結果が否定(N o )の場合、
即ちエンジン回転数値Neが所定回転数値N HOP以
下であればステップ402に進む。
First, in step 401, it is determined whether the engine speed Ne is larger than a predetermined rotational speed value N)IOP (for example, 3000 rpm), and if the result of the first determination is negative (No),
That is, if the engine speed value Ne is less than or equal to the predetermined speed value NHOP, the process proceeds to step 402.

ステップ402では大気圧検出値PAに応じた後述する
吸気管内絶対圧判別値PBAWOTaを第3図のROM
507から読み呂す。第6図は判別値PBAWOTll
と大気圧PAとの関係を示すテーブル図で大気圧検出値
PAが値P AW Q T 1 (例えば600 II
liHg)以下のときには値P F3A’W OT、。
In step 402, an intake pipe absolute pressure discrimination value PBAWOTa, which will be described later, is stored in the ROM of FIG.
Read from 507. Figure 6 shows the discriminant value PBAWOTll
In the table diagram showing the relationship between the detected atmospheric pressure value PA and the atmospheric pressure PA, the detected atmospheric pressure value PA is the value P AW Q T 1 (for example, 600 II
liHg) or less, the value P F3A'W OT,.

(例えば520mmHg)が、値PAWOTl乃至値P
AWOTe(例えば700 m m Hg )の間にあ
るときには値P BAWQTal(例えば600mmH
g)が、値PAWOT、以上のときには値P 8AwO
Tan(例えば700mrnHg)が各々読み出される
(for example, 520 mmHg) is from the value PAWOTl to the value P
When the value P BAWQTal (e.g. 600 mm Hg) is between AWOTe (e.g. 700 mm Hg)
g) is greater than or equal to the value PAWOT, the value P8AwO
Tan (for example, 700 mrnHg) is read out respectively.

ステップ403では吸気管2の吸気管内絶対圧PEAが
前述のステップ402で読み出した判別値PBAWOT
、より大きいか否かを判別し1判別結果が否定(No)
の場合、即ち吸気管内絶対圧値PaAが所定圧力値po
AwoT、、より小さければエンジンの負荷状態が混合
気をリッチ化する程高負荷状態ではないと判別し、リッ
チ化係数Kwovを値1゜0に設定する(ステップ41
1)。
In step 403, the intake pipe absolute pressure PEA of the intake pipe 2 is determined as the discrimination value PBAWOT read out in step 402 described above.
, determine whether it is larger than or not, and 1 determination result is negative (No)
In the case of , that is, the intake pipe absolute pressure value PaA is equal to the predetermined pressure value po
If it is smaller than AwoT, it is determined that the engine load state is not high enough to enrich the air-fuel mixture, and the enrichment coefficient Kwov is set to a value of 1°0 (step 41
1).

ステップ403での判別結果が肯定(Yes)の場合、
即ち吸気管内絶対圧値PeAが所定圧力値PBAWOT
、より大きければエンジンは高負荷状態にあると判断し
てステップ404に進む、ステップ404ではエンジン
水温値Twが所定水温値TKWOT(例えば100℃)
より大きいか否かを判別し、エンジン水温値Twが所定
水温値TKwoTより大きければ(ステップ404の判
別結果が肯定(Yes)の場合)リッチ化係数KWOT
を値XWOT、(例えば1.25)に設定しくステップ
409)、Tw値がTKWOT値より小さければ(ステ
ップ404での判別結果が否定(NO)の場合)リッチ
化係数KWOTを前記値XWOT。
If the determination result in step 403 is affirmative (Yes),
That is, the intake pipe absolute pressure value PeA is equal to the predetermined pressure value PBAWOT.
, the engine is determined to be in a high load state and the process proceeds to step 404. In step 404, the engine water temperature value Tw is set to a predetermined water temperature value TKWOT (for example, 100°C).
If the engine water temperature value Tw is larger than the predetermined water temperature value TKwoT (if the determination result in step 404 is affirmative (Yes)), the enrichment coefficient KWOT is determined.
is set to the value XWOT (for example, 1.25) (step 409), and if the Tw value is smaller than the TKWOT value (if the determination result in step 404 is negative), the enrichment coefficient KWOT is set to the value XWOT.

より小さい値XWOTO(例えば1.13)に設定する
(ステップ408)。このようにエンジン水温値Twに
応じたKWOT値を設定するのは高負荷運転状態で且つ
エンジン水温が高い時に発生し易くなるエンジンノック
を防止するためである。
Set to a smaller value XWOTO (for example, 1.13) (step 408). The reason why the KWOT value is set in accordance with the engine water temperature value Tw in this way is to prevent engine knock, which tends to occur when the engine water temperature is high and in a high load operating state.

前述のステップ401での判別結果が背定(Yes)の
場合、即ちエンジン回転数値Neが所定回転数値NHO
Pより大きければステップ405に進み、吸気管内絶対
圧PBAが所定圧力値PBAWOT1(例えば700 
mIll(g)より大きいか否かを判別する。ステップ
405での判別結果が肯定(Yes)の場合、即ち吸気
管内絶対圧値PBAが所定圧力値PBAWOT、より大
きければエンジンは高負荷状態にあると判断してステッ
プ406に進む。
If the determination result in step 401 is positive (Yes), that is, the engine rotation value Ne is equal to the predetermined rotation value NHO.
If it is larger than P, the process proceeds to step 405, where the intake pipe absolute pressure PBA is set to a predetermined pressure value PBAWOT1 (for example, 700
It is determined whether it is larger than mIll(g). If the determination result in step 405 is affirmative (Yes), that is, if the intake pipe absolute pressure value PBA is greater than the predetermined pressure value PBAWOT, it is determined that the engine is in a high load state, and the process proceeds to step 406.

一方、ステップ405での判別結果が否定(No)であ
ればステップ407に進み、スロットル弁3の弁開度θ
THが所定開度値θll0T(例えば45°)より大き
いか否かを判別する。ステップ407での判別結果が否
定(No)の場合、即ち弁開度値θTHが所定開度値θ
WOT未満であればエンジンは高負荷状態ではないと判
断して前述のステップ411に進み、リッチ化係数KW
OTを値1.0に設定する。ステップ407での判別結
果が肯定(Yes)であればエンジンは高負荷状態にあ
ると判断して前記ステップ406に進む。
On the other hand, if the determination result in step 405 is negative (No), the process proceeds to step 407, and the valve opening θ of the throttle valve 3 is
It is determined whether TH is larger than a predetermined opening degree value θll0T (for example, 45°). If the determination result in step 407 is negative (No), that is, the valve opening value θTH is the predetermined opening value θ
If it is less than WOT, it is determined that the engine is not in a high load state, and the process proceeds to step 411 described above, where the enrichment coefficient KW is determined.
Set OT to the value 1.0. If the determination result in step 407 is affirmative (Yes), it is determined that the engine is in a high load state, and the process proceeds to step 406.

ステップ406では前述のステップ404と同様にエン
ジン水温値Twが所定水温値T(woTより大きいか否
かを判別し1判別結果が肯定(Yes)の場合、即ちT
w値がT(wor値より大きければ前述のステップ40
9に進んで、リッチ化係数KWOTを値XWOT2(1
゜25)に設定し、否定(NO)であればステップ41
0に進んでリッチ化係数KWOTを値XWOT、(例え
ば1.18)に設定する。
In step 406, it is determined whether or not the engine water temperature value Tw is greater than a predetermined water temperature value T (woT) in the same manner as in step 404 described above.If the first determination result is affirmative (Yes), that is, T
If the w value is greater than T(wor value, the above step 40
Proceed to step 9 and set the enrichment coefficient KWOT to the value XWOT2(1
゜25), and if negative (NO), step 41
0 and sets the enrichment coefficient KWOT to the value XWOT, (for example, 1.18).

次に、上述のようにして設定したリッチ化係数値KWO
Tを前記演算式に適用し、燃料噴射時間TOUTを決定
しくステップ412)、本プログラムを終了する。
Next, the enrichment coefficient value KWO set as described above
Apply T to the above equation to determine the fuel injection time TOUT (step 412), and end the program.

第7図は第3図のCPU503で前記Neセンサ10か
らの割込信号の発生毎に実行される第1図の電磁弁22
の制御手順を示すフローチャートである。
7 shows the solenoid valve 22 of FIG. 1 which is executed by the CPU 503 of FIG. 3 every time an interrupt signal from the Ne sensor 10 is generated.
3 is a flowchart showing a control procedure.

先ず、エンジンが減速時におけるフューエルカット運転
領域にあるか否か、即ちエンジンへの燃料供給を停止す
べきか否かを判別する(ステップ7o1)。フューエル
カット運転領域ではエンジンに燃料が供給されないので
エンジンはNOxを排出しない。従ってエンジンがフュ
ーエルカット運転領域にあるとき、即ちステップ701
での判別結果が肯定(Yes)の場合には電磁弁22を
消勢しくステップ702)、排気ガスの還流を停止させ
る。
First, it is determined whether or not the engine is in a fuel cut operation region during deceleration, that is, whether or not fuel supply to the engine should be stopped (step 7o1). In the fuel cut operation range, no fuel is supplied to the engine, so the engine does not emit NOx. Therefore, when the engine is in the fuel cut operation region, that is, step 701
If the determination result is affirmative (Yes), the solenoid valve 22 is deenergized (step 702), and the recirculation of exhaust gas is stopped.

ステップ701での判別結果が否定(NO)の場合、即
ちエンジンがフューエルカット運転領域になければステ
ップ703に進み、前述のリッチ化係数値KWOTが値
1.0より大きいか否かを判別する。ステップ703の
判別結果が肯定(Yes)の場合、即ちエンジンが高負
荷運転領域にあるときには排気還流によるエンジン出力
の低下を防止するために前述のステップ702に進み、
排気ガスの還流を停止させる。
If the determination result in step 701 is negative (NO), that is, if the engine is not in the fuel cut operation region, the process proceeds to step 703, where it is determined whether the aforementioned enrichment coefficient value KWOT is larger than the value 1.0. If the determination result in step 703 is affirmative (Yes), that is, when the engine is in a high-load operating region, the process proceeds to step 702 described above in order to prevent a decrease in engine output due to exhaust gas recirculation;
Stop the recirculation of exhaust gas.

ステップ703での判別結果が否定(NO)の場合、即
ちエンジンが高負荷運転領域になければステップ704
に進み、吸気管内絶対圧値PBAが所定判別値PBAI
:C(例えば650mmHg)より大きいか否かを判別
し、PB’A値が所定判別値PBAECより大きければ
(判別結果が肯定(Yes))エンジンは高負荷運転状
態に近い状態にあると判断して排気還流を停止する(ス
テップ702)。
If the determination result in step 703 is negative (NO), that is, if the engine is not in the high load operating region, step 704
Then, the intake pipe absolute pressure value PBA becomes the predetermined judgment value PBAI.
:C (for example, 650 mmHg), and if the PB'A value is larger than a predetermined judgment value PBAEC (the judgment result is positive (Yes)), it is judged that the engine is in a state close to a high-load operating state. Then, exhaust gas recirculation is stopped (step 702).

ステップ704での判別結果が否定(No)であればス
テップ705に進み、スロットル弁開度値θTl(が所
定判別値θN:c(例えば55°)より大きいか否かを
判別し、oTH値が所定判別値θ鶴より大きければ(判
別結果が背定(Yes))、エンジンは高負荷運転状態
に近い状態にあると判断して排気還流を停止する(ステ
ップ702)。
If the determination result in step 704 is negative (No), the process proceeds to step 705, where it is determined whether the throttle valve opening value θTl (is larger than a predetermined determination value θN:c (for example, 55°)) and the oTH value is If it is larger than the predetermined determination value θ (the determination result is Yes), it is determined that the engine is in a state close to a high-load operating state, and exhaust gas recirculation is stopped (step 702).

一方、前記ステップ704及びステップ705での判別
結果が共に否定(NO)の場合にはステップ706に進
み、エンジン水温値Twが所定判別値TwI!:(例え
ば70℃)より大きいか否かを判別する。エンジン水温
Twが所定判別値Tw。
On the other hand, if the determination results in step 704 and step 705 are both negative (NO), the process proceeds to step 706, and the engine water temperature value Tw is equal to the predetermined determination value TwI! : (for example, 70°C). The engine water temperature Tw is the predetermined determination value Tw.

より低い場合、エンジンは暖機運転状態にあることを意
味し、斯かる場合に排気ガスを還流させるとエンジンの
作動が不安定となり、エンジンストールを生じさせるこ
とがある。従ってエンジン水温が低いとき、即ちステッ
プ706での判別結果が否定(NO)の場合には前述の
ステップ702に進み、排気還流を停止させる。一方、
ステップ704での判別結果が肯定(Yes)であれば
暖機は完了していると判断し、排気還流制御の開始条件
がすべて成立したことになり、ステップ707に進み、
前述した排気還流弁19の弁開度目標値LcMI)と実
弁開度値LAC〒との偏差に基づいて電磁弁22のデユ
ーティ比制御を実行する。
If it is lower, it means that the engine is in a warm-up state, and if exhaust gas is recirculated in such a case, the operation of the engine will become unstable and may cause engine stall. Therefore, when the engine water temperature is low, that is, when the determination result in step 706 is negative (NO), the process proceeds to step 702 described above, and the exhaust gas recirculation is stopped. on the other hand,
If the determination result in step 704 is affirmative (Yes), it is determined that warm-up has been completed, and all the start conditions for exhaust gas recirculation control are satisfied, and the process proceeds to step 707.
Duty ratio control of the electromagnetic valve 22 is executed based on the deviation between the target valve opening value LcMI) and the actual valve opening value LAC〒 of the exhaust gas recirculation valve 19 described above.

尚、上述の実施例の各判別に適用されるNHOρ等の判
別値に所謂ヒステリシス特性を持たせると制御の安定化
を図ることができる。
Note that control can be stabilized by providing so-called hysteresis characteristics to the discrimination values such as NHOρ applied to each discrimination in the above-described embodiments.

(発明の効果) 以上詳述したように本発明に依れば、大気圧値に応じて
吸気管内絶対圧判別値を決定し、吸気通路内絶対圧検出
値が前記吸気通路内判別値より大きいとき、内燃エンジ
ンに供給する燃料量を増量補正するのに同期して排気還
流を停止するようにしたので、高地等の低大気圧条件下
における高負荷運転時にも排気還流を確実に停止させる
ことができ、高負荷運転時のエンジン運転性能の最適化
を確保することができる。
(Effects of the Invention) As detailed above, according to the present invention, the intake pipe absolute pressure discrimination value is determined according to the atmospheric pressure value, and the intake passage absolute pressure detection value is larger than the intake passage discrimination value. Since the exhaust recirculation is stopped in synchronization with the increase in the amount of fuel supplied to the internal combustion engine, it is possible to reliably stop the exhaust recirculation even during high-load operation under low atmospheric pressure conditions such as at high altitudes. This makes it possible to ensure optimization of engine operating performance during high-load operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法が適用された排気還流制御装置を
装備した内燃エンジンの燃料供給制御装置の全体構成図
、第2図は排気還流弁の弁開度目標値LCMDのリフト
マツプ図、第3図は第1図の電子コントロールユニット
(ECU)の内部構成を示すブロック図、第4図は高負
荷運転時のリッチ化係数値KWOTの設定手順を示すフ
ローチャート、第5図は高負荷運転領域を示すグラフ、
第6図は大気圧PAと吸気管内絶対圧判別値PBAIJ
OTとの関係を示すテーブル図、第7図は第1図の電磁
弁の制御手順を示すフローチャートである。 1・・・内燃エンジン、2・・・吸気通路、5・・・電
子コントロールユニット(ECU)、6・・・燃料噴射
弁、7・・・絶対圧センサ、9・・・エンジン水温セン
サ、10・・・エンジン回転数センサ(Neセンサ)、
11・・・排気通路、13・・・0□センサ、14・・
・大気圧センサ、18・・・排気還流通路、19・・・
排気還流弁、22・・・電磁弁、24・・・弁リフトセ
ンサ。
Fig. 1 is an overall configuration diagram of a fuel supply control system for an internal combustion engine equipped with an exhaust gas recirculation control system to which the method of the present invention is applied; Figure 3 is a block diagram showing the internal configuration of the electronic control unit (ECU) in Figure 1, Figure 4 is a flowchart showing the procedure for setting the enrichment coefficient value KWOT during high load operation, and Figure 5 is a high load operation area. A graph showing,
Figure 6 shows atmospheric pressure PA and intake pipe absolute pressure discrimination value PBAIJ.
FIG. 7 is a table diagram showing the relationship with OT, and a flowchart showing the control procedure of the solenoid valve shown in FIG. 1. DESCRIPTION OF SYMBOLS 1... Internal combustion engine, 2... Intake passage, 5... Electronic control unit (ECU), 6... Fuel injection valve, 7... Absolute pressure sensor, 9... Engine water temperature sensor, 10 ...Engine speed sensor (Ne sensor),
11...Exhaust passage, 13...0□sensor, 14...
・Atmospheric pressure sensor, 18... Exhaust recirculation passage, 19...
Exhaust recirculation valve, 22... Solenoid valve, 24... Valve lift sensor.

Claims (1)

【特許請求の範囲】 1、内燃エンジンの運転状態に応じて排気ガスの一部を
吸気通路内に還流させると共に所要量の燃料をエンジン
に供給する燃料供給制御方法において、大気圧を検出し
、検出した大気圧値に応じて吸気通路内絶対圧判別値を
決定し、前記吸気通路内の絶対圧を検出し、検出した吸
気通路内絶対圧値と前記吸気通路内絶対圧判別値とを比
較し、前記吸気通路内絶対圧検出値が前記吸気通路内判
別値より大きいとき、内燃エンジンに供給する燃料量を
増量補正すると共に前記排気の還流を停止することを特
徴とする内燃エンジンの燃料供給制御方法。 2、前記吸気通路内絶対圧判別値は前記大気圧検出値が
減少するに応じて小さい値に設定されることを特徴とす
る特許請求の範囲第1項記載の内燃エンジンの燃料供給
制御方法。
[Claims] 1. A fuel supply control method for recirculating a part of exhaust gas into an intake passage and supplying a required amount of fuel to the engine according to the operating state of an internal combustion engine, which includes: detecting atmospheric pressure; An intake passage absolute pressure discrimination value is determined according to the detected atmospheric pressure value, the absolute pressure in the intake passage is detected, and the detected intake passage absolute pressure value is compared with the intake passage absolute pressure discrimination value. and when the intake passage absolute pressure detection value is larger than the intake passage discrimination value, the amount of fuel supplied to the internal combustion engine is increased and the recirculation of the exhaust gas is stopped. Control method. 2. The fuel supply control method for an internal combustion engine according to claim 1, wherein the intake passage absolute pressure discrimination value is set to a smaller value as the detected atmospheric pressure value decreases.
JP23032684A 1984-11-02 1984-11-02 Method for controlling fuel supply of internal-combustion engine Pending JPS61108846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23032684A JPS61108846A (en) 1984-11-02 1984-11-02 Method for controlling fuel supply of internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23032684A JPS61108846A (en) 1984-11-02 1984-11-02 Method for controlling fuel supply of internal-combustion engine

Publications (1)

Publication Number Publication Date
JPS61108846A true JPS61108846A (en) 1986-05-27

Family

ID=16906076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23032684A Pending JPS61108846A (en) 1984-11-02 1984-11-02 Method for controlling fuel supply of internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS61108846A (en)

Similar Documents

Publication Publication Date Title
JPH0246788B2 (en)
EP0893590B1 (en) Air intake control system for engine equipped with exhaust gas recirculation feature
JPH0830442B2 (en) Operation control method for internal combustion engine
US4304210A (en) System and method for controlling EGR in internal combustion engine
US4757683A (en) Exhaust gas recirculation method for internal combustion engines
EP0892164B1 (en) Exhaust gas recirculation control system for automobile engine
JPH06103009B2 (en) Exhaust gas recirculation control method for internal combustion engine
JPH01240761A (en) Exhaust gas recirculation control method for internal combustion engine
JPS61108846A (en) Method for controlling fuel supply of internal-combustion engine
US4630589A (en) Exhaust gas recirculation method for internal combustion engines
JPS6267265A (en) Exhaust reflux controlling method for internal combustion engine
JPS6267267A (en) Exhaust reflux controlling method for internal combustion engine
JPH0694849B2 (en) Exhaust gas recirculation control method for internal combustion engine
JPS60249633A (en) Fuel feed control in perfectly opened throttle-valve operation in internal-combustion engine
JPS61155639A (en) Method for controlling idle of internal-combustion engine
JPH03199653A (en) Atmospheric pressure detection for internal combustion engine
JPS6213767A (en) Method for controlling recirculation of exhaust gas for internal combustion engine
JPS6267268A (en) Exhaust reflux controlling method for internal combustion engine
JPH0740672Y2 (en) Air-fuel ratio controller for engine
JPS6313015B2 (en)
JPS61106961A (en) Control method of exhaust gas recirculating quantity in internal-combustion engine
JPH02104961A (en) Exhaust reflux controlling method for internal combustion engine
JPS59128937A (en) Fuel feed and exhaust gas recirculation control method for internal-combustion engine
JPS60247019A (en) Air-fuel ratio control method upon low load operation of internal combustion engine
JPS61101636A (en) Method of controlling fuel supply to internal-combustion engine at the time of its deceleration