JPS61108610A - Production of polyolefin - Google Patents

Production of polyolefin

Info

Publication number
JPS61108610A
JPS61108610A JP22895484A JP22895484A JPS61108610A JP S61108610 A JPS61108610 A JP S61108610A JP 22895484 A JP22895484 A JP 22895484A JP 22895484 A JP22895484 A JP 22895484A JP S61108610 A JPS61108610 A JP S61108610A
Authority
JP
Japan
Prior art keywords
catalyst component
solid catalyst
polymerization
polymer
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22895484A
Other languages
Japanese (ja)
Other versions
JPH0788403B2 (en
Inventor
Yasuaki Sasaki
佐々木 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP59228954A priority Critical patent/JPH0788403B2/en
Publication of JPS61108610A publication Critical patent/JPS61108610A/en
Publication of JPH0788403B2 publication Critical patent/JPH0788403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain polymer stably without forming deposition on the inside wall, etc., of a reactor, by polymerizing an olefin in the presence of a supported solid catalyst component comprising a specified transition metal compound and a reaction product between a trialkylaluminum and water. CONSTITUTION:A transition metal compound of the formula (wherein M is Ti or Zr, R is a C1-C6 alkyl, X is a halogen and m is 0-2), e.g., biscyclopentadienyltitanium dichloride) and a reaction product between a trialkylaluminum (e.g., trimethylaluminum) and water are supported on an inorganic oxide carrier (e.g., silica or alumina). an olefin (e.g., ethylene or propylene) is (co) polymerized in the presence of the obtained solid catalyst component and the formed polymer particles. IN this way, a polyolefin can be obtained without deposition of polymer particles on the inside wall, agitator, etc., of a polymerization vessel.

Description

【発明の詳細な説明】 、        1 本発明は新規な触媒系を用いて、実質的にポリマー粒子
の形成下にポリオレフィンを製造する方法に関する。さ
らに詳しくは、新規な方法によって製造される担体担持
型触媒を用いて、実質的にポリマー粒子の形成下にポリ
オレフィンを安定生産する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION 1 The present invention relates to a process for producing polyolefins using a novel catalyst system with substantial formation of polymer particles. More specifically, the present invention relates to a method for stably producing polyolefin while substantially forming polymer particles using a carrier-supported catalyst produced by a novel method.

え!立且3 遷移金属錯体と有機アルミニウム化合物とから得られる
均一系触媒を用いて、底圧においてオレフィン重合体(
共重合体を含む)が得られることはすでに公知であり、
チーグチ−触媒の反応機構の研究等に多く利用されてい
る。
picture! 3 Using a homogeneous catalyst obtained from a transition metal complex and an organoaluminum compound, an olefin polymer (
It is already known that copolymers) can be obtained;
It is widely used in research on the reaction mechanism of Chiguchi catalysts.

しかし、その重合活性は極めて低いため、ポリオレフィ
ンの工業的な生産には、はとんど使用されていない。と
ころが最近ビス(シクロペンタジエこル)ジルコニウム
ジクロライドとメチルアルモキサンとから成る可溶性触
媒を使用することにより、非常に高い重合活性が得られ
る(特開昭58−18309号公報)ことが、知られ、
注目をあびている。
However, since its polymerization activity is extremely low, it is rarely used in the industrial production of polyolefins. However, it has recently been known that extremely high polymerization activity can be obtained by using a soluble catalyst consisting of bis(cyclopentadiene dichloride) zirconium dichloride and methylalumoxane (Japanese Unexamined Patent Publication No. 18309/1983). ,
It is attracting attention.

この触媒系は、遷移金属化合物あたりの重合性が非常に
高いことに加うるに、水素に対する感受性が極めて高く
、低分子量のポリエチレン(いわゆるワックス)を作る
のに適しており、又、エチレンとプロピレンとのランダ
ム共fE合体が得られる等の性能を有しており実用的価
値が非常に高い、ところが、この触媒系を、実質的にポ
リマー粒子の形成下に重合を行なういわゆる「スラリー
重合」または「気相重合」に用いた場合、粗大ポリマー
の生成、ポリマーの嵩密度の低下、ポリマーの反応x壁
への付着及びそれによる伝熱係数の低下等種々の問題が
生じ、安定運転は困難である。
In addition to having very high polymerizability per transition metal compound, this catalyst system is extremely sensitive to hydrogen, making it suitable for producing low molecular weight polyethylene (so-called wax), and also for producing ethylene and propylene. However, this catalyst system can be used in the so-called "slurry polymerization" or When used in "gas phase polymerization," various problems occur such as the formation of coarse polymers, a decrease in polymer bulk density, polymer reaction and adhesion to walls, and the resulting decrease in heat transfer coefficient, making stable operation difficult. be.

ζ “−2占 本発明は、前述の欠点が改良され、オレフンのスラリー
重合又は気相重合に用いた場合、高活性でポリマーの付
着等が無く、安定的にポリオレフィンを製造することが
できる触媒系を提供することにある。
ζ "-2 occupancy The present invention is a catalyst which improves the above-mentioned drawbacks, and when used in slurry polymerization or gas phase polymerization of olefins, it has high activity, does not cause polymer adhesion, and can stably produce polyolefins. The aim is to provide a system.

。 占  ゛ るーめ 上記目的を達成するために鋭意検討した結果ゝ) (A) 一般式(シクロペンタジェニル) 2 MRm
X2−m  (m = O〜2 、 M=〒1又はZr
、Rは炭素数1〜6個のアルキル基、又はハロゲン原子
)で示される遷移金属化合物及び (B)トリアルキルアルミニウムと水との反応生成物と
を (C)無機酸化物担体に担持することによって得られる
固体触媒成分の存在下に、実質的にポリマー粒子の形成
下にポリオレ フィンを製造する際に、重合反応器に助触媒としての活
性剤化合物を追加供給しない事によって、上記目的が達
成されることを見出し1本発明に到達した。
. As a result of intensive studies to achieve the above objectives, (A) General formula (cyclopentagenyl) 2 MRm
X2-m (m = O ~ 2, M = 〒1 or Zr
, R is an alkyl group having 1 to 6 carbon atoms, or a halogen atom) and (B) a reaction product of trialkylaluminium and water are supported on (C) an inorganic oxide carrier. The above object is achieved by not additionally feeding an activator compound as a co-catalyst to the polymerization reactor when producing polyolefins in the presence of a solid catalyst component obtained by substantially forming polymer particles. The present invention was achieved based on this discovery.

特定の遷移金属化合物と活性剤化合物の両者を多孔質担
体に担持して反応器に供給する本発明の方法によれば、
スラリー重合あるいは気相重合におけるポリマーの付着
等が防止出来、安定運転が可能になることは、予期しえ
ない事であった。           1又、チーグ
ラー触媒を用いた重合においては、重合反応器に活性剤
化合物(主として有機アルミニウム化合物)を供給する
ことは良く知られていおり、特開昭 54−1430G3号公報においても、追量の活性剤化
合物を反応器に供給することが好ましい実施態様とされ
ている。それ故、本発明のように活性剤化合物を反応器
に供給しない方法により、本発明の効果を発現するのは
、従来の技術からは全く予期出来ず、驚くべき事である
According to the method of the present invention, both a specific transition metal compound and an activator compound are supported on a porous carrier and supplied to a reactor.
It was unexpected that polymer adhesion during slurry polymerization or gas phase polymerization could be prevented and stable operation would be possible. 1. Furthermore, in polymerization using a Ziegler catalyst, it is well known that an activator compound (mainly an organoaluminum compound) is supplied to the polymerization reactor, and JP-A-54-1430G3 also describes It is a preferred embodiment to feed an activator compound to the reactor. Therefore, it is completely unexpected and surprising from the prior art that the effects of the present invention are achieved by a method in which no activator compound is supplied to the reactor as in the present invention.

本発明において使用される遷移金属化合物は、一般式(
シクロペンタジェニ ル) 2 MR′m X2−mで示される0Mは遷移金
属たとえばチタン又はジルコニウムであり、R′は炭素
数1〜8個のアルキル基であり、Xはハロゲン原子であ り1mはθ〜2の数である。その好適なものの代表例と
しては、ビスシクロペンタジェニルジルコニウムジクロ
ライト及びビスシクロペンタジェニルチタニウムジクロ
ライドがあげられる0本発明において触媒成分の1つと
してトリアルキルアルミニウムと水との反応生成物を使
用するが、トリアルキルアルミニウムの具体例としては
、トリメチルフルミニウ ム、トリエチルアルミニウム、トリー1−プロピルアル
ミニウム、トリイソブチルアルミニウム又は、これらの
混合物かあげられる。特に好ましい結果は、トリノチル
アルミニウムを使用した場合に達成される。トリアルキ
ルアルミニウムと水との反応は、縮合反応であり、得ら
れる生成物は1反応両成分のモル比や反応条件によって
変わるが、一般式 R2(AM−0)  AlR2(式中、R2は炭素数1
〜6個のアルキル基、nはl又はそれ以上のg数である
。)で表わされる縮合物又はその混合物である。上記の
反応は、トルエンの如き不活性炭化水素溶媒に溶かした
トリアルキルアルミニウムへ所定量の水を徐々に加え、
必要に応じ少し加温することによって容易に行うことが
できるが、硫酸銅・ 5永和物硫酸亜鉛・ 7水和物な
どの結晶水を利用して行うこともできる。
The transition metal compound used in the present invention has the general formula (
cyclopentagenyl) 2 MR'm 0M represented by X2-m is a transition metal such as titanium or zirconium, R' is an alkyl group having 1 to 8 carbon atoms, X is a halogen atom, and 1m is θ ~2 numbers. Representative examples of suitable ones include biscyclopentadienyl zirconium dichlorite and biscyclopentadienyl titanium dichloride. In the present invention, a reaction product of trialkylaluminium and water is used as one of the catalyst components. However, specific examples of trialkylaluminium include trimethylfluminium, triethylaluminum, tri-1-propylaluminum, triisobutylaluminum, or mixtures thereof. Particularly favorable results are achieved when using trinotylaluminum. The reaction between trialkylaluminium and water is a condensation reaction, and the resulting product varies depending on the molar ratio of both components in one reaction and reaction conditions, but has the general formula R2 (AM-0) AlR2 (where R2 is carbon Number 1
~6 alkyl groups, n being a g number of 1 or more. ) or a mixture thereof. The above reaction involves gradually adding a predetermined amount of water to trialkylaluminum dissolved in an inert hydrocarbon solvent such as toluene.
This can be easily done by slightly heating if necessary, but it can also be done using crystallization water of copper sulfate, pentahydrate zinc sulfate, heptahydrate, etc.

使用される水の量は、通常トリアルキルアルミニウムに
対し、 0.1〜1.5モル比であり、好ましくは、0
.5〜1.2モル比である。この範囲を外れると、触媒
活性は急激に低下する0本発明に使用される無機酸化物
担体は、周期律表第1I a族、ma族、IXa族およ
びIXb族の金属の酸化物であり、具体例としては、シ
リカ、アルミナ、シリカアルミナ、マグネシ ア、チタニアなどがあげられる。これらの酸化物はその
種類および製法によりその性状は異なるが、本発明に好
ましく用いられる担体は、表面積torn’ /g以上
、平均細孔径が50A以上、粒子径が100ルm以下の
ものである。又、これらの担体を本発明の目的に用いる
ためには、表面の吸着水や水酸基は極力少ないことが好
ましく、そのためには、高温で焼成処理をすることが必
要である。焼成温度は、 500〜800℃が好ましく、500℃以下では表面の
水酸基を十分に減らすことが出来ず、又、 800℃以
上では焼結が起こり、細孔が破壊されるため好ましくな い0本発明において特に好ましい結果 は、 500〜800℃で焼成したシリカ又はアルミナ
を用いた場合に得ることができる。
The amount of water used is usually 0.1 to 1.5 molar ratio to trialkylaluminum, preferably 0.
.. The molar ratio is 5 to 1.2. Outside this range, the catalytic activity decreases rapidly. The inorganic oxide support used in the present invention is an oxide of a metal of group 1Ia, ma, IXa, and IXb of the periodic table, Specific examples include silica, alumina, silica alumina, magnesia, and titania. Although the properties of these oxides vary depending on their type and manufacturing method, the carrier preferably used in the present invention has a surface area of torn' /g or more, an average pore diameter of 50 A or more, and a particle size of 100 lum or less. . In addition, in order to use these carriers for the purpose of the present invention, it is preferable that the amount of adsorbed water and hydroxyl groups on the surface be as small as possible, and for this purpose, it is necessary to perform a firing treatment at a high temperature. The firing temperature is preferably 500 to 800°C; below 500°C, the hydroxyl groups on the surface cannot be sufficiently reduced, and above 800°C, sintering occurs and pores are destroyed, which is undesirable. Particularly favorable results can be obtained when using silica or alumina calcined at 500-800°C.

無機酸化物担体に遷移金属化合物(A)及びトリアルキ
ルアルミニウムと水との反応生成物CB)とを担持する
にあた り、これらの画成分を同時に相持してもよく、一方を担
持した後に、もう一方の成分を担持してもよい。又1画
成分の担持割合は、遷移金属化合物1モルに対 し、トリアルキルアルミニウムと水との反応生成物を3
0モル(A文/M≧30)以上使用することが好ましく
、これ以下では充分な活性が得られない。
When supporting the transition metal compound (A) and the reaction product CB of trialkylaluminium and water on the inorganic oxide carrier, these image components may be supported at the same time, and after supporting one, the other may be supported. Components may be supported. In addition, the supporting ratio of one component is 3 moles of the transition metal compound to 3
It is preferable to use 0 mol or more (A mole/M≧30), and if it is less than this, sufficient activity cannot be obtained.

無機酸化物担体に上記画成分を担持する方法は、不活性
溶媒に画成分(もしく は、一方の成分)を溶解させ1次いでこの溶液に担体を
混合することにより、含浸担持することができる。担持
温度は、一般には、 100℃以下であり、 0〜40
℃が好ましい、このようにして得られた固体触媒成分は
、不活性溶媒を用いて数回洗浄し、そのままスラリーと
してまた は、乾燥した後に粉末化して使用する。
The above picture component can be supported on an inorganic oxide carrier by impregnation, by dissolving the picture component (or one of the components) in an inert solvent, and then mixing the carrier with this solution. The supporting temperature is generally 100°C or less, and 0 to 40°C.
The solid catalyst component thus obtained, preferably at a temperature of 0.degree. C., is washed several times with an inert solvent and used as a slurry or after drying and powdered.

本発明に係る実質的にポリマー粒子の形成下に行なう重
合は、いわゆるスラリー重合または気相重合である。ス
ラリー重合の場合に使用する溶媒としては、たとえば、
ブタン、イソブタン、ペンタン。
The polymerization carried out substantially while forming polymer particles according to the present invention is so-called slurry polymerization or gas phase polymerization. Examples of solvents used in slurry polymerization include:
Butane, isobutane, pentane.

ヘキサン、シクロヘキサン、トルエン等の不活性炭化水
素の単独または混合物である。又、α−オレフィンをそ
のまま溶媒として使用することもできる0重合温度は、
一般には一1θ℃ないし150℃であり、実用的には0
1〜100℃である。気相重合は実質上溶媒のない気相
状態で実施され、反応器としては、流動床撹拌槽など公
知のものを使用できる6重合温度は通常0〜150’c
であり、好ましくは、20〜100℃である。
Inert hydrocarbons such as hexane, cyclohexane, toluene, etc. alone or in mixtures. In addition, the 0 polymerization temperature at which α-olefin can be used as a solvent is:
Generally it is -1θ℃ to 150℃, and practically 0
The temperature is 1 to 100°C. Gas-phase polymerization is carried out in a gas-phase state substantially free of solvent, and a known reactor such as a fluidized bed stirring tank can be used.6 The polymerization temperature is usually 0 to 150'C.
and preferably 20 to 100°C.

チグラー触媒重合においては、遷移金属化合物と液状の
活性剤化合物の両者を重合反応器に供給して、重合を実
施するのが一般的であるが、本発明においては、無機酸
化物担体に担持されたトリアルキルアルミニウムと水上
の反応物以外に は、追加の活性剤化合物を重合反応器に供給し・なしす
ISを特徴とする。活性剤化合物は、有機アルミニウム
化合物、有機マグネシウム化合物、有機亜鉛化合物な ど、いわゆるチグラー重合の活性剤として公知なもので
ある。
In Ziegler-catalyzed polymerization, it is common to carry out polymerization by supplying both a transition metal compound and a liquid activator compound to a polymerization reactor. Besides the trialkylaluminium and water reactants, an additional activator compound is fed to the polymerization reactor. The activator compound is a compound known as an activator for so-called Ziegler polymerization, such as an organoaluminum compound, an organomagnesium compound, an organozinc compound, or the like.

本発明におけるポリオレフィンとは、ポリエチレン、エ
チレンと他のα−オレフィンとの共重合体及びα−オレ
フィンの単独重合体などであるが1本発明の効果は、ポ
リエチレン及びエチレンと他の α−オレフィンとの共重合体を製造する際に特に発揮さ
れる。使用されるα−オレフィンの代表例としては、プ
ロピレ ン、ブテン−1、ヘキセン−1,4−メチルペンテン−
1があげられる。
The polyolefin in the present invention includes polyethylene, a copolymer of ethylene and other α-olefins, and a homopolymer of α-olefin. It is particularly exhibited in the production of copolymers. Typical examples of α-olefins used include propylene, butene-1, hexene-1,4-methylpentene-
1 is given.

え直重 以下、実施例によって、本発明をさらにくわしく説明す
る。
The present invention will now be explained in more detail with reference to Examples.

訃、、           s・実施例8J″′比較
例′″8°゛7%″)°70−・インデッスク(以下r
MFIJと言う)はJIS K−8758ニもとづき、
温度が230’C,荷重が2.18Kgの条件で測定し
、共重合体中のエチレン含量CEは赤外吸収スペクトル
法で測定した。又、融点は、パーキンエルマー社製のD
SC■■型走査型示差熱分析装置を用いて測定した。
Death,, s Example 8
MFIJ) is based on JIS K-8758,
Measurement was carried out at a temperature of 230'C and a load of 2.18 kg, and the ethylene content CE in the copolymer was measured by infrared absorption spectroscopy. In addition, the melting point is D manufactured by PerkinElmer Co.
Measurement was performed using an SC type scanning differential thermal analyzer.

実施例1 トリアルキルアルミニウム化合、r: 窒素置換した300m Qの三ツロフラスコ中にBow
 nのトルエンと80mmouのトリメチルアルミニウ
ムを加え、−30℃で30mmoiの水を滴下する。添
加後温度を徐々に上昇して、40°Cで10時間撹拌を
続け、反応を完結させて、反応生成物を得た。
Example 1 Trialkylaluminum compound, r: Bow in a 300 m Q Mitsuro flask purged with nitrogen.
n of toluene and 80 mmou of trimethylaluminum are added, and 30 mmou of water is added dropwise at -30°C. After the addition, the temperature was gradually increased and stirring was continued at 40°C for 10 hours to complete the reaction and obtain a reaction product.

因        の “′ 窒素置換した300m文の三ツロフラスコ中に、ビスシ
クロペンタジェニルジルコニウムジクロライドのトルエ
ン溶液(0,02mo文/立)50ffi文とトリメチ
ルアルミニウムと水との反応生成物5111ema l
を加えた。そこへ、s o o ”cで焼成処理   
       1をした5i02  (富士デビソン社
#952 ) 5gを加え、 5時間撹拌を続けた後、
トルエンで数回洗浄することにより、固体触媒成分を得
た。固体触媒成分1g中には、 Z r 9mg 、A
 l 140+wgを含んでいた。
In a 300-meter Mitsuro flask purged with nitrogen, a toluene solution of biscyclopentadienylzirconium dichloride (0.02 mo/stand) was mixed with a reaction product of 50 ffi, trimethylaluminum, and water, 5111 emal.
added. Then, the firing process is done with s o o ”c.
Add 5g of 5i02 (Fuji Davison #952) and continue stirring for 5 hours.
A solid catalyst component was obtained by washing with toluene several times. In 1 g of solid catalyst component, Z r 9 mg, A
It contained 140+ wg.

L立二ヱ立1j 3党のステンレス製のオートクレーブにインブタン2f
L、上記固体触媒成分を、2g入れ、内温んを70℃に
昇温した。ついで水素をゲージ圧で3kg/ Crn’
加え、さらにエチレンを圧入し、エチl/ン分圧を 1
0kg/am’となるrうに保ちながら、 1時間近合
を行なった。ついで内容ガスを系外に放出することによ
り、重合を終結した。
L 2nd 1st 3rd party stainless steel autoclave with 2f of imbutane
L. 2 g of the above solid catalyst component was added, and the internal temperature was raised to 70°C. Next, hydrogen was added at gauge pressure to 3 kg/Crn'.
In addition, ethylene is further pressurized to bring the partial pressure of ethyl/ton to 1.
Approaching was carried out for 1 hour while maintaining the temperature at 0 kg/am'. Polymerization was then terminated by discharging the contained gas to the outside of the system.

その結果、 175gの白色粉末状重合体が得られた、
なお、オートクレーブ中へのポリマーの付着は全く見ら
れなかった。
As a result, 175g of white powdery polymer was obtained.
Note that no polymer was observed to adhere to the inside of the autoclave.

この重合体の分子量をGPCにて測定したところ、Q 
w = 8000<’アッタ。
When the molecular weight of this polymer was measured by GPC, it was found that Q
w = 8000<'atta.

実施例2 エチレン プロピレン   lr 窒素置換した32のステンレス製オートクレーブに、実
施例1で得られた固体触媒成分を2g入れ、ついでプロ
ピレン?00gを加え、内温を30℃まで昇温する。つ
いで、エチレンを圧入して、エチレン濃度を10モル%
(プロピレンに対して)に保つように供給しながら、 
1時間重合を継続した。ついで、エチレンの供給を止め
、内容ガスを系外に放出することにより、重合を終結し
た・その結果、182gの粒状の重合体が得られた。又
、オートクレーブ内へのポリブーの付着は全く無かった
。得られた1合体は、MFL=1.3 、 CE =6
8%、融点=45℃のランダム共重合体であった・ 実施例3 トリアルキルアルミニウムと との 庁窒素置換した3
0011文の三ツロフラスコに硫酸銅・5水和物を10
0mmo文を入れ、トルエン100+J1に懸濁させる
。ついでトリメチルアルミニウム300imo文を30
℃で加え、その温度で48時間反応を続ける。ついで、
この反応物をカラスフィルターにより、炉別することに
よって、反応生成物の溶液を得た。トルエンを蒸留によ
り除去したところ、8.2gの白色結晶が得られた。
Example 2 Ethylene Propylene lr 2g of the solid catalyst component obtained in Example 1 was placed in a 32 stainless steel autoclave purged with nitrogen, and then propylene? 00g was added, and the internal temperature was raised to 30°C. Then, ethylene was injected under pressure to bring the ethylene concentration to 10 mol%.
(relative to propylene) while supplying the
Polymerization was continued for 1 hour. Then, the supply of ethylene was stopped and the content gas was discharged to the outside of the system to terminate the polymerization. As a result, 182 g of granular polymer was obtained. Moreover, there was no polybu attached to the inside of the autoclave. The obtained one coalescence has MFL=1.3, CE=6
It was a random copolymer with a melting point of 8% and a melting point of 45°C.Example 3 Trialkylaluminium and nitrogen-substituted 3
0011 cup of copper sulfate pentahydrate in a Mitsuro flask
Add 0mmo sentence and suspend in toluene 100+J1. Next, add 300 imo of trimethylaluminum to 30
℃ and continue the reaction at that temperature for 48 hours. Then,
The reaction product was filtered through a glass filter to obtain a solution of the reaction product. When toluene was removed by distillation, 8.2 g of white crystals were obtained.

トリメチルアルミニウムと水との反応生成物を上記方法
で得られたものを用いた以外は、実施例1と同様にして
、固体触媒成分を得た。固体触媒成分1gあたりZ r
 9.2+of  A l 155mgを含んでいた。
A solid catalyst component was obtained in the same manner as in Example 1, except that the reaction product of trimethylaluminum and water obtained by the above method was used. Z r per gram of solid catalyst component
It contained 155 mg of 9.2+of Al.

五jコこヱ!ど【涜 上記で得られた固体触媒成分を1gを用いた以外は、実
施例1と同様にしてエチレンの重合を起なった。その結
果、オートクレーブには、ポリマーの付着は全く無く、
白色粉末状重合体が283g得られた。GPCによるQ
 w = 5800であった。
Five j here! Polymerization of ethylene was carried out in the same manner as in Example 1, except that 1 g of the solid catalyst component obtained above was used. As a result, there was no polymer adhesion in the autoclave.
283g of white powdery polymer was obtained. Q by GPC
w = 5800.

実施例4 実施例3において、ビスシクロペンタジェニルジルコニ
ウムジクロライドの代わりに、ビスシクロペンタジェニ
ルチタニウムジクロライトを用いた以外は、実施例3と
同様に固体触媒成分を得た。この固体触媒成分1gあた
り、Ti  4.8rag、  A文 180m gを
含んでいた。
Example 4 A solid catalyst component was obtained in the same manner as in Example 3, except that biscyclopentadienyl titanium dichlorite was used instead of biscyclopentadienyl zirconium dichloride. Each gram of this solid catalyst component contained 4.8 rag of Ti and 180 mg of A.

エチレン プロピレン   − 上記で得られた固体触媒成分2gを用いた以外は、実施
例2と同様にして、エチレンとプロピレンとの共重合を
行なった。その結果、オートクレーブには、ポリマーの
付着は全く無く、色色粒状の重合体が126g得られた
。得られた重合体は、MF I =0.8 、CE =
70%、融点=5Q℃のランダム共重合体であった。
Ethylene Propylene - Copolymerization of ethylene and propylene was carried out in the same manner as in Example 2, except that 2 g of the solid catalyst component obtained above was used. As a result, no polymer adhered to the autoclave, and 126 g of colored granular polymer was obtained. The obtained polymer had MF I =0.8, CE =
It was a random copolymer with a melting point of 70% and a melting point of 5Q°C.

実施例5 エチレン ブー7−1 窒素ご換した3文のステンレス製オートクレーブに、実
施例3で得られた固体触媒成分をIg。
Example 5 Ethylene Boo 7-1 The solid catalyst component obtained in Example 3 was placed in a stainless steel autoclave with nitrogen exchange.

イソブタン2文を入れ、内温を70℃に昇温した。つい
で、ブテン−1190g仕込み、つづいて、エチレンを
分圧が5kg/ c m’になるまで圧入した。エチレ
ンをその圧力を維持するように供給しながら、 1時間
重合を行なった。ついで内容ガスを系外に放出すること
により1重合を終結した。その結果オートクレーブには
、ポリマーの付着は全く無く、白色粉末状の重合体が1
95g得られた。この重合体のMFIは 1,5、密度
はOJ21g/ccであった。
Two volumes of isobutane were added, and the internal temperature was raised to 70°C. Next, 1190 g of butene was charged, and ethylene was then pressurized until the partial pressure reached 5 kg/cm'. Polymerization was carried out for 1 hour while supplying ethylene to maintain the pressure. One polymerization was then terminated by discharging the contained gas to the outside of the system. As a result, there was no polymer adhesion at all in the autoclave, and one white powdery polymer was left in the autoclave.
95g was obtained. This polymer had an MFI of 1.5 and a density of 21 g/cc of OJ.

実施例6 実施例3においてビスシクロペンタジェニルジルコニウ
ムジクロライドの代わりに、ビスシクロペンタジェニル
ジルコニウムジメチルを用いた以外は、実施例3と全く
同様に固体触媒成分を得た。この固体触媒成分1gあた
り、Zr12.3mg、A ll  172mgを含ん
でいた。
Example 6 A solid catalyst component was obtained in exactly the same manner as in Example 3, except that biscyclopentadienylzirconium dimethyl was used instead of biscyclopentadienylzirconium dichloride. Each gram of this solid catalyst component contained 12.3 mg of Zr and 172 mg of All.

エチレン プロピレン   1 上記で得られた固体触媒成分2gを用いた以外は、実施
例2と全く同様にして、エチレンとプロピレンとの共重
合を行なった。その結果、オートクレーブにはポリマー
の付着は全く無く、白色粒状重合体は223g得られた
。この重合体にはMF I =0.5 、CE =8.
6%、融点=47℃のランダム共重合体であった。
Ethylene Propylene 1 Copolymerization of ethylene and propylene was carried out in exactly the same manner as in Example 2, except that 2 g of the solid catalyst component obtained above was used. As a result, no polymer adhered to the autoclave, and 223 g of white granular polymer was obtained. This polymer had MF I =0.5, CE =8.
It was a random copolymer with a melting point of 6% and a melting point of 47°C.

比較例1 玉jコy’/L)どL金 実施例1において、固体触媒成分の代わりに。Comparative example 1 ball jkoy'/L) do L gold In Example 1, instead of the solid catalyst component.

ビスシクロペンタジェニルジルコニウムジクロライド0
.2+gmo見、及びトリメチルアルミニウムと水との
反応生成物1011IIO見を用いた以外は、実施例1
と同様にエチレンの重合を行なった。
Biscyclopentagenyl zirconium dichloride 0
.. Example 1 except that 2+gmo and the reaction product of trimethylaluminum and water 1011IIO were used.
Polymerization of ethylene was carried out in the same manner.

その結果、生成した重合体の大部分はオートクレーブの
内壁や撹拌機に固く付着し、伝熱係数が著しく低下した
ため、温度制御が困難となり、安定運転が出来なかった
As a result, most of the produced polymer adhered firmly to the inner wall of the autoclave and the stirrer, and the heat transfer coefficient decreased significantly, making temperature control difficult and making stable operation impossible.

比較例2 エチレン プロピレン   を一 実施例2において、オートクレーブに追加の活性剤化合
物として、実施例1において得られたトリメチルアルミ
ニウムと水との反応生成物を2mmo文添加した以外は
、実施例2と同様にエチレンとプロピレンとの共重合を
行なった。その結果粉末状重合体が78.得られたが、
オートクレーブの内壁及び撹拌機には、重合体が固く付
着していた。この付着物をキシレンで溶解除去し、メタ
ノールに再沈後、乾燥し、秤量したところ、 23gで
あった。
Comparative Example 2 Same as Example 2, except that ethylene propylene was added to the autoclave in Example 2, and 2 mmol of the reaction product of trimethylaluminum and water obtained in Example 1 was added as an additional activator compound. Copolymerization of ethylene and propylene was carried out. As a result, the powdered polymer was 78. I got it, but
The polymer was firmly attached to the inner wall of the autoclave and the stirrer. This deposit was dissolved and removed with xylene, reprecipitated in methanol, dried, and weighed to find that it was 23 g.

比較例3 エチレン プロピレン  、1 比412において、トリメチルアルミニウムと水との反
応生成物の代わりに、トリエチルアルミニウムを用いた
以外は、比較例2と同様に、エチレンとプロピレンとの
共重合を行なった。
Comparative Example 3 Ethylene Propylene, 1 Copolymerization of ethylene and propylene was carried out in the same manner as in Comparative Example 2, except that at a ratio of 412, triethylaluminum was used instead of the reaction product of trimethylaluminum and water.

その結果、粉末状重合体85gが得られたが、オートク
レーブの内壁及び撹拌機には、重合体の付着が見られた
0回収した付着物は、 178であった。
As a result, 85 g of powdered polymer was obtained, but adhesion of the polymer was observed on the inner wall of the autoclave and the stirrer.The amount of adhesion recovered was 178.

比較例4 固の 窒素置換した300km文の三ツロフラスコに、ビスシ
クロペンタジェニルジルコニウムジクロライドのトルエ
ン溶液(0,02■O見/見)501見を加え、ついで
800℃で焼成処理した5102ト1        
 (富士デビソン社、#952 ) 5gを加えた。5
時間撹拌を続けた後、トルエンで数回洗浄することによ
り、固体触媒成分を得た。固体触媒成分1g中にはZr
13mgを含んでいた。
Comparative Example 4 A toluene solution of biscyclopentadienyl zirconium dichloride (0.02 ml/ml) was added to a 300km Mitsuro flask purged with solid nitrogen, and then 5102 ml was calcined at 800°C.
(Fuji Davison Co., #952) 5 g was added. 5
After continuing to stir for a period of time, the mixture was washed several times with toluene to obtain a solid catalyst component. 1 g of solid catalyst component contains Zr.
It contained 13 mg.

五fly二二ζノ′ロビレン の−1r窒素芒換した3
文のステンレス製オートクレーブに、上記固体触媒成分
2gと実施例3で得られたトリメチルアルミニウムと水
との反応生成物10mmo nとを加え、ついでプロピ
レン700gヲ加え、内温を30°Cまで昇温する。つ
いで、エチレンを圧入して、エチレン濃度を10モル%
(プロピレンに対して)に保つように供給しなから 1
時間重合を継続した。ついで、内容ガスを系外に放出す
ることにより、重合を終結した。その結果、154gの
粒状重合体が得られたが、オートクレーブの内壁及び撹
拌機には、重合体が固く付着していた0回収した付着物
の量は35gであった・ 特許出願人  昭和電工株式会社          
    1゜□l
-1r nitrogen exchanged 3
In a stainless steel autoclave, 2 g of the above solid catalyst component and 10 mmon of the reaction product of trimethylaluminum and water obtained in Example 3 were added, then 700 g of propylene was added, and the internal temperature was raised to 30°C. do. Then, ethylene was injected under pressure to bring the ethylene concentration to 10 mol%.
(relative to propylene)
Polymerization was continued for hours. Then, the polymerization was terminated by discharging the content gas to the outside of the system. As a result, 154 g of granular polymer was obtained, but the polymer was firmly adhered to the inner wall of the autoclave and the stirrer.The amount of deposits recovered was 35 g. Patent applicant: Showa Denko K.K. company
1゜□l

Claims (1)

【特許請求の範囲】 1、(A)一般式(シクロペンタジエニル)_2MR_
mX_2_−_m(M=Ti又はZr、Rは炭素数1〜
6個のアルキル基、Xはハロゲン原子、m=0〜2の数
)で示される遷移金属化合物及び (B)トリアルキルアルミニウムと水との反応生成物と
を (C)無機酸化物担体に担持することによって得られる
固体触媒成分の存在下に、実質的にポリマー粒子の形成
下にポリオレフィンを製造する事を特徴とするポリオレ
フィンの製造方法
[Claims] 1. (A) General formula (cyclopentadienyl)_2MR_
mX_2_-_m (M=Ti or Zr, R is carbon number 1~
A transition metal compound represented by 6 alkyl groups, X is a halogen atom, m = number of 0 to 2) and (B) a reaction product of trialkylaluminum and water are supported on (C) an inorganic oxide carrier. A method for producing a polyolefin, characterized in that the polyolefin is produced in the presence of a solid catalyst component obtained by substantially forming polymer particles.
JP59228954A 1984-11-01 1984-11-01 Method for producing polyolefin Expired - Lifetime JPH0788403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59228954A JPH0788403B2 (en) 1984-11-01 1984-11-01 Method for producing polyolefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59228954A JPH0788403B2 (en) 1984-11-01 1984-11-01 Method for producing polyolefin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8217237A Division JP2762394B2 (en) 1996-08-19 1996-08-19 Olefin polymerization catalyst

Publications (2)

Publication Number Publication Date
JPS61108610A true JPS61108610A (en) 1986-05-27
JPH0788403B2 JPH0788403B2 (en) 1995-09-27

Family

ID=16884458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59228954A Expired - Lifetime JPH0788403B2 (en) 1984-11-01 1984-11-01 Method for producing polyolefin

Country Status (1)

Country Link
JP (1) JPH0788403B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296008A (en) * 1985-06-21 1986-12-26 エクソン・ケミカル・パテンツ・インク Novel polymer supported catalyst
WO1987003604A1 (en) * 1985-12-12 1987-06-18 Exxon Chemical Patents, Inc. New polymerization catalyst
US4701432A (en) * 1985-11-15 1987-10-20 Exxon Chemical Patents Inc. Supported polymerization catalyst
WO1988001626A1 (en) * 1986-08-26 1988-03-10 Mitsui Petrochemical Industries, Ltd. CATALYST FOR POLYMERIZING alpha-OLEFIN AND POLYMERIZATION PROCESS
WO1988002378A1 (en) 1986-09-24 1988-04-07 Mitsui Petrochemical Industries, Ltd. Process for polymerizing olefin
JPS6389505A (en) * 1986-10-01 1988-04-20 Mitsui Petrochem Ind Ltd Polymerization of olefin
WO1988005058A1 (en) * 1986-12-30 1988-07-14 Mitsui Petrochemical Industries, Ltd. Solid catalyst for olefin polymerization and process for its preparation
WO1988008432A1 (en) * 1987-04-20 1988-11-03 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalyst and process for polymerizing olefin
JPH0713100B2 (en) * 1989-10-16 1995-02-15 エクソン・ケミカル・パテンツ・インク Olefin polymerization catalyst from trialkylaluminum mixture, silica gel, and metallocene
EP0697419A1 (en) 1994-08-09 1996-02-21 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalyst and process for olefin polymerization
EP0698621A1 (en) 1991-05-01 1996-02-28 Mitsubishi Chemical Corporation Catalyst for polymerizing an olefin and method for producing an olefin polymer
US5539069A (en) * 1993-08-10 1996-07-23 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalysts and methods of olefin polymerization
US5554704A (en) * 1992-05-18 1996-09-10 Exxon Chemical Patents, Inc. Controlled particle size polyolefins from silica supported prepolymerized matallocene catalyst
JPH0920805A (en) * 1996-08-19 1997-01-21 Mitsui Petrochem Ind Ltd Polymerization of olefin
US5712352A (en) * 1994-09-14 1998-01-27 Exxon Chemical Patents Inc. Polymerization process
US6077804A (en) * 1994-07-26 2000-06-20 Nippon Oil Company, Limited Olefin polymerization catalyst and process for preparing polyolefins
US6284699B1 (en) 1998-03-25 2001-09-04 Sumitomo Chemical Company, Limited Modified particles, catalyst for olefin polymerization containing the same, and method for producing olefin polymer
US6482765B1 (en) 1997-08-21 2002-11-19 Sumitomo Chemical Company, Limited Modified particles, carrier prepared therefrom, olefin polymerization catalyst component prepared therefrom, olefin polymerization catalyst prepared therefrom, and process for preparing olefin polymer
US6787616B2 (en) 2002-07-12 2004-09-07 Maruzen Petrochemical Co., Ltd. Catalyst for olefin polymerization and process for polymerizing olefin by means thereof
US7345119B2 (en) 2003-12-01 2008-03-18 Maruzen Petrochemical Company, Limited Olefin polymerization catalyst and olefin polymerization method using the same
DE112006003437T5 (en) 2005-12-19 2008-10-23 Sumitomo Chemical Co., Ltd. Process for the preparation of olefin polymer
DE102008061426A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Reaction unit for olefin polymerization and process for polyolefin production
DE102008061425A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Co., Ltd. Olefin polymerization reactor, polyolefin production system and polyolefin production process
DE102008061427A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Spouted bed apparatus and polyolefin production method using the same
DE102008061518A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Co., Ltd. A spouted bed apparatus, sputtered bed polyolefin production system, and polyolefin manufacturing method
DE102008061516A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Powder transfer device and polyolefin production process
DE102010023010A1 (en) 2009-06-08 2010-12-09 Sumitomo Chemical Company, Limited Spouted / fluidized bed olefin polymerization reactor
US7999048B2 (en) 2006-08-11 2011-08-16 Sumitomo Chemical Company, Limited Process for producing prepolymerization catalyst for polymerization of olefin and process for producing olefin polymer
WO2011142400A1 (en) 2010-05-11 2011-11-17 東ソー・ファインケム株式会社 Solid support-polymethylaluminoxane complex, method for producing same, olefin polymerization catalyst, and method for producing polyolefin
CN102453124A (en) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 Supported metallocene catalyst and olefin polymer, and preparation methods thereof
DE102012005833A1 (en) 2011-03-25 2012-09-27 Sumitomo Chemical Company, Ltd. Olefin polymerization reactor, polyolefin production system, and polyolefin production process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525395A (en) 2008-03-06 2009-09-09 住友化学株式会社 Processes for producing a catalyst component for addition polymerization, a catalyst and an addition polymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035008A (en) * 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Manufacture of polyethylene having broad molecular weight distribution and catalyst therefor
JPS6035007A (en) * 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Method and catalyst for controlling polyolefin density and molecular weight
JPS60135408A (en) * 1983-12-23 1985-07-18 Toyo Soda Mfg Co Ltd Production of polyolefin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035008A (en) * 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Manufacture of polyethylene having broad molecular weight distribution and catalyst therefor
JPS6035007A (en) * 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− Method and catalyst for controlling polyolefin density and molecular weight
JPS60135408A (en) * 1983-12-23 1985-07-18 Toyo Soda Mfg Co Ltd Production of polyolefin

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296008A (en) * 1985-06-21 1986-12-26 エクソン・ケミカル・パテンツ・インク Novel polymer supported catalyst
US4701432A (en) * 1985-11-15 1987-10-20 Exxon Chemical Patents Inc. Supported polymerization catalyst
WO1987003604A1 (en) * 1985-12-12 1987-06-18 Exxon Chemical Patents, Inc. New polymerization catalyst
WO1988001626A1 (en) * 1986-08-26 1988-03-10 Mitsui Petrochemical Industries, Ltd. CATALYST FOR POLYMERIZING alpha-OLEFIN AND POLYMERIZATION PROCESS
WO1988002378A1 (en) 1986-09-24 1988-04-07 Mitsui Petrochemical Industries, Ltd. Process for polymerizing olefin
JPS6389505A (en) * 1986-10-01 1988-04-20 Mitsui Petrochem Ind Ltd Polymerization of olefin
WO1988005058A1 (en) * 1986-12-30 1988-07-14 Mitsui Petrochemical Industries, Ltd. Solid catalyst for olefin polymerization and process for its preparation
JPH09176224A (en) * 1986-12-30 1997-07-08 Mitsui Petrochem Ind Ltd Solid catalyst for olefin polymerization
WO1988008432A1 (en) * 1987-04-20 1988-11-03 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalyst and process for polymerizing olefin
JPH0713100B2 (en) * 1989-10-16 1995-02-15 エクソン・ケミカル・パテンツ・インク Olefin polymerization catalyst from trialkylaluminum mixture, silica gel, and metallocene
EP0698621A1 (en) 1991-05-01 1996-02-28 Mitsubishi Chemical Corporation Catalyst for polymerizing an olefin and method for producing an olefin polymer
US5554704A (en) * 1992-05-18 1996-09-10 Exxon Chemical Patents, Inc. Controlled particle size polyolefins from silica supported prepolymerized matallocene catalyst
US5539069A (en) * 1993-08-10 1996-07-23 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalysts and methods of olefin polymerization
US5543377A (en) * 1993-08-10 1996-08-06 Mitsui Petrochemical Industries Co., Ltd. Olefin polymerization catalysts and methods of olefin polymerization
US6077804A (en) * 1994-07-26 2000-06-20 Nippon Oil Company, Limited Olefin polymerization catalyst and process for preparing polyolefins
EP0697419A1 (en) 1994-08-09 1996-02-21 Mitsui Petrochemical Industries, Ltd. Olefin polymerization catalyst and process for olefin polymerization
US5712352A (en) * 1994-09-14 1998-01-27 Exxon Chemical Patents Inc. Polymerization process
US5763543A (en) * 1994-09-14 1998-06-09 Exxon Chemical Patents Inc. Olefin polymerization process with little or no scavenger present
JPH0920805A (en) * 1996-08-19 1997-01-21 Mitsui Petrochem Ind Ltd Polymerization of olefin
US6482765B1 (en) 1997-08-21 2002-11-19 Sumitomo Chemical Company, Limited Modified particles, carrier prepared therefrom, olefin polymerization catalyst component prepared therefrom, olefin polymerization catalyst prepared therefrom, and process for preparing olefin polymer
US6284699B1 (en) 1998-03-25 2001-09-04 Sumitomo Chemical Company, Limited Modified particles, catalyst for olefin polymerization containing the same, and method for producing olefin polymer
US6787616B2 (en) 2002-07-12 2004-09-07 Maruzen Petrochemical Co., Ltd. Catalyst for olefin polymerization and process for polymerizing olefin by means thereof
US7345119B2 (en) 2003-12-01 2008-03-18 Maruzen Petrochemical Company, Limited Olefin polymerization catalyst and olefin polymerization method using the same
DE112006003437T5 (en) 2005-12-19 2008-10-23 Sumitomo Chemical Co., Ltd. Process for the preparation of olefin polymer
US7999048B2 (en) 2006-08-11 2011-08-16 Sumitomo Chemical Company, Limited Process for producing prepolymerization catalyst for polymerization of olefin and process for producing olefin polymer
DE102008061427A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Spouted bed apparatus and polyolefin production method using the same
DE102008061425A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Co., Ltd. Olefin polymerization reactor, polyolefin production system and polyolefin production process
DE102008061518A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Co., Ltd. A spouted bed apparatus, sputtered bed polyolefin production system, and polyolefin manufacturing method
DE102008061516A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Powder transfer device and polyolefin production process
DE102008061426A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Reaction unit for olefin polymerization and process for polyolefin production
DE102010023010A1 (en) 2009-06-08 2010-12-09 Sumitomo Chemical Company, Limited Spouted / fluidized bed olefin polymerization reactor
DE102010023010B4 (en) 2009-06-08 2023-05-25 Sumitomo Chemical Company, Limited Spouted Bed/Fluid Bed Olefin Polymerization Reactor
WO2011142400A1 (en) 2010-05-11 2011-11-17 東ソー・ファインケム株式会社 Solid support-polymethylaluminoxane complex, method for producing same, olefin polymerization catalyst, and method for producing polyolefin
US8975209B2 (en) 2010-05-11 2015-03-10 Tosoh Finechem Corporation Solid support-polymethylaluminoxane complex, method for producing same, olefin polymerization catalyst, and method for producing polyolefin
JP5856561B2 (en) * 2010-05-11 2016-02-10 東ソー・ファインケム株式会社 Solid support-polymethylaluminoxane complex, method for producing the same, polymerization catalyst for olefins, and method for producing polyolefins
CN102453124A (en) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 Supported metallocene catalyst and olefin polymer, and preparation methods thereof
DE102012005833A1 (en) 2011-03-25 2012-09-27 Sumitomo Chemical Company, Ltd. Olefin polymerization reactor, polyolefin production system, and polyolefin production process
DE102012005833B4 (en) 2011-03-25 2022-10-20 Sumitomo Chemical Company, Ltd. Olefin polymerization reactor, polyolefin production system and polyolefin production process

Also Published As

Publication number Publication date
JPH0788403B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
JPS61108610A (en) Production of polyolefin
JP3920918B2 (en) Manufacturing process of LLDPE polymers
US5910463A (en) Catalyst supports, supported metallocene catalysts and their use for the preparation of polyolefins
US5026797A (en) Process for producing ethylene copolymers
US6225252B1 (en) Process for preparing catalyst supports and supported polyolefin catalysts and also their use for the preparation of polyolefins
KR100411971B1 (en) Methods and catalysts for preventing contamination of the reactor
JPH09505236A (en) Catalyst composition for polymerization and copolymerization of ethylene
NO172242B (en) PROCEDURE FOR PREPARING ETHYLENE POLYMERS
JP2002502895A (en) Catalyst for ethylene (co) polymerization and method for producing the same
JPH0725845B2 (en) Supported catalysts for the copolymerization of 1-olefins and 1,4-diolefins
JP2008231434A (en) Ethylene polymer with high environmental stress cracking resistance
JP2003518527A (en) Mixed Ziegler / metallocene catalyst for bimodal polyolefin production
JPH01247406A (en) Catalyst composition for producing alpha-polyolefin narrow molecular weight distribution
JPH06293805A (en) Preparation of polyolefin - wax
JP2003518529A (en) Cycloalkadienyl catalysts for mixed metal alkoxide and polyolefin production
JP2001510865A (en) Highly active polyethylene catalyst
JP2002511500A (en) Catalyst system for ethylene polymerization
JP2000290304A (en) Polymerization of ethylene
JPH10226711A (en) Organometallic compound catalyst for polymerization or copolymerization of alpha-olefin
JP2003518528A (en) Self-supporting hybrid catalyst for polyolefin production
JP4547124B2 (en) Catalyst composition for olefin polymerization and process using the composition
JPH10114805A (en) Catalyst system having metallocene connected to carrier through anchor chain
KR100293841B1 (en) How to prepare carrier material
WO2000004057A1 (en) Method for preparing an activator for the polymerisation of olefins
JP2678396B2 (en) Method for producing polyolefin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term