JPS61107927A - Concentration of heavy carbon methane - Google Patents

Concentration of heavy carbon methane

Info

Publication number
JPS61107927A
JPS61107927A JP22999484A JP22999484A JPS61107927A JP S61107927 A JPS61107927 A JP S61107927A JP 22999484 A JP22999484 A JP 22999484A JP 22999484 A JP22999484 A JP 22999484A JP S61107927 A JPS61107927 A JP S61107927A
Authority
JP
Japan
Prior art keywords
gas
methane
propane
concentration
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22999484A
Other languages
Japanese (ja)
Other versions
JPH0357806B2 (en
Inventor
Shigeki Hirano
平野 茂樹
Toru Otani
徹 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP22999484A priority Critical patent/JPS61107927A/en
Publication of JPS61107927A publication Critical patent/JPS61107927A/en
Publication of JPH0357806B2 publication Critical patent/JPH0357806B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To highly concentrate heavy carbon methane in methane gas through simple operation by increasing the proportion of heavy carbon methane with the help of a gas permeable membrane and condensing propane gas through cooling. CONSTITUTION:Methane gas and propane gas are interdiffused through a gas permeable membrane 4. Next, methane gas is supplied to the first separation tank 5 so that mainly propane is liquefied and separated. After this process, methane gas produced by concentrating heavy carbon methane is supplied as a feedstock to the (n+1) stage of concentration process from a flow passage 7. In addition, propane gas is supplied to the second separation tank 8 for liquefaction and separation. Methane gas produced through the concentration of light carbon methane is supplied as a feedstock to the (n-1) stage of concentration process from a flow passage 10. Further, liquefied propane from the first and second separation processes is supplied to an evaporation tank 11 for evaporation and the vapor is supplied to an interdiffusion process from a flow passage 3. Thus the same methane gas is subjected to a repeated cycle of the above concentration processes to obtain a required high concentration of heavy carbon methane in methane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、同位元素検査のトレーサ等に利用すべく、原
)量が13の炭素から成るメタン、つまり重炭素メタン
を高濃度で含有するメタンガスを得るための濃縮法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to methane containing 13 carbon atoms, that is, heavy carbon methane, at a high concentration, in order to be used as a tracer for isotope testing. Concerning a concentration method for obtaining methane gas.

〔従来技術〕[Prior art]

従来、上記濃縮法は無く、類似のものとしては次のよう
な濃縮法があった。 つまり、原子量が13の炭素から
成る重炭素型−酸化炭素と、原子量が12の炭素から成
る重炭素型−酸化炭素との沸点差を利用して、蒸留によ
り重炭素型−酸化炭素を濃縮する工程を、同一の一酸化
炭素に対して多数回繰返し、重炭素型−酸化炭素を高濃
度で含有する一酸化炭素を得ていた(文献を示すことが
できない)。
Conventionally, there was no concentration method as described above, and there were similar concentration methods as follows. In other words, by utilizing the boiling point difference between heavy carbon type carbon oxide, which consists of carbon with an atomic weight of 13, and heavy carbon type carbon oxide, which consists of carbon with an atomic weight of 12, heavy carbon type carbon oxide is concentrated by distillation. The process was repeated many times for the same carbon monoxide to obtain carbon monoxide containing a high concentration of heavy carbon-carbon oxides (no literature available).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、重炭素型−酸化炭素と重炭素型−酸化炭素の蒸
気圧比が81°ICにおいて0.993と1゛ に近く
、沸点差が極めて小さいため、蒸留工程における温度管
理が極めて困難で、工業化が困難であり、また、−酸化
炭素は毒性が強いために、設備からの漏洩防止に対する
管理が面倒である等の欠点があった。
However, the vapor pressure ratio of heavy carbon type carbon oxide and heavy carbon type carbon oxide is 0.993 at 81°IC, which is close to 1°, and the difference in boiling point is extremely small, making temperature control in the distillation process extremely difficult, making industrialization difficult. Furthermore, since -carbon oxide is highly toxic, there are drawbacks such as troublesome management to prevent leakage from equipment.

本発明の目的は、濃縮操作が簡単で、ガス漏洩防止に対
する配慮を余り厳密にする必要が無く、その上、経済的
に有利に、多重の重炭素を含むガスが得られるようにす
る点にある。
The purpose of the present invention is to simplify the concentration operation, eliminate the need to take too strict measures to prevent gas leakage, and, moreover, to economically advantageously obtain a gas containing multiple heavy carbons. be.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の特徴手段は、液化天然ガスから製造したメタン
ガスとプロパンがスを、重炭素メタンガスが重炭素メタ
ンガスよりも優先透過するがス透過膜を介して相互拡散
させる工程、及びその相互拡散工程からのメタンカスを
液化天然ガスで冷却して、メタンガスから液化プロパン
を分離する第1分離工程から成る濃縮工程を、同一メタ
ンがスに対して多数回繰返して行い、その濃縮工程夫々
において、前記相互拡散工程からのプロパンガスを液化
天然ガスで冷却して、メタンがスから液化プロパンを分
離する第2分離工程、及び、前記第1及び第2分離工程
からの液化プロパンを水で加熱して気化させて、プC7
ハンがスを前記相互拡散工程に供給するプロパン回収利
用工程を行い、かつ、前記濃縮工程の2段目以降忙おい
て、前記第2分離工程からのメタンがスを、前記濃縮工
程のうち前段のものの前記相互拡散工程に供給するメタ
ン回収利用工程を行うことにあり、その作用効果は次の
通りである。
The characteristic means of the present invention includes a step of interdiffusing methane gas and propane produced from liquefied natural gas through a gas-permeable membrane, in which heavy carbon methane gas permeates more preferentially than heavy carbon methane gas, and the step of interdiffusion. The concentration step consisting of the first separation step of cooling the methane gas with liquefied natural gas and separating liquefied propane from the methane gas is repeated many times for the same methane gas, and in each concentration step, the mutual diffusion is a second separation step in which the propane gas from the step is cooled with liquefied natural gas to separate the liquefied propane from the methane gas; and a second separation step in which the liquefied propane from the first and second separation steps is heated with water and vaporized. Te, PuC7
A propane recovery and utilization step is performed to supply the methane gas to the mutual diffusion step, and the methane gas from the second separation step is transferred to the first stage of the concentration step. The purpose is to perform a methane recovery and utilization process to be supplied to the above-mentioned interdiffusion process, and its effects are as follows.

〔作用〕[Effect]

つまり、ガス透過膜によってメタンがス中の重炭素メタ
ンの重炭素メタン忙対する割合を増大させた後で、メタ
ンカ°ス中のプロパンガスを冷却凝縮して、メタンガス
中の重炭素メタンの濃度を高めるのであり、他方、メタ
ンとプロパンヒの凝縮温度の差は119.4 d@gで
極めて大きく、したがって、濃縮においては第1分離工
程の温度管理をかなりラフに行うだけで済む。 また、
同理由で第2分離工程においてもかなりラフな温度管理
を行うだけでよく、かつ、プロパン回収利用工程におい
ては液化プロパンをその気化温度以上に加熱すればよく
て、その温度管理もかなりラフに行え、全体として、簡
単な操作で重炭素メタンを濃縮できる。
In other words, after increasing the ratio of methane to heavy carbon methane in the gas through a gas permeable membrane, the propane gas in the methane gas is cooled and condensed to reduce the concentration of heavy carbon methane in the methane gas. On the other hand, the difference between the condensation temperatures of methane and propane is extremely large at 119.4 d@g, and therefore, during concentration, it is only necessary to control the temperature in the first separation step quite roughly. Also,
For the same reason, it is only necessary to perform very rough temperature control in the second separation step, and in the propane recovery and utilization step, it is sufficient to heat the liquefied propane to a temperature higher than its vaporization temperature, and the temperature control can also be done very roughly. , Overall, heavy carbon methane can be concentrated with simple operations.

また、メタンやプロパンは毒性が極めて弱いものである
から、設備からのガス漏洩に対する配慮を一酸化炭素は
ど忙は厳密に行う必要がなく、ガス漏洩に対す名管理が
容易であり、かつ、安全でるる。
In addition, since methane and propane are extremely weakly toxic, there is no need to take strict precautions against gas leaks from equipment when dealing with carbon monoxide, and it is easy to manage gas leaks. It's safe.

そして、1段目の濃縮工程に対する第2分離工程から出
てくる、重炭素メタン濃度の低いメタンがスは、燃料等
としてそのまま利用できるから、排ガス処理のための特
殊な設備が全く不要である。
The methane gas with a low concentration of heavy carbon methane that comes out of the second separation process for the first concentration process can be used as is as fuel, etc., so there is no need for any special equipment for exhaust gas treatment. .

その上、原料としてのメタン、接触媒体としてのプロパ
ンを液化天然がスから得ると共に、第1及び第2分離工
程にエネルギー源として液化天然ガスの冷熱を利用する
から、全体として液化天然がスを極めて合理的に利用で
き、しかも、後は、プロパン回収利用工程で海水や河川
水等の温熱を必要とするだけであるから、全体として、
電力や石油等の有価エネルギーのf14費量が極めて僅
かになり、運転経費を十分に少なく抑えられる。
Furthermore, since methane as a raw material and propane as a contact medium are obtained from liquefied natural gas, and the cold heat of liquefied natural gas is used as an energy source in the first and second separation steps, overall liquefied natural gas is less expensive. It can be used very rationally, and since the process of recovering and using propane only requires heat from seawater, river water, etc., overall,
The f14 cost of valuable energy such as electricity and oil becomes extremely small, and operating costs can be kept sufficiently low.

〔発明の効果〕〔Effect of the invention〕

その結果、重炭素源として有用なメタンがスを、製造に
おける管理面、設備面及び経費面の全てに有利に得るこ
とができ、工業規模での実施が可能となった。
As a result, methane gas, which is useful as a heavy carbon source, can be obtained with advantages in terms of production management, equipment, and cost, making it possible to carry out the process on an industrial scale.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

先ず第1図により濃縮工程のn段目について説明する。First, the n-th stage of the concentration process will be explained with reference to FIG.

(n−1)段目の第1分離槽と(n + 1 )段目の
第2分離槽からのメタンガスを流路(11から拡散槽(
2)内の第1区画室(2a)に供給し、遁世使用される
プロパンガスを流路(3)から拡散槽(2)内の第2区
画室(2b)に供給し、重炭素メタンカ°スが重炭素メ
タンガスよりも優先透過するガス透過膜(4)を介して
、メタンガスとプロパンガスを相互拡散させ、その相互
拡散工程からのメタンガスを、第1分離槽(5)に供給
して管路(6)内の液化天然ガスで冷却し、主としてプ
ロパンを液化してメタンガスから分離し、そのglI1
1分離工程からの重炭素メタンの?[されたメタンがス
を流路(7)から(n+1)段目の濃縮工程に原料とし
て供給する。
The methane gas from the first separation tank on the (n-1) stage and the second separation tank on the (n + 1) stage is transferred from the flow path (11) to the diffusion tank (
Propane gas is supplied to the first compartment (2a) in the diffusion tank (2), and the propane gas to be used in the future is supplied from the channel (3) to the second compartment (2b) in the diffusion tank (2). Methane gas and propane gas are allowed to interdiffuse through a gas permeable membrane (4) through which the gas permeates more preferentially than heavy carbon methane gas, and the methane gas from the interdiffusion process is supplied to the first separation tank (5) and piped. Cooling with liquefied natural gas in path (6), mainly liquefies propane and separates it from methane gas, and its glI1
1. Heavy carbon methane from separation process? The resulting methane gas is supplied from the flow path (7) to the (n+1)th stage concentration step as a raw material.

尚、メタンガスとプロパンがスは液化天然ガスの蒸留で
製造したものである。
Note that methane gas and propane gas are produced by distilling liquefied natural gas.

相互拡散工程からのプロパンがスを、第2分離槽(8)
に供給して管路(9)内の液化天然がスで冷却し、主と
してプロパンを液化してメタンカ゛スから分離し、その
第2分離工程からの重炭素メタンの濃縮されたメタンカ
゛スを流路(10)から(n−1)段目の濃縮工程に原
料として供給するメタン回収利用工程を行う。
The propane gas from the interdiffusion process is transferred to the second separation tank (8).
The methane gas concentrated in heavy carbon methane from the second separation step is supplied to the flow path (10) and cooled by the liquefied natural gas in the pipe (9) to liquefy and separate mainly propane from the methane gas. ) to the (n-1)th stage concentration step, a methane recovery and utilization step is performed to supply it as a raw material.

第1及び第2分離工程からの液化プa ノ<ンを、蒸発
槽(ロ)K供給して管路(2)内の海水、河川水等の水
で加熱して気化させ、プロパンガスを流路(3)から相
互拡散工程に供給するプロパン回収利用工程を行う。
The liquefied particles from the first and second separation steps are supplied to an evaporation tank (B) and heated and vaporized with water such as seawater or river water in the pipe (2) to produce propane gas. A propane recovery and utilization step is performed to supply the interdiffusion step from the channel (3).

尚、1段目の濃縮工程では、第2分離工程からのメタン
ガスを流路(l(ト)から燃料がス供給設備に回収する
In addition, in the first stage concentration step, the methane gas from the second separation step is recovered from the flow path (l(g)) to the fuel supply equipment.

上述のような濃縮工程を同一のメタンガスに対して多数
回繰返して行い、メタン中の重炭素メタンの濃度を、例
えば5Oqk以上というように所望の高濃度にし、高濃
度重炭素メタンがスt−製造するのであり、以下に設備
例を$2FQないし第4図により示す。
The above-mentioned concentration step is repeated many times for the same methane gas, and the concentration of heavy carbon methane in the methane is made to a desired high concentration, for example, 5 Oqk or more, and the high concentration heavy carbon methane is An example of the equipment is shown below using $2FQ to Figure 4.

拡散槽(2)とその下方の第2分離槽(8)及び蒸発槽
(ロ)とを一体的にかつ隔壁(至)で区画して形成し、
ガス透過膜(4)により第1区画室(2a)とその下方
の第2区画室(2b)とを拡散槽(2)内に形成し、第
2区画室(2b)から第2分離槽(8)にプロパンガス
を供給する流路α→、及び、蒸発槽(ロ)から第2区画
室(2b)Kプロパンガス全供給する流路(Klに循環
用ファン(15m)、(15b)を設け、そして、上述
のような一体形成した槽の多数(TL)ないしく Tm
)を横方向に並設してちる。
A diffusion tank (2), a second separation tank (8) below it, and an evaporation tank (B) are formed integrally and partitioned by a partition (to),
A first compartment (2a) and a second compartment (2b) below it are formed in the diffusion tank (2) by the gas permeable membrane (4), and the second compartment (2b) is connected to the second separation tank (2). 8), a flow path α→ for supplying propane gas, and a flow path for supplying all K propane gas from the evaporator tank (B) to the second compartment (2b) (a circulation fan (15m), (15b) is connected to Kl). A large number (TL) or Tm of integrally formed tanks as described above are provided.
) are arranged horizontally in parallel.

それら槽(T、)ないしくTm)夫々の上方に第1分離
槽(6)を配置し、第1区画室(2a)と第1分離槽(
5)を管(至)で接続して、メタンガスが上流側の第1
分離槽(5)から下流側の第1区画室(2a)に順次供
給されるよう忙構成しである。
A first separation tank (6) is arranged above each of the tanks (T, ) or Tm), and the first compartment (2a) and the first separation tank (
5) with a pipe (to), and the methane gas is connected to the first pipe on the upstream side.
It is configured so that it is sequentially supplied from the separation tank (5) to the first compartment (2a) on the downstream side.

上流側の第1分離1 (51と下流側の第1区画室(2
a)を流路(7)形成のための管で接続し、メタンガス
を下流側のvJ1区画室(2a)K原料として供給する
ように構成しである。
The first separation chamber 1 (51) on the upstream side and the first compartment chamber (2
a) is connected with a pipe for forming a flow path (7), and methane gas is supplied as a raw material to the vJ1 compartment (2a) on the downstream side.

第2分離槽(8)内の液化プロパンを蒸発槽(ロ)内の
撒布ノズル(17a)に供給するポンプfP)付管路(
至)を設け、第1分離槽(5)内の液化プロパンを蒸発
槽(ロ)内の撒布ノズ?しく17b)に供給する自然流
下式管路(6)を設け、蒸発槽(ロ)でプロパンガスを
生成するように構成しである。
Pipe line (with pump fP) that supplies liquefied propane in the second separation tank (8) to the spray nozzle (17a) in the evaporation tank (B)
) is installed, and the liquefied propane in the first separation tank (5) is transferred to the spray nozzle in the evaporation tank (b). A gravity flow pipe line (6) is provided to supply the fuel to the fuel tank 17b), and the evaporator tank (b) is configured to generate propane gas.

第1分離槽(5)の全てに対して液化天然ガス供して液
化天然ガス供給用管路(9)を貫通し、蒸発槽(ロ)の
全てに対して水供給用管路@を貫通しである。
The liquefied natural gas is supplied to all of the first separation tank (5) and passes through the liquefied natural gas supply pipe (9), and the water supply pipe @ passes through to all of the evaporation tank (b). It is.

最上流側の第2分離槽(8)K接続したメタンガス用管
(樽、及び、最下流側の第1分離槽(6)に接続した流
路(7)形成用管を、各別の回収用がスホルダー(20
a)、(20b)に接続しである。
The methane gas pipe (barrel) connected to the second separation tank (8) K on the most upstream side and the pipe for forming the flow path (7) connected to the first separation tank (6) on the most downstream side are collected separately. Gas holder (20
a) and (20b).

〔別実流側〕[Other actual flow side]

次に、別の実施例を説明する。 Next, another example will be described.

ガス透過膜(4)としては、重炭素メタンよりも重炭素
メタンが優先透過するものであればいかなるものでも利
用できる。
As the gas permeable membrane (4), any membrane can be used as long as it allows heavy carbon methane to permeate preferentially over heavy carbon methane.

濃縮工程を繰返して行う回数は、ガス透過膜(4)の濃
縮性能や所望の重炭素メタン濃度に応じて適当に選定す
ればよく、比較的少い回数から極めて多い回数までの広
範囲において選定できる。
The number of times the concentration step is repeated may be appropriately selected depending on the concentration performance of the gas permeable membrane (4) and the desired concentration of heavy carbon methane, and can be selected within a wide range from a relatively small number of times to an extremely large number of times. .

利用する設備の具体構成や回収したメタンガスの用途は
不問である。
The specific configuration of the equipment used and the purpose of the recovered methane gas do not matter.

第1図は、本発明方法を例示するフローシートである。FIG. 1 is a flow sheet illustrating the method of the present invention.

 第2図ないし第4図は、本発明方法に使用する設備を
例示し、第2図は概略縦断面図、43図は第2図のm−
m矢視図、第4図は第2図のff−IF矢視図である。
2 to 4 illustrate the equipment used in the method of the present invention, FIG. 2 is a schematic vertical sectional view, and FIG.
4 is a view taken along the ff-IF arrow in FIG. 2.

(4)・・・・・・がス透過膜。(4) ... is a suction permeable membrane.

Claims (1)

【特許請求の範囲】[Claims] 液化天然ガスから製造したメタンガスとプロパンガスを
、軽炭素メタンガスが重炭素メタンガスよりも優先透過
するガス透過膜(4)を介して相互拡散させる工程、及
び、その相互拡散工程からのメタンガスを液化天然ガス
で冷却して、メタンガスから液化プロパンを分離する第
1分離工程から成る濃縮工程を、同一メタンガスに対し
て多数回繰返して行い、その濃縮工程夫々において、前
記相互拡散工程からのプロパンガスを液化天然ガスで冷
却して、メタンガスから液化プロパンを分離する第2分
離工程、及び、前記第1及び第2分離工程からの液化プ
ロパンを水で加熱して気化させて、プロパンガスを前記
相互拡散工程に供給するプロパン回収利用工程を行い、
かつ、前記濃縮工程の2段目以降において、前記第2分
離工程からのメタンガスを、前記濃縮工程のうち前段の
ものの前記相互拡散工程に供給するメタン回収利用工程
を行う重炭素メタン濃縮法。
A step in which methane gas and propane gas produced from liquefied natural gas are interdiffused through a gas permeable membrane (4) through which light carbon methane gas permeates more preferentially than heavy carbon methane gas, and the methane gas from the interdiffusion step is transferred to liquefied natural gas. A concentration step consisting of a first separation step of separating liquefied propane from methane gas by cooling with gas is repeated many times for the same methane gas, and in each concentration step, the propane gas from the interdiffusion step is liquefied. a second separation step in which liquefied propane is separated from methane gas by cooling with natural gas; and a second separation step in which liquefied propane from the first and second separation steps is heated with water to vaporize it, and the propane gas is separated from the interdiffusion step. We conduct a propane recovery and utilization process to supply
and a heavy carbon methane concentration method in which, in the second and subsequent stages of the concentration step, a methane recovery and utilization step is performed in which methane gas from the second separation step is supplied to the interdiffusion step in the previous stage of the concentration step.
JP22999484A 1984-10-31 1984-10-31 Concentration of heavy carbon methane Granted JPS61107927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22999484A JPS61107927A (en) 1984-10-31 1984-10-31 Concentration of heavy carbon methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22999484A JPS61107927A (en) 1984-10-31 1984-10-31 Concentration of heavy carbon methane

Publications (2)

Publication Number Publication Date
JPS61107927A true JPS61107927A (en) 1986-05-26
JPH0357806B2 JPH0357806B2 (en) 1991-09-03

Family

ID=16900936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22999484A Granted JPS61107927A (en) 1984-10-31 1984-10-31 Concentration of heavy carbon methane

Country Status (1)

Country Link
JP (1) JPS61107927A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004871A1 (en) * 2002-07-05 2004-01-15 Scatec As Method for separation of isotopes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004871A1 (en) * 2002-07-05 2004-01-15 Scatec As Method for separation of isotopes
JP2005532155A (en) * 2002-07-05 2005-10-27 スカテック エーエス Method for separating isotopes
US7309377B2 (en) 2002-07-05 2007-12-18 Isosilicon As Method for separation of isotopes

Also Published As

Publication number Publication date
JPH0357806B2 (en) 1991-09-03

Similar Documents

Publication Publication Date Title
US3609983A (en) Krypton-xenon recovery system and process
US4053576A (en) System for obtaining hydrogen and oxygen from water using solar energy
US4654063A (en) Process for recovering hydrogen from a multi-component gas stream
US3144313A (en) Difusion purification of gases
US3254496A (en) Natural gas liquefaction process
MXPA05013651A (en) Selective separation o f fluid compounds utilizing a membrane separation process.
US1913805A (en) Process for separating gas mixtures more particularly coke oven gas
EP0677483B1 (en) Process and apparatus for the separation of a gaseous mixture
WO2004085022A1 (en) Purification of fluid compounds utilizing a distillation-membrane separation process
US2089558A (en) Process and apparatus for separating vapors from gaseous mixtures
US3469410A (en) Process and apparatus for the removal of traces of impurities from carbon dioxide
US3886756A (en) Separation of gases
US3740962A (en) Process of and apparatus for the recovery of helium from a natural gas stream
US3363428A (en) Hydrogen recovery with condensate wash in heat exchanger path
EP0968959A1 (en) Process for the production of carbon monoxide
US2214368A (en) Process for the recovery of liquids
JPH0553193B2 (en)
US2975606A (en) Procedure for the vaporization of liquid oxygen which contains hydrocarbons
US2698523A (en) Manufacture of krypton and xenon
US2584785A (en) Process and apparatus for separation of mixtures
US3126267A (en) Separating isotopes of hydrogen
JPS61107927A (en) Concentration of heavy carbon methane
US2548377A (en) Means for producing liquid air rich in oxygen
US2894371A (en) Preventing condensation inside a vortex tube
US3543529A (en) Separation of ammonia synthesis off gas by engine expansion and separation