JPS6110770A - On column gas chromatograph using injector for splitting method - Google Patents

On column gas chromatograph using injector for splitting method

Info

Publication number
JPS6110770A
JPS6110770A JP59129971A JP12997184A JPS6110770A JP S6110770 A JPS6110770 A JP S6110770A JP 59129971 A JP59129971 A JP 59129971A JP 12997184 A JP12997184 A JP 12997184A JP S6110770 A JPS6110770 A JP S6110770A
Authority
JP
Japan
Prior art keywords
capillary
column
sample
tube
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59129971A
Other languages
Japanese (ja)
Inventor
Yuji Takayama
雄二 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59129971A priority Critical patent/JPS6110770A/en
Publication of JPS6110770A publication Critical patent/JPS6110770A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • G01N30/18Injection using a septum or microsyringe

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To enable measurement for capillary on column gas chromatogram, by operation of an injector and a sample injection for on column injection of a sample when measurement is done for capillary gas chromatogram by splitting method. CONSTITUTION:A carrier gas reaches a detector 7 passing through a metal tubulet 5 and a capillary column 6 from a sample introduction section 4 with a septum rubber 3 via a flowrate adjusting valve 1 and a carrier gas feed tube 2. Moreover, the tubulet 5 is covered with an Empire tube 8 and enters a tank piercing an insulation wall 10 of the heating tank 9 housed in the column 6 and connected to the column 6 at a connection 11. On the other hand, lead wires 13 and 14 successive to a transformer 12 are mounted to the tubulet 5 for heating by energization and either thereof is selected with a changeover switch 16. Then, this sample is injected with an injector into the tubulet 5, which is heated. Then, upon the end of solvent peaking, the heating tank 9 is raised in the temperature to obtain a chromatograph.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はキャピラリーオンカラムガスクロマトグラムの
測定法に関する。更に詳しくはスプリット法キャビラリ
ーガスクpマドグラム測定時の注射器と試料注入操作に
より、試料をオンカラム注入してクーマドグラムを得る
実用上極めて有用なガスクルマドグラムの測定法に関す
る。 キャピラリーオンカラムガスクルマドグラフ法は、従来
から最も広く行われてきたキャピラリースプリット法ガ
スクロマトグラフ法に対し、得られたデーグーの精度、
正確性においてすぐれている。しかしながらキャピラリ
ーオンカラム法を実施するには、外径0.27 tax
程度で且つ80.以上の長さを付した注射器を使用する
ことに伴う、例えば注射器内への試料の吸いこみが不良
になりやすい、該注射針はそのままではセプタムゴムを
直接貫通できないので、試料導入部には特別な工夫が必
要′である。試料導入操作時に系外にキャリアーガスが
放出される等の欠点がある。本発明者はそれらの欠点を
さげたキャピラリーオンカラムガスクロマトグラムの測
定法を鋭意追究し本発明方法を考案するに至った。すな
わち本発明方法によると、試料の注入はスプリット法に
用いた注射器をもって、キャピラリーカラムの頭に接続
した原則として液相を塗っていない細管に試料をオンカ
ラム注入することにより行う。本発明方法の利点は、従
来のオンカラム法にともなう前記の諸欠点を克服できる
ばかりではなく、試料中の蒸発残渣の存在によるクロマ
トグラムへの影響を克服することができる。次に本発明
方法を考案するに至りた考え方についてのべる。 内径0.25m乃至0.35 mmのキャピラリーカラ
ムの頭にケイ酸質の内径0.32m乃至0.35mの液
相な塗っていない所謂空力ラムを存在せしめ、その空力
ラムに外径0.27mの針を付した注射器を用いてオン
カラム注入することは公知である。 この場合空力ラムに注入された試料は一度気化して液相
を塗ったキャピラリーカラムに到達すると、試料中の溶
媒は液相に吸収されるので一時的であるが液相の厚味が
増大し、はじめにそこに達した溶質の前進はきわめてお
そくなる。それで空力ラムにおける注入の終りの方の試
料は前に液相を塗りたキャピラリーカラムに到達してい
る試料に追いつき、その結果キャピラリーカラムの入口
における試料、の存在中すなわち試料帯はある程度せま
くなる。さらに試料帯の5しろ部分においては、キャリ
アーガス中に飽和になるまで溶媒は溶けこみ前進し、試
料帯の先ぎの所で液相に吸収されて液相膜の厚味を一時
的に増大させ、溶媒が去ったあとの溶質は前進してその
前の溶質と合体する。 これをくりかえして行う溶媒効果による濃縮により、恰
も試料を巾せまくキャピラリーカラムの頭に注入したよ
うになり、兄事なオンカラムガスクロマトグラムが画か
れるというのがオンカラム法の主要原理である。内径0
.28 +ma長さ50.mの0v−1塗布キヤピラリ
ーカラムの頭に内径0.36簡の未処理ガラス製空力ラ
ムをつげ、その長さを1mから10mの範囲にわたり種
々変化させ、試料注入量についても10〜100μtの
間で変化させ、他の測定諸条件も一定になし、n−パラ
フィンC29とC30の間の分離数(Trsnzhal
 Number、 C2gとC3oの間にその中間的な
ピーク巾を有する三角形が何本人りうるかを示す数値)
を調べた所、試料の注入量が正常なピーク形状を示す限
り分離数は試料注入量によらず空力ラムの長さにより定
まり、長さが長くなる程、ひくい値になることが判明し
た。また試料の注入を短時間で行っても1分根かげて行
っても分離数は変らなかった。これらの事実から液相を
塗付したキャピラリーカラムにおいては溶媒効果はある
ものの、空力ラムが長いとその内壁についた試料がそれ
から脱着してキャピラリーカラムに到達するまでに時間
がかかり。 その間に溶質がキャピラリーカラム中を前進し、試料帯
の長が大きくなり、充分溶媒効果が発揮されないうちに
、溶媒は溶質を残して前進してしまい、その結果分離数
はさがるものと推定された。 また空力ラムの内壁を所謂D4(オクタメチルテトラサ
イクロシロキサン)処理による不活性化を行った所、未
処理空力ラム使用の場合に比゛ぺ分離数はさらに低下し
た。このことはn−パラフィンが空力ラム内壁上に存在
するシロキサンの極薄膜に溶解し、空力ラムを通過する
のに時間を要したためと思われた。そこで、オンカラム
法で良いクロマトグラムをうるには〔1〕試料中の溶質
の空力ラム中の移動な早<L、(2)キャピラリーカラ
ム中の初期の試料帯の移動をおそくすればよく、空力う
人中で試料蒸気が乱流にならない限り、空力ラムのデッ
ドスペースにとられれる必要はないと思考するに至った
。それを具体的に実験して本発明方法を考案した。 本発明方法に用いるキャピラリーカラムは通常のスプリ
ット法もしくはオンカラム法に用いるカラムと特に変っ
た点はなく、内径0.2 m乃至0,3511111が
普通である。キャピラリーカラムによる分離段数は理論
的にはその内径に反比例するので、分離段数を上げるた
めに、内径の小さな例へば0」謹乃至0.05mmのも
のを使用するとピークのうしろの裾はひろがる傾向にあ
るが、それらは許容される程度であることが多い。塗付
せる液相の膜厚は上記〔2〕を可及的実現するためには
0.3μm以上であることが好ましく、あまり厚くなる
と高沸点溶質の保持時間が過大になるので、その観点か
らは0.6μm以下が最も一般的な膜厚である。低沸点
試料の場合にはさらに膜厚な3μm位まで増すこともあ
る。液相膜は架橋して膜の形状安定性を増しておくこと
も通常のオンカラム法同様好ましいことである。キャピ
ラリーカラムの材質はガラス、熔融石英、低吸着性ステ
ンレス(例えば日本クロマト工業製RAS)或いは対象
試料によっては未処理ステンレスであってもよい。しか
し空力ラムをキャピラリーカラムの頭に接続する、操作
の容易さからするとガラスは他の可撓性材料に比べ劣る
。その場合にはガラスキャピラリーカラムの末端に中間
補助キャピラリーとして適宜細の可撓性キャピラリーの
短いものを熱収縮テフロンパイプを用いる等の既知の方
法(K、Grob+Jr、and R−M’uller
 、J、Chromatogr 、 e244(i98
2)185. )で接続し
The present invention relates to a method for measuring capillary on-column gas chromatograms. More specifically, the present invention relates to a method for measuring a gas chromatogram which is extremely useful in practice, in which a sample is injected on-column using a syringe and a sample injection operation when measuring a gas chromatogram using the split method. The capillary on-column gas chromatographic method has superior precision and
Excellent accuracy. However, in order to implement the capillary on-column method, the outer diameter is 0.27 tax
and 80. When using a syringe with a longer length, for example, the sample may not be aspirated into the syringe easily.The syringe needle cannot directly penetrate the septum rubber as it is, so a special sample introduction part is required. Some innovation is needed. There are drawbacks such as carrier gas being released outside the system during the sample introduction operation. The present inventor has diligently pursued a capillary on-column gas chromatogram measurement method that overcomes these drawbacks, and has devised the method of the present invention. That is, according to the method of the present invention, the sample is injected on-column using the syringe used in the split method into a thin tube connected to the head of the capillary column and, in principle, not coated with a liquid phase. The advantage of the method of the present invention is that it not only overcomes the above-mentioned drawbacks associated with conventional on-column methods, but also overcomes the influence on the chromatogram due to the presence of evaporation residues in the sample. Next, the idea that led to the devising of the method of the present invention will be described. At the head of a capillary column with an internal diameter of 0.25 m to 0.35 mm, a so-called aerodynamic ram made of silicic acid and having an internal diameter of 0.32 m to 0.35 m and not coated with liquid phase is provided. On-column injection using a syringe with a needle is known. In this case, once the sample injected into the aerodynamic ram is vaporized and reaches the capillary column coated with a liquid phase, the solvent in the sample is absorbed by the liquid phase, which temporarily increases the thickness of the liquid phase. The advance of the solute that first reaches it is extremely slow. The sample towards the end of the injection in the aerodynamic ram then catches up with the sample reaching the capillary column previously coated with the liquid phase, so that during the presence of the sample at the entrance of the capillary column, the sample band becomes narrower to some extent. Furthermore, at the 5th edge of the sample zone, the solvent dissolves into the carrier gas until it becomes saturated and advances, and at the tip of the sample zone it is absorbed by the liquid phase, temporarily increasing the thickness of the liquid phase film. , the solute after the solvent leaves moves forward and combines with the solute before it. The main principle of the on-column method is that by repeating this process and concentrating the sample through the solvent effect, it becomes as if the sample was injected into the head of a wide capillary column, creating a well-known on-column gas chromatogram. Inner diameter 0
.. 28 + ma length 50. An untreated glass aerodynamic ram with an inner diameter of 0.36 mm was attached to the head of a 0v-1 coated capillary column, and its length was varied from 1 m to 10 m, and the sample injection amount was varied from 10 to 100 μt. The number of separations between n-paraffins C29 and C30 (Trsnzhal
Number, a numerical value indicating how many triangles with an intermediate peak width can exist between C2g and C3o)
It was found that as long as the amount of sample injected shows a normal peak shape, the number of separations is determined by the length of the aerodynamic ram regardless of the amount of sample injected, and the longer the length, the lower the value becomes. Moreover, the number of separations did not change even if the sample was injected for a short time or the roots were hidden for 1 minute. From these facts, although there is a solvent effect in a capillary column coated with a liquid phase, if the aerodynamic ram is long, it takes time for the sample attached to the inner wall to desorb and reach the capillary column. During this time, the solute advances through the capillary column, increasing the length of the sample band, and before the solvent effect is fully exerted, the solvent moves forward, leaving the solute behind, and as a result, it is estimated that the number of separations decreases. Furthermore, when the inner wall of the aerodynamic ram was inactivated by so-called D4 (octamethyltetracyclosiloxane) treatment, the separation number was further reduced compared to when an untreated aerodynamic ram was used. This was thought to be because the n-paraffin dissolved in the extremely thin film of siloxane present on the inner wall of the aerodynamic ram and took time to pass through the aerodynamic ram. Therefore, in order to obtain a good chromatogram using the on-column method, it is sufficient to (1) slow the movement of the solute in the sample in the aerodynamic ram <L, and (2) slow down the movement of the initial sample band in the capillary column. I came to the conclusion that as long as the sample vapor does not become turbulent inside the person, there is no need to use it in the dead space of the aerodynamic ram. The method of the present invention was devised through specific experiments. The capillary column used in the method of the present invention is not particularly different from columns used in ordinary split methods or on-column methods, and usually has an inner diameter of 0.2 m to 0.3511111 mm. The number of separation stages in a capillary column is theoretically inversely proportional to its internal diameter, so if you use a capillary column with a small internal diameter of 0" to 0.05 mm to increase the number of separation stages, the tail behind the peak will tend to widen. However, they are often tolerable. The thickness of the liquid phase to be applied is preferably 0.3 μm or more in order to achieve the above [2] as much as possible. If it is too thick, the retention time of the high boiling point solute will become excessive, so from that point of view The most common film thickness is 0.6 μm or less. In the case of a low boiling point sample, the film thickness may even increase to about 3 μm. As with the usual on-column method, it is also preferable to crosslink the liquid phase membrane to increase the shape stability of the membrane. The material of the capillary column may be glass, fused silica, low adsorption stainless steel (for example, RAS manufactured by Nippon Chromato Industries), or untreated stainless steel depending on the target sample. However, glass is inferior to other flexible materials when it comes to the ease of manipulation of connecting an aerodynamic ram to the head of a capillary column. In that case, a known method such as using a heat-shrinkable Teflon pipe with a short flexible capillary as an intermediate auxiliary capillary at the end of a glass capillary column (K, Grob+Jr, and R-M'uller)
, J, Chromatogr, e244(i98
2) 185. ) to connect

【おくとよい。この場合その
可撓性キャピラリーの短片の内壁上には液相はあっても
なくて(よい(以下キャピラリーカラムの頭とはガラス
キャピラリーカラムにおいては特にことわる場合の他、
中間補助キャピラリーが付しであるものの頭の意である
)。空力ラムは通常のスプリット法用注射器の針が挿入
できる内径を肴することを要する。スプリット法用注射
針の最も細いものの外径は0.4籠であるので、空力ラ
ムの内径は最小限0.5 mは必要である。しかし普通
には内径Imの空力ラムが針挿入の容易さから好まれる
。空力ラムの内径をそれ以上大きくして行っても何の利
点も見出せず、2日以上になるとそれに接続されるキャ
ピラリーの内径、キャリアーガスの線速度等の操作条件
にもよるがピークの裾の形状悪化が目立っときもあり、
また太くて扱いにくくなるので魅力はない。この空力ラ
ムは試料をオンカラム注入した直後に急速に100乃至
300℃程度に加熱して前。 記〔1〕を実現する。そのために空力ラムは通電加熱で
きる金属細管であることを要す。その長さは試料注入量
と空力ラムの内径によって左右されるが、5μを以下の
注入量であるならば1m程度を目安とすることができる
。金属細管の内壁は不活性であることを要する。市販の
低吸着性ステンレスキャピラリー(例えば日本クロマト
工業製RAS)の他にグラスライニングステンレスキャ
ピラリーもその内径を通常のガラスキャピラリーの失活
処理と同じように処理すれば可成り低吸着性になし使用
し5る場合もある。その曲げ加工はそれらの失活処理の
前に行っておくを要し、円形に巻くことは困難であるの
で、503程度以上の長さで使用することはむずかしい
。これらの他に内径0、5 yen以上の熔融石英キャ
ピラリーを内挿した金属細管を使用する方法もある(以
下金属細管とは特に明示する他、グラスライング及び熔
融石英キャピラリー内挿形のものも含む)。金属細管の
内壁に液相な存在せしめることは未処理活性内壁の活性
低下という点については利点はあるが、前記〔1〕の実
現については不利な方向である。そこでこのような場合
には液相の存在量をできるだけ少なくすると共にその昇
温加熱は特に急速に高くする必要がある。金属キャピラ
リーチューブ゛の形状は太さ一定であるのが普通である
。しかし注射針の挿入される部分のみ栓内径0.5.以
上になし、それ以降は適宜細くするということも考えら
れるが、それによる利点は特にない。 キャピラリーカラムの頭と金属細管の尾の接続は熱収縮
テアランパイプを用いる等の既知の方法、或いは金属キ
ャピラリーもしくは熔融石英キャピラリーの連結方法と
して知られている接続用具を用いて袋ナツト或いは押込
形ねじにより接続を行う。金属細管には保温の目的で、
試料注入点以降はキャピラリーカラムとの接続ケ所の所
まで、ガラス製エンバイヤーチューブをかぶせる。それ
から金属細管の頭を試料導入部属接続する。試料導入部
の構造はスプリット法の試料注入蒸発部の蒸発部がない
構造と同じであって、試料はセプタムゴムを貫通し、て
オンカラム注入される。キャピラリーカラムはガスクロ
マトグラフの加熱槽内に設置されその末端は検出器に接
続され、他の端はガラス製エンバイヤーチューブをかぶ
せた金属細管に接続されているが、金属細管は必ずしも
全部が加熱槽内にあるを要せず、頭から20乃至60c
rn位は加熱槽の断熱壁を貫通させてその外部に出し、
適宜加熱槽とは全く別に設けた試料導入部と接続しても
よい。むしろこの方がコールドオンカラム注入法を実施
しやすい利点がある。 キャピラリーカラムの初期温度は通常のオンカラム法の
場合と同じく、試料中の溶媒の沸点±20℃程度である
が、前記の〔2〕を強くしてピークの裾の形状をよくす
るには初期温度は沸点−20’C位が良い。その時の金
属細管の初期温度は、コールドオンカラム法では注射針
が到達する点より以降の所は大略カラムの初期温度でよ
い。ホットオンカラム法では溶媒の沸点+20’C位圧
する。キャリアーガスの流速は全く通常のオンカラム法
もしくはスプリット法と同じく20乃至60ω/秒の線
速度になるようKする。試料はセプタムゴムを通してス
プリット法の場合と全く同じようにオンカラム注入され
る。その直後金属細管は全体を急速に100乃至300
℃程度に昇温させて、前記の〔1〕が確実に行われるこ
とを計る。そして数分後その温度をさげてよい。この記
述かられかるように、試料中に蒸発残渣が存在し、それ
が金属細管の内壁上に付着していたとしても、急速加熱
をするので揮発成分は蒸発残渣から分離し、キャピラリ
ーカラムに短時間で送りこまれる。そして金属細管の内
径が0.5順以上であることは、蒸発残渣の蓄積に対し
ても、試料導入部のキャリアルガスの圧が異常IC高ま
ることがおぎにくく、本発明方法はまた蒸発残渣を含有
する試料のオンカラム法としても光来のオンカラム法に
比べすぐれた方法である。試料注入後のキャピラリーカ
ラムの温度は試料によりてはカラムの初期温度のまま保
持する恒温法でもよいが、普通は1乃至10℃/分の速
度で昇温させる。昇温開始の時期は試料注入直後でもよ
いが、充分溶媒効果を発揮させるよう溶媒ピークがほぼ
終った時点とする方がよい。この点は従来のオンカラム
法k特に変る点はない。 従来のオンカラム法から考えから、単に空力ラムの径を
大きくした場合には、空力ラムの内壁の表面積が大きく
なる他にその残存活性作用も大きくなり、前記〔1〕が
充分には行われない。その結果特に高沸点溶質、吸着さ
れやすい溶質に対してはピークの巾が拡るかもしくはピ
ーク裾が尾を引き、ピークが良好な姿にならない。また
溶質と親和性のある蒸発残渣を含む試料に対しても同じ
よ5な不都合が認められ、その上クーマドグラムの再現
性もよくない。試料注入直後に急速加熱することは前記
〔1〕の実現に必要なことである。この急速加熱は常温
から300℃到達まで10秒乃至30秒以内であること
がのぞましい。それを実現できる方法であれば如何なる
方法でもよいのであるが、通電加熱が簡単な方法である
と思考されたので、本発明方法はそれに限定した。通電
にともなうガスクロマトグラフの他の部分との電気的絶
縁は簡単な知識で実施でき、また通電加熱の電源は一次
側、二次側が夫々独立であるトランスを使用するならば
、特に電気的に絶縁を工夫する必要はない。金属細管の
急速加熱区間の設定は該細管にと9つげる端子の位置に
よりかり自由に変えられ、且つ熱容量の小さいことも特
にコール下オンカラム実施、その直後に金属細管全長に
わたる昇温、冷却を容易に可能にしている。 本発明の理解を更に容易にするために下記の実施例によ
って本発明を具体的に説明する。 実施例1 第1図は本発明方法を実施するのに便なるようになした
キャピラリーオンカラムガスクロマトグラフの構成を示
した図である。キャリアーガスは流量調節弁(1)、キ
ャリアーガス供給管(2)を経て、セプタムゴム(3)
を付した試料導入部(4)から金属細管(5)、キャピ
ラリーカラム(6)を通り検出器(7)に至る。金属細
管(5)Kはガラス繊維製エンバイヤチュ−ズ(8)が
かぶせてあり、それはキャピラリーカラム(6)を収め
た加熱槽(9)の断熱壁(LOを貫通して該槽内に入り
、キャピラリーカラム(6)と接続部組1で接続されて
いる。また金属細管には通電加熱のためにトランスa2
につらなるリード線0住4及び1自がつけられており、
リード線(14、tElは切換スウィッチ鉦eでその何
れかがえらべるよ5になり℃いる。 この実施例は次の諸条件で行われた。金属細管(5)は
RASloo(日本タロマト工業製、低吸着性ステンレ
ス細管内径11!j11外径2m)60a++であり、
キャピラリーカラム(6)は内径0.25 rran、
外径i、 o mm 、長さ15mの市販ステンレスキ
ャピラリーに液相として5E−so(ポリメチルシルキ
サン)をダイナミック法で塗付したものである。接続部
0は熱収縮テフロンパイプを用いた。キャリアーガス窒
素を流量調節弁(1)で調節して線速度を60cm/秒
になし、加熱槽(9)の初期温度を60℃になし、金属
細管(5)はリード線taと(14の間に電流を通じ7
0℃に調節した。試料はn−パラフィンC121C14
1C169C1B及びC9をほぼ等景況合し、それをn
−へキサンで5万倍にうすめたものを用いた。この試料
3μl を針の外径o、155m+を付した注射器を使
用してセプタムゴムを通じ金属細管(5)に注入し、直
ちに切換スウィッチ叡0をリード線(14から10に切
換、金属細管(5)を15秒間で250℃に加熱し、溶
媒ピークがほば終った所で加熱槽(9)を4℃/分の割
で昇温させた。得られたクロマトグラフを第2図に示し
た。図においてピーk Bは溶媒に基づくピークであり
、ピーク(8,甑’) 、 90 。 ea及び(2)は夫々CCCC及びC2oによ121 
  14’    161  18るピークである。ピ
ークの裾の形状は第2図からみるように良好な状態であ
った。 実施例2 第3図は本発明方法を実施し5るキャピラリーオンカラ
ムガスクロマトグラフの構成を示した図である。第3図
はガラスキャピラリーカラム(6)K中間補助キャピラ
リー(至)を接続部(財)をもりて連結したこと、金属
細管(5)が加熱槽(9)に収容されていること及びリ
ード線番jが中間補助キャピラリー(2)につげられて
いることをのぞけば、第1図と変らない。 この実施例は次の諸条件で行われた。金属細管(5)は
内径0.5 was、外径1.5 m内壁グラスライニ
ングステンレス管であって、酸洗滌、−シリル化処理に
より吸着性を低下させたもので長さは15傭である。キ
ャピラリーカラム(6)は内径0.1調、外径0、8 
ta 、長さ15m、0V−1を厚さ0.3−μm に
塗付したガラスキャピラリーカラムである。中間補助キ
ャピラリー(2)はRAS25(日本クロマト工業製低
吸着性ステンレスキャピラリー、内径0.2511II
+1.外径0.6問)で長さは10個である。その一端
はキャピラリーカラム(6)と熱収縮テフロンパイプを
もって連結されて接続部@を、他端は両端が袋ナツトで
あるパイプ接続用具により金属細管(5)と接続され接
続部■を形成している。 キャリアーガス窒素の線速度を30の7秒になし、加熱
槽(9)の初期温度を60℃になし、金属細管(5)に
はリード線0と1!3の間にトランス會りから電流を流
せる用意をした。試料は2.6キシリジン、2,6キシ
レノール、n−デカノール、n−パラフィンC131C
14及びC17のはぼ等景況合物をn−へキサン溶媒で
約5万倍に5すめたものである。 この試料を外径0.4 m、長さ】25Iの針をつげた
注射器を用いてセプタムゴム(3)を通じて金属細管(
5)の内壁上試料導入部(4)の背後から113の所に
0゜3μを注入し、その直後リード線telと■の間に
電流を流し10秒間で金属細管(5)の温度を200℃
になした。試料注入してから3.5分後、溶媒ピークが
ほぼ出現し終ったので加熱槽(9)の温度を4℃/分の
割で上昇させ、金属細管(5)の加熱を中止した。 得られたクロマトグラムを第4図に示す、図中ピーク(
ハ)、翰、1.@、@、@、cm、c3nは夫々溶媒で
あるn−へキサン、溶質である2、6−キシリジン、2
.6−キシレノール、n−デカノール、n−パラフィン
C131C14及びC17に基づくピークである。 第4図においては各ピークの裾に尾引きが認められる。 n−パラフィン類によるピーク(29,30゜31)も
n−デカノールによるピーク(至)と同じく尾引きをし
ていることから、これらの尾引きは金属細管(5)、キ
ャピラリーカラム(6)等の試料の流路中における化学
吸着に基づくものではなく、金属細管(5)とキャピラ
リーカラム(6)の接続部(11、u )の所でおきて
いるであろう物理的な原因によるものと推定される。し
かし充分有用なり−マドグラムが得られた。 以上瞳側をあげて説明したように1本発明方法は通常使
用されているスプリット法用の注射器を使用して、スプ
リット法と同じくセプタムゴムを通して試料をオンカラ
ム注入し、クロマドグラムを5る方法を提供するもので
ある。上記瞳側の他に本発明の精神の範囲内で種々の変
更、改良が考えられるが、それらは何れも本発明に含ま
れるものである。
[It's a good idea to keep it. In this case, there may or may not be a liquid phase on the inner wall of the short piece of the flexible capillary.
(It means the head of something that has an intermediate auxiliary capillary attached.) The aerodynamic ram requires an internal diameter that allows insertion of a conventional split method syringe needle. Since the outer diameter of the smallest split method injection needle is 0.4 cage, the inner diameter of the aerodynamic ram must be at least 0.5 m. However, an aerodynamic ram with an inner diameter Im is usually preferred for ease of needle insertion. Even if the inner diameter of the aerodynamic ram is made larger than that, no advantage can be found, and after two days or more, depending on the operating conditions such as the inner diameter of the capillary connected to it and the linear velocity of the carrier gas, the tail of the peak may become smaller. There are times when the deterioration of the shape is noticeable,
It is also unattractive because it is thick and difficult to handle. Immediately after injecting the sample on-column, this aerodynamic ram rapidly heats it to about 100 to 300°C. Realize [1]. For this purpose, the aerodynamic ram must be a thin metal tube that can be heated with electricity. The length depends on the amount of sample injected and the inner diameter of the aerodynamic ram, but if the amount of injection is less than 5μ, it can be approximately 1 m. The inner wall of the metal capillary is required to be inert. In addition to commercially available low-adsorption stainless steel capillaries (for example, RAS manufactured by Nippon Chromato Industries), glass-lined stainless steel capillaries can also be used without significantly low adsorption if the inner diameter is treated in the same way as the deactivation treatment of ordinary glass capillaries. In some cases, there may be 5. The bending process must be carried out before the deactivation process, and it is difficult to wind it into a circle, so it is difficult to use it in lengths of about 503 or more. In addition to these methods, there is also a method of using a metal capillary in which a fused silica capillary with an inner diameter of 0.5 yen or more is inserted (hereinafter, "metal capillary" is not particularly specified, but also includes glass-lined and fused silica capillaries inserted). ). Although having a liquid phase exist on the inner wall of the metal capillary tube has an advantage in terms of reducing the activity of the untreated active inner wall, it is disadvantageous in realizing the above-mentioned [1]. Therefore, in such a case, it is necessary to reduce the amount of the liquid phase as much as possible and to raise the temperature particularly rapidly. The shape of a metal capillary tube is usually constant in thickness. However, only the part where the injection needle is inserted has an inner diameter of 0.5. It is conceivable to do nothing above and then make it thinner as appropriate, but there is no particular advantage to doing so. The head of the capillary column and the tail of the metal capillary can be connected by a known method such as using a heat-shrinkable tear run pipe, or by using a connection tool known as a method for connecting metal capillaries or fused silica capillaries with a cap nut or push-in screw. I do. For the purpose of heat retention, the metal tube is
After the sample injection point, cover the tube with a glass employer tube up to the point where it connects to the capillary column. Then connect the head of the metal capillary to the sample introduction part. The structure of the sample introduction section is the same as the sample injection evaporation section of the split method without the evaporation section, and the sample passes through the septum rubber and is injected on-column. The capillary column is installed in the heating tank of the gas chromatograph, and its end is connected to the detector, and the other end is connected to a metal capillary tube covered with a glass employer tube, but the metal capillary column is not necessarily entirely inside the heating tank. 20 to 60cm from head
The rn position is passed through the heat insulating wall of the heating tank and taken out to the outside.
It may be connected to a sample introduction part provided completely separately from the heating tank as appropriate. Rather, this method has the advantage that cold on-column injection is easier to implement. The initial temperature of the capillary column is the same as in the case of the normal on-column method, which is about ±20℃ of the boiling point of the solvent in the sample, but in order to strengthen [2] above and improve the shape of the peak tail, the initial temperature should be A boiling point of around -20'C is good. In the cold-on-column method, the initial temperature of the metal capillary at that time may be approximately the initial temperature of the column from the point where the injection needle reaches. In the hot on-column method, the pressure is increased to 20'C above the boiling point of the solvent. The flow rate of the carrier gas is adjusted to a linear velocity of 20 to 60 ω/sec, which is the same as in the conventional on-column method or split method. The sample is injected on-column through the septum rubber just as in the split method. Immediately after that, the metal capillary rapidly changes its size from 100 to 300.
Raise the temperature to about ℃ and make sure that the above [1] is carried out reliably. The temperature may then be lowered after a few minutes. As can be seen from this description, even if there is evaporation residue in the sample and it adheres to the inner wall of the metal capillary, rapid heating will separate the volatile components from the evaporation residue and leave it in the capillary column for a short time. It is sent in. Since the inner diameter of the metal capillary is 0.5 or more, it is difficult for the pressure of the carrier gas in the sample introduction part to increase abnormally IC even when evaporation residue accumulates, and the method of the present invention also reduces evaporation residue. This method is superior to Korai's on-column method as an on-column method for samples containing . The temperature of the capillary column after sample injection may be maintained at the initial temperature of the column, depending on the sample, by a constant temperature method, but usually the temperature is increased at a rate of 1 to 10° C./min. The temperature may be started immediately after the sample is injected, but it is better to start the temperature increase when the solvent peak is almost over so that the solvent effect can be sufficiently exerted. There is no particular difference in this point from the conventional on-column method. From the perspective of the conventional on-column method, if the diameter of the aerodynamic ram is simply increased, the surface area of the inner wall of the aerodynamic ram will increase, and its residual activation effect will also increase, and the above [1] will not be achieved satisfactorily. . As a result, especially for high boiling point solutes and solutes that are easily adsorbed, the width of the peak becomes wider or the tail of the peak becomes tailed, and the peak does not have a good shape. Furthermore, similar disadvantages are observed for samples containing evaporation residues that have an affinity for solutes, and furthermore, the reproducibility of coomadograms is also poor. Rapid heating immediately after sample injection is necessary to achieve the above-mentioned [1]. This rapid heating is preferably carried out from room temperature to 300° C. within 10 to 30 seconds. Any method may be used as long as it can achieve this, but since electrical heating was considered to be a simple method, the method of the present invention was limited to that method. Electrical isolation from other parts of the gas chromatograph when electricity is applied can be achieved with simple knowledge, and if a transformer with independent primary and secondary sides is used as the power source for electricity heating, electrical insulation is especially important. There is no need to devise a method. The setting of the rapid heating section of the metal tube can be freely changed depending on the position of the terminal connected to the tube, and the small heat capacity makes it easy to carry out on-column heating under coal, and immediately raise and cool the temperature over the entire length of the metal tube. It is possible to In order to further facilitate the understanding of the present invention, the present invention will be specifically explained with reference to the following examples. Example 1 FIG. 1 is a diagram showing the configuration of a capillary on-column gas chromatograph that is convenient for carrying out the method of the present invention. The carrier gas passes through the flow rate control valve (1), the carrier gas supply pipe (2), and the septum rubber (3).
The sample passes from the sample introduction part (4) marked with a metal tube (5) and capillary column (6) to the detector (7). The metal capillary tube (5) K is covered with a glass fiber envelope tube (8), which penetrates the heat insulating wall (LO) of the heating tank (9) containing the capillary column (6) and enters the tank. (6) is connected to the connecting part set 1. Also, the metal thin tube is connected to the transformer a2 for heating with electricity.
Lead wires 0, 4 and 1 are attached,
The lead wire (14, tEl can be selected by the switch e) and the temperature is 5°C. This example was conducted under the following conditions. The metal tube (5) is RASloo (manufactured by Nippon Taromato Industries, Low adsorption stainless steel capillary inner diameter 11!j11 outer diameter 2m) 60a++,
The capillary column (6) has an inner diameter of 0.25 rran,
A commercially available stainless steel capillary with an outer diameter of i, o mm and a length of 15 m was coated with 5E-so (polymethylsiloxane) as a liquid phase by a dynamic method. For connection part 0, a heat-shrinkable Teflon pipe was used. The carrier gas nitrogen is adjusted with the flow control valve (1) to set the linear velocity to 60 cm/sec, the initial temperature of the heating tank (9) is set to 60°C, and the metal capillary tube (5) is connected to the lead wire ta and (14). Pass a current between 7
The temperature was adjusted to 0°C. The sample is n-paraffin C121C14
1C169C1B and C9 are almost equally matched, and it is n
- A solution diluted 50,000 times with hexane was used. Inject 3 μl of this sample into the metal capillary tube (5) through the septum rubber using a syringe with a needle with an outer diameter of o and 155 m+, and immediately switch the switch 0 to the lead wire (from 14 to 10) and insert the metal capillary tube (5). was heated to 250° C. for 15 seconds, and when the solvent peak had almost ended, the temperature of the heating tank (9) was raised at a rate of 4° C./min. The resulting chromatograph is shown in FIG. In the figure, peak kB is a peak based on the solvent, and peaks (8, Koshiki'), 90.ea and (2) are 121 due to CCCC and C2o, respectively.
14' 161 18 peak. The shape of the tail of the peak was in good condition as seen in FIG. Example 2 FIG. 3 is a diagram showing the configuration of a capillary on-column gas chromatograph for carrying out the method of the present invention. Figure 3 shows that the glass capillary column (6) K intermediate auxiliary capillary (to) is connected with the connection part (material), the metal capillary tube (5) is housed in the heating tank (9), and the lead wire number. It is the same as in Figure 1, except that j is connected to the intermediate auxiliary capillary (2). This example was conducted under the following conditions. The metal tube (5) is a stainless steel tube with an inner wall of glass lining and an inner diameter of 0.5 was and an outer diameter of 1.5 m, which has been subjected to acid washing and -silylation treatment to reduce adsorption properties, and has a length of 15 mm. . The capillary column (6) has an inner diameter of 0.1 and an outer diameter of 0.8.
It is a glass capillary column with a length of 15 m and coated with 0V-1 to a thickness of 0.3-μm. The intermediate auxiliary capillary (2) is RAS25 (low adsorption stainless steel capillary manufactured by Nippon Chromato Industries, inner diameter 0.2511II)
+1. The outer diameter is 0.6 pieces) and the length is 10 pieces. One end is connected to the capillary column (6) using a heat-shrinkable Teflon pipe to form a connection part @, and the other end is connected to a metal capillary tube (5) using a pipe connection tool with cap nuts at both ends to form a connection part ■. . The linear velocity of the carrier gas nitrogen was set to 30.7 seconds, the initial temperature of the heating tank (9) was set to 60°C, and a current was applied to the metal tube (5) from the transformer connection between lead wires 0 and 1!3. I prepared for the flow. Samples are 2.6 xylidine, 2,6 xylenol, n-decanol, n-paraffin C131C
14 and C17 are diluted approximately 50,000 times with n-hexane solvent. This sample was passed through the septum rubber (3) using a syringe with an outer diameter of 0.4 m and a length of 25I needle attached to the metal capillary tube (
5) Inject 0°3μ from behind the sample introduction part (4) on the inner wall at point 113, and immediately after that, apply a current between the lead wire tel and ℃
I did it. 3.5 minutes after the sample was injected, the solvent peak had almost finished appearing, so the temperature of the heating tank (9) was increased at a rate of 4° C./min, and heating of the metal capillary tube (5) was stopped. The obtained chromatogram is shown in Figure 4, where the peaks (
C), Kan, 1. @, @, @, cm, and c3n are the solvent n-hexane, the solute 2,6-xylidine, and 2, respectively.
.. These are peaks based on 6-xylenol, n-decanol, n-paraffins C131C14 and C17. In FIG. 4, trailing can be seen at the tail of each peak. The peaks due to n-paraffins (29, 30°31) also have tails like the peaks due to n-decanol (to), so these tails are caused by metal tubes (5), capillary columns (6), etc. It is assumed that this is not due to chemical adsorption in the sample flow path, but is due to a physical cause that may occur at the connection point (11, u) between the metal tube (5) and the capillary column (6). Ru. But a sufficiently useful - madogram was obtained. As explained above from the pupil side, the method of the present invention uses a commonly used syringe for the split method, injects the sample on-column through the septum rubber in the same way as the split method, and provides a method to obtain a chromatogram. It is something. In addition to the above-mentioned pupil side, various changes and improvements can be made within the scope of the spirit of the present invention, but all of them are included in the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は本発明方法を実施するに便なるよう
に用意されたキャピラリーオンカラムガスクロマトグラ
フの構成図である。第2図及び第4図は本発明方法を実
施してえられたりpマドグラムの例である。 1・・・流量調節弁、2・・・キャリアーガス供給管、
3・・・セプタムゴム、4・・・試料導入部、5°゛金
属細管、6・・・キャピラリーカラム、7・・・検出器
、8・・・エンパイヤチューブ、9・・・加熱槽、1σ
・・・断熱壁、11.24・・・接続部、12・・・ト
ランス、13 、14 、15・・・リード線、16・
・・切換スウィッチ、17 、25・・・溶媒によるピ
ーク、18 、19 、20 、21 、22 、26
 、27 、.28 、29.31・・・溶質によるピ
ーク。
FIGS. 1 and 3 are diagrams of a capillary on-column gas chromatograph prepared to facilitate the implementation of the method of the present invention. FIGS. 2 and 4 are examples of p-madograms obtained by carrying out the method of the present invention. 1...Flow control valve, 2...Carrier gas supply pipe,
3... Septum rubber, 4... Sample introduction part, 5°metal thin tube, 6... Capillary column, 7... Detector, 8... Empire tube, 9... Heating tank, 1σ
...insulation wall, 11.24...connection section, 12...transformer, 13, 14, 15...lead wire, 16.
...Switch, 17, 25...Peak due to solvent, 18, 19, 20, 21, 22, 26
,27,. 28, 29.31...Peak due to solute.

Claims (1)

【特許請求の範囲】 1、セプタムゴムを有する試料導入部に通電加熱可能な
内径0.5mm以上の金属細管をとりつけ、それに液相
を塗ったキャピラリーカラムを連結し、該カラムの他端
を検出器に至らしめるようになし、キャピラリーカラム
の初期温度を保持したのち外径0.4mm以上の針を付
した注射器を使用して、上記セプタムゴムを貫通して試
料を金属細管内にオンカラム注入し、その後該金属細管
を通電急速昇温させ要すればキャピラリーカラムを昇温
させることを特徴とするキャピラリーオンカラムガスク
ロマトグラムの測定方法。 2、金属細管の内径が0.5mm以上2.0mm以下で
ある特許請求の範囲第1項記載のキャピラリーオンカラ
ムガスクロマトグラムの測定方法。 3、注射針の外径が0.4mm以上0.7mmである特
許請求の範囲第1項記載のキャピラリーオンカラムガス
クロマトグラムの測定方法。 4、液相を塗ったキャピラリーカラムの内径が0.2m
m以上0.35mm以下である特許請求の範囲第1項記
載のキャピラリーオンカラムガスクロマトグラムの測定
方法。 5、金属細管の内壁上には液相が存在しない特許請求の
範囲第1項記載のキャピラリーオンカラムガスクロマト
グラムの測定方法。
[Claims] 1. A thin metal tube with an inner diameter of 0.5 mm or more that can be heated by electricity is attached to a sample introduction part having a septum rubber, and a capillary column coated with a liquid phase is connected to the capillary column, and the other end of the column is connected to a detector. After maintaining the initial temperature of the capillary column, the sample is injected on-column into the metal capillary tube through the septum rubber using a syringe equipped with a needle with an outer diameter of 0.4 mm or more. A method for measuring a capillary on-column gas chromatogram, which is characterized in that the temperature of a capillary column is increased by rapidly increasing the temperature of a capillary column by energizing a capillary tube. 2. The method for measuring a capillary on-column gas chromatogram according to claim 1, wherein the metal capillary has an inner diameter of 0.5 mm or more and 2.0 mm or less. 3. The method for measuring a capillary on-column gas chromatogram according to claim 1, wherein the outer diameter of the injection needle is 0.4 mm or more and 0.7 mm. 4. The inner diameter of the capillary column coated with the liquid phase is 0.2 m.
The method for measuring a capillary on-column gas chromatogram according to claim 1, wherein the capillary on-column gas chromatogram is from m to 0.35 mm. 5. The method for measuring a capillary on-column gas chromatogram according to claim 1, wherein no liquid phase exists on the inner wall of the metal capillary.
JP59129971A 1984-06-26 1984-06-26 On column gas chromatograph using injector for splitting method Pending JPS6110770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59129971A JPS6110770A (en) 1984-06-26 1984-06-26 On column gas chromatograph using injector for splitting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59129971A JPS6110770A (en) 1984-06-26 1984-06-26 On column gas chromatograph using injector for splitting method

Publications (1)

Publication Number Publication Date
JPS6110770A true JPS6110770A (en) 1986-01-18

Family

ID=15022959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59129971A Pending JPS6110770A (en) 1984-06-26 1984-06-26 On column gas chromatograph using injector for splitting method

Country Status (1)

Country Link
JP (1) JPS6110770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189472A (en) * 1989-06-16 1993-02-23 Konica Corporation Color image forming apparatus having a plurality of guide members facing a plurality of developing devices
JP2021042964A (en) * 2019-09-06 2021-03-18 株式会社島津製作所 Analysis system, analysis support device, analysis method, and analysis support method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189472A (en) * 1989-06-16 1993-02-23 Konica Corporation Color image forming apparatus having a plurality of guide members facing a plurality of developing devices
JP2021042964A (en) * 2019-09-06 2021-03-18 株式会社島津製作所 Analysis system, analysis support device, analysis method, and analysis support method

Similar Documents

Publication Publication Date Title
Grob Jr Solvent effects in capillary gas chromatography
Grob Jr et al. On-column injection of large sample volumes usimg the retention gap technique in capillary gas-cromatography
Lord et al. Tapers and restrictors for capillary electrochromatography and capillary electrochromatography-mass spectrometry
Grob Jr et al. Loop‐type interface for concurrent solvent evaporation in coupled HPLC‐GC. Analysis of raspberry ketone in a raspberry sauce as an example
Chester et al. Separation of sucrose polyesters by capillary supercritical-fluid chromatography/flame ionization detection with robot-pulled capillary restrictors
Smith et al. Rapid and efficient capillary column supercritical fluid chromatography with mass spectrometric detection
Grob Jr et al. Concurrent solvent evaporation for on‐line coupled HPLC‐HRGC
US4477266A (en) Solute focusing technique for on-column injection in capillary gas chromatography
DE19810109C2 (en) Gas chromatograph with a temperature controlled injector
Ewels et al. Electrically-heated cold trap inlet system for high-speed gas chromatography
JPS6110770A (en) On column gas chromatograph using injector for splitting method
Tsuda et al. Open-tubular microcapillary liquid chromatography with 30–40 μm ID columns
Li et al. Supercritical fluid extraction and chromatography of steroids with Freon-22
Kong et al. Static coating of capillary columns using mixed solvents
Vreuls et al. Polar solvents for the desorption of a liquid chromatographic precolumn coupled on‐line with a capillary gas chromatograph
DE3448091C3 (en)
Smith Gas—liquid chromatography of cholesteryl esters on non-polar and polar capillary columns following on-column injection
Shah et al. Demonstration of an optimized flow cell SFC-FTIR interface
Kresbach et al. Direct electrically heated spray device for a moving belt liquid chromatography—mass spectrometry interface
Gueant et al. Purification of androgen-binding protein from rat testis using high-performance liquid chromatography and physicochemical properties of the iodinated molecule
Hinshaw Jr et al. Solute focusing technique for on‐column injection in capillary gas chromatography
Sandra et al. Experiments with cold on-column injection
JPS60249054A (en) Method and instrument for measurement with gas chromatogram
Van Kamp et al. One-step preparation of the polypeptide chains of α-crystallin
Takayama et al. Behavior of heavy solutes on a precolumn in on‐column gas chromatography