JPS61105116A - Semiconductor logic circuit - Google Patents

Semiconductor logic circuit

Info

Publication number
JPS61105116A
JPS61105116A JP59227312A JP22731284A JPS61105116A JP S61105116 A JPS61105116 A JP S61105116A JP 59227312 A JP59227312 A JP 59227312A JP 22731284 A JP22731284 A JP 22731284A JP S61105116 A JPS61105116 A JP S61105116A
Authority
JP
Japan
Prior art keywords
output
transistor
current
level
collectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59227312A
Other languages
Japanese (ja)
Inventor
Masahiko Arimura
有村 政彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59227312A priority Critical patent/JPS61105116A/en
Publication of JPS61105116A publication Critical patent/JPS61105116A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00369Modifications for compensating variations of temperature, supply voltage or other physical parameters
    • H03K19/00376Modifications for compensating variations of temperature, supply voltage or other physical parameters in bipolar transistor circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To obtain a stable output level against manufacturing tolerance by connecting a resistor and a diode in series between collectors of the 1st and 2nd transistors (TRs) so that the current path is formed only in a direction from the collector of the 2nd TR to the collector of the 1st TR. CONSTITUTION:When a resistor R2 has a small value or a hfe is large for example, a base potential of an output TR is high and the output high level is increased. In this case, a potential difference V between both the collectors of a differential amplifier is increased and a current I2 flowing through a D1 and an R4 connected between both the collectors increases to decrease the base potential and a prescribed output High level is obtained. When the R2 is large or the hfe is small conversely, the current I2 is small, the effect onto the base potential is not almost given and the output level is made constant. That is, the variance in the base potential of the output TR due to the variance in the manufacture appears as a current difference by the elements connected between both collectors, the output level is always kept almost constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体論理回路に関し、特にECLfi論理回
路のなかで「10にインターフェイス」の論理回路に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor logic circuits, and particularly to an "interface to 10" logic circuit among ECLfi logic circuits.

〔従来技術〕[Prior art]

ECL型論理回路には、一般に「10にインターフェイ
ス」と総称される入カッ出力レベルを持つ論理回路と「
100Kインターフエイス」と郷称される入力/出力レ
ベルを持つもう一方の論理回路がある。両者は電源電圧
と出力特性の違いKより区別される。ECL型論理回路
の「10にインターフェイス」の出力特性は、第3図に
示されるように出力のHi gh /Low側のマージ
ンが各々約150 mV。
ECL type logic circuits generally include logic circuits with input and output levels collectively referred to as "10 interfaces" and logic circuits with input and output levels.
There is another logic circuit with input/output levels called ``100K Interface''. The two are distinguished by the difference K in power supply voltage and output characteristics. As shown in FIG. 3, the output characteristics of the ECL type logic circuit "interface to 10" have a margin of about 150 mV on the high/low side of the output.

200m”/と非常に小さいため回路設計上十分注意す
る必要があり、プロセス技術の進歩により微細化による
素子性能そのものは向上している反面、製造上のばらつ
きに対しては十分な補償がなされておらず、回路設計に
おいても、製造−おいても大きな負担となっているのが
現状である。以下図を用い【出力レベルについて説明す
る。
Because it is extremely small at 200m"/200m", it is necessary to be very careful in circuit design.While the element performance itself has improved due to miniaturization due to advances in process technology, sufficient compensation has not been made for manufacturing variations. At present, this is a huge burden both in circuit design and manufacturing.The output level will be explained below using the diagram below.

第4図は従来より用いられている「lOKインターフェ
イス」の回路図であり、トランジスタQ、と抵抗R8で
構成される定電流回路、Ql、Q、からなる差動増幅器
および出力トランジスタQoutで構成される出力回路
図である。出力トランジスタのエミッタはRT50Ω、
■yas−2Vの負荷が接続されており差動増幅器のベ
ース信号(センス信号) Vs 、 ViK応じて出力
Highレベル(vOH)或いは出力Lowレベル(v
ot、)となる。voHは出力トランジスタQoutO
順方向電圧vfoHk出力ペース電流工、。l(と抵抗
R2とによる電位ドロップの和で決まり、voLハQO
utの順方向電圧vIoLと出力ベース電流’BQLに
よる電位ドロップ及びトランジスタQB、抵抗R8で決
まる定電流I、と抵抗へとKよるドロップ電位で決まる
Figure 4 is a circuit diagram of the conventionally used "lOK interface", which consists of a constant current circuit consisting of a transistor Q and a resistor R8, a differential amplifier consisting of Ql and Q, and an output transistor Qout. FIG. The emitter of the output transistor is RT50Ω,
■ A load of yas-2V is connected, and the output high level (vOH) or output low level (v
ot, ). voH is the output transistor QoutO
Forward voltage vfoHk output pace current. It is determined by the sum of the potential drop due to l (and resistor R2, and voL is QO
It is determined by the forward voltage vIoL of ut, the potential drop due to the output base current 'BQL, the constant current I determined by the transistor QB, the resistor R8, and the drop potential due to the resistor K.

V、)H= V7oH−)−IBoHx R1= −・
・・・” −・” (11vOL = vfoL十(I
eob + It ) X R,−・・・・・・・・(
2)順方向電圧vfは電流密度変化に対する変化量は小
さく、又I、 x R,は素子の製造ばらつきに対して
ほぼ一定になるように設計されるから、出力レベルのば
らつきはベース電流の抵抗へとKよる電位ドロップのば
らつきで代表される。
V, )H= V7oH−)−IBoHx R1= −・
...” -・” (11vOL = vfoL10(I
eob + It)
2) The amount of change in the forward voltage vf due to changes in current density is small, and I, x R, is designed to remain almost constant despite manufacturing variations in the device, so variations in output level are caused by the resistance of the base current. It is represented by the variation in potential drop due to K.

ココテV。H=−0,9v、 Vot、 = −1,r
V ト−j ルト出力電流’OH= 22 mi、IO
L = 6 mAであり、電流増幅率(以後hl、と称
す)を50.馬−鳥−3000とすると、このベース電
流による電位ドロップを1それぞれ132 mV、  
36 rytVとなる。一方製造条件のばらつき、特に
AI、および抵抗のばらつきによるこの電位ドロップの
変化量は、例えばhf、 = 200の場合、電位ドロ
ップは33mV、9mVであり、hl、 = 50の場
合と比べて99 mV、 27mVレベルカー高くなる
。又抵抗のばらつき±20優の場合、2671!■。
Kokote V. H=-0,9v, Vot, =-1,r
V tort output current 'OH = 22 mi, IO
L = 6 mA, and the current amplification factor (hereinafter referred to as hl) is 50. Assuming Uma-Tori-3000, the potential drop due to this base current is 132 mV, respectively.
36 rytV. On the other hand, the amount of change in this potential drop due to variations in manufacturing conditions, especially variations in AI and resistance, is, for example, when hf, = 200, the potential drop is 33 mV and 9 mV, and compared to when hl, = 50, it is 99 mV. , 27mV level becomes high. Also, if the resistance variation is ±20%, it is 2671! ■.

7mVの変化量となる。v。Lの場合、マージン200
屏VK対して7mV〜27痛Vと小さく問題はな〜力t
The amount of change is 7mV. v. For L, margin 200
7 mV to 27 pain V against folding VK, no problem.
.

vou側でハマージ7150mV K対して26〜99
1yLvと非常に大きい値となる。
Hamage 7150mV on the vou side 26-99 for K
This is a very large value of 1yLv.

又、トランジスタの順方向電圧vfの製造上のjfらつ
きによる変動量bV7はAf、と比例関係(−5V7=
=xA、x:定数)にあり、特K Af、が大き〜・場
合V。、Lf)High側では殆んどマージンがなくな
ることになる。これを第3図に示す。
Further, the amount of variation bV7 of the forward voltage vf of the transistor due to jf fluctuation during manufacturing has a proportional relationship with Af (-5V7=
= xA, x: constant), and the special K Af is large ~ ・V. , Lf) There is almost no margin on the High side. This is shown in FIG.

以上述べたように、従来例においては製造+iらつきに
対し【出力レベル、特にH1gh側レベルし補償するこ
とは非常釦困難なことであった。
As mentioned above, in the conventional example, it is extremely difficult to compensate for the manufacturing +i fluctuation by adjusting the output level, especially the H1gh side level.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、製造ばらつきに対して安定した出力レ
ベルを得るように補償する回路を提供することである。
An object of the present invention is to provide a circuit that compensates for manufacturing variations to obtain a stable output level.

〔問題点を解決するための手段〕[Means for solving problems]

rioKインターフェイス」と総称されるECL型論理
回路において、この論理回路は出力トランジスタのベー
スに接続された差動増幅器の一負荷抵抗の一端から、他
負荷抵抗端への一方向へのみダイオード特性を示す素子
と抵抗とで接続されたことを特徴とする。
In an ECL type logic circuit collectively referred to as "rioK interface", this logic circuit exhibits diode characteristics only in one direction from one end of the load resistor of the differential amplifier connected to the base of the output transistor to the end of the other load resistor. It is characterized by being connected by an element and a resistor.

〔実 施 例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明に係るECL型論理回路の1実施例であ
る。差動増幅器の負荷抵抗式、4間は、従来においては
未接続であるが、本発明ではダイオードD、と抵抗R4
とを介して出力トランジスタのベース側から他端へ接続
されている。この接続による電流は一方向のみであり、
逆方向へはダイオードD1の逆バイアスとなるため、出
力LowレベルのvoLへの影響はなくv。Hレベルの
みに働くことになる。
FIG. 1 shows one embodiment of an ECL type logic circuit according to the present invention. Conventionally, the load resistance type 4 of the differential amplifier is not connected, but in the present invention, the diode D and the resistor R4 are connected.
is connected from the base side of the output transistor to the other end via. Current through this connection is only unidirectional;
In the reverse direction, the diode D1 is reverse biased, so there is no effect on the output Low level voL. It will only work on H level.

出力がHighレベルの時、差動増幅器の両コレクタ間
の電位差dはΔ:V=I、xR,−I、。□×鴇トする
。通常I、 x R,は素子の製造上のばらつきに対し
てほぼ一定の値となるよ5に設計され、又より。H×鳥
は出力トランジスタのベース電位であるから■aoいも
のばらつきはそのペース電位のばらつきであり4睨′の
変動として出て来る。例えば抵抗鴇が小さい場合若しく
はhl、が大きい場合、出力トランジスタのペース電位
は高くなり出力H1ghレベルが高くなる。この場合d
が大きくなり、両コレクタ間に接続されたDlとR1と
を介して流れる電RItは増加してこのペース電位を下
げ所定の出力Highレベルが得られる。逆に鴇が大き
い場合若しくはAf、が小さい場合は電流工、は小さく
、ペース電位への影響は殆んどなく出力レベルは一定で
ある。即ち製造上のばらつきによる出力トランジスタの
ペース電位のばらつきは、差動増幅器の両コレジタ間の
′IE位差として検出され、それが両コレクタ間に接続
された素子により電流差と見て現われる。故に出力レベ
ルは常にほぼ一定に保つことが可能となる。
When the output is at High level, the potential difference d between both collectors of the differential amplifier is Δ:V=I, xR, -I. □× Toto. Normally, I, x R, is designed to be approximately constant value 5 despite manufacturing variations in the device. Since H×Tori is the base potential of the output transistor, the variation in the output transistor is the variation in the pace potential and appears as a four-dimensional variation. For example, when the resistance value is small or when hl is large, the pace potential of the output transistor becomes high and the output H1gh level becomes high. In this case d
increases, and the current RIt flowing through Dl and R1 connected between both collectors increases, lowering this pace potential and obtaining a predetermined output High level. On the other hand, if the current is large or Af is small, the current is small and the output level is constant with almost no effect on the pace potential. That is, variations in the pace potential of the output transistor due to manufacturing variations are detected as a 'IE potential difference between the two collectors of the differential amplifier, and this is seen as a current difference by the element connected between the two collectors. Therefore, the output level can always be kept almost constant.

出力がLowレベルの時、ダイオードD、は逆バイアス
となるため、差動アンプの両コレクタ間に電流は流れな
くレベルへの影響はない。
When the output is at a low level, the diode D is reverse biased, so no current flows between the collectors of the differential amplifier and there is no effect on the level.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば素子の製造ばらつき
に対して安定した出力レベルをイ4ることができる。
As described above, according to the present invention, it is possible to maintain a stable output level despite manufacturing variations in elements.

【図面の簡単な説明】[Brief explanation of the drawing]

41は1は本発明の1実施例;ig2図は本発明に係る
実施列による出力レペル;第3図はECL型論理回路の
出力レベル規格と従来の出力レベル:第4図はECL型
鯖埋回路の従来の実施例である。 QI、Qt、Q3、Qout ・・・・・・・・・・・
・・・・トランジスタR,,R,、R3、R4、RT 
・・・・・・・・・・・・抵     抗”IS、 凰
Vcs ・−−−−−−−・・−・−−−−−−・−=
ペース信号り、・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・ダイオー
ド第1図 1度Ta(’c’) 第2図 ヨ
41 is one embodiment of the present invention; ig2 is the output level according to the implementation array according to the present invention; FIG. 3 is the output level standard of the ECL type logic circuit and the conventional output level; FIG. 4 is the ECL type Sabaku. 1 is a conventional example of a circuit. QI, Qt, Q3, Qout ・・・・・・・・・・・・
...Transistor R,,R,,R3,R4,RT
・・・・・・・・・Resistance “IS, 凰Vcs ・−−−−−−−・・−・−−−−−−・−=
Pace signal......
・・・・・・・・・・・・・・・・・・・・・Diode Figure 1 1 degree Ta ('c') Figure 2 Yo

Claims (1)

【特許請求の範囲】[Claims]  第1のトランジスタのエミッタと第2のトランジスタ
のエミッタとが接続されて電流切換えスイッチを構成す
るトランジスタ対と、前記第2のトランジスタのコレク
タにベースが接続されて出力トランジスタとして動作す
る第3のトランジスタとにより構成されるエミッタ結合
型論理回路において、前記第2のトランジスタのコレク
タから前記第1のトランジスタのコレクタの方向にのみ
電流通路が形成されるように、前記第1のトランジスタ
のコレクタと前記第2のトランジスタのコレクタとの間
に抵抗とダイオードとが直列に接続されていることを特
徴とする半導体論理回路。
a transistor pair in which the emitter of the first transistor and the emitter of the second transistor are connected to form a current switching switch; and a third transistor whose base is connected to the collector of the second transistor and which operates as an output transistor. In the emitter-coupled logic circuit configured by the collector of the first transistor and the collector of the first transistor such that a current path is formed only in the direction from the collector of the second transistor to the collector of the first transistor. A semiconductor logic circuit characterized in that a resistor and a diode are connected in series between the collector of the transistor No. 2.
JP59227312A 1984-10-29 1984-10-29 Semiconductor logic circuit Pending JPS61105116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59227312A JPS61105116A (en) 1984-10-29 1984-10-29 Semiconductor logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59227312A JPS61105116A (en) 1984-10-29 1984-10-29 Semiconductor logic circuit

Publications (1)

Publication Number Publication Date
JPS61105116A true JPS61105116A (en) 1986-05-23

Family

ID=16858825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59227312A Pending JPS61105116A (en) 1984-10-29 1984-10-29 Semiconductor logic circuit

Country Status (1)

Country Link
JP (1) JPS61105116A (en)

Similar Documents

Publication Publication Date Title
US4567444A (en) Current mirror circuit with control means for establishing an input-output current ratio
US4634897A (en) Comparator having a hysteresis characteristic
JPH0544845B2 (en)
US4491780A (en) Temperature compensated voltage reference circuit
US4608529A (en) Constant voltage circuits
JPH01235416A (en) Fet logic circuit
US4329598A (en) Bias generator
EP0266112B1 (en) Cml bias generator
JPS61105116A (en) Semiconductor logic circuit
JPS63214009A (en) Composite transistor
US4553107A (en) Current mirror circuit having stabilized output current
JPH0252892B2 (en)
JPH03113613A (en) Wide dynamic range current source circuit
JPH01162005A (en) Amplifying circuit
JPS6155144B2 (en)
JPS631106A (en) Current mirror circuit
JPH0616572B2 (en) Semiconductor circuit device
JPS6093533A (en) Reference voltage circuit
JPH05291844A (en) Level shift circuit
JPS6051306A (en) Constant current source circuit
JPS6096006A (en) Reference voltage circuit
JPS60126905A (en) Current mirror circuit
JPS6093532A (en) Reference voltage circuit
JPH037409A (en) Buffer circuit
JPH057885B2 (en)