JPS61104549A - Electron microscope - Google Patents

Electron microscope

Info

Publication number
JPS61104549A
JPS61104549A JP22698484A JP22698484A JPS61104549A JP S61104549 A JPS61104549 A JP S61104549A JP 22698484 A JP22698484 A JP 22698484A JP 22698484 A JP22698484 A JP 22698484A JP S61104549 A JPS61104549 A JP S61104549A
Authority
JP
Japan
Prior art keywords
projection lens
image
excitation
magnification
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22698484A
Other languages
Japanese (ja)
Inventor
Yoshihiro Arai
善博 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP22698484A priority Critical patent/JPS61104549A/en
Publication of JPS61104549A publication Critical patent/JPS61104549A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/302Controlling tubes by external information, e.g. programme control

Abstract

PURPOSE:To carry out the rotation of an image in a relatively wide range with the small change of magnification by reversing an excitation current code supplied to a projection lens, using an excitation current, in which a rotational angle is 180 deg., as a boundary. CONSTITUTION:When a rotational angle theta is specified by a rotary encoder 11, in the case of theta<=180, a CPU 12 reads out an excitation specifying signal corresponding to theta from a memory 13 to supply it to an excitation power source 9. Further, in the case of theta>180, the CPU reads out a signal corresponding to 360-theta and supplies a high level signal for reversing polarity to a porality switching circuit 10 through a DA converter 15. Accordingly, the relationship between the rotational angle theta and a magnetomotive force J supplied to a projection lens 7 is shown in a line K, and for example, the magnification corresponding to each angle theta which is based on the magnification in the excitation of 5585 ampere.turn is shown in a curve U. Namely, it is possible to restrain the change of magnification accompanied by the rotation of an image projected on a fluorescent plate 8 to about + or -10%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電磁レンズの像回転作用を用いて像観察用螢光
スクリーン」−で像を回転するようにした電子顕微鏡に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron microscope in which an image is rotated on a fluorescent screen for image observation using the image rotation effect of an electromagnetic lens.

[従来の技術] 長方形の写真撮影視野内に注目する像部分が所望の角度
で配置されるように、電子顕微鏡像を回転でることが行
なわれている。電子顕微鏡像の回転は試料ホルダーを機
械的に回転させて行なうこともできるが、機械的回転に
おいては、一般に試1’lボルダ−の回転中心が注目す
る像部分の中心と異なるため、試料の移動を合せて行な
わなければならない。そのため、以下に述べる電磁レン
ズの像回転作用を利用して像を回転させることが考えら
れている。
[Prior Art] An electron microscope image is rotated so that an image portion of interest is placed at a desired angle within a rectangular photographic field of view. Rotation of the electron microscope image can also be performed by mechanically rotating the sample holder, but in mechanical rotation, the center of rotation of the sample boulder is generally different from the center of the image part of interest. The movements must be done together. Therefore, it has been considered to rotate the image by utilizing the image rotation effect of an electromagnetic lens, which will be described below.

即ら、電子の靜11:質聞をmo(KO>、電子の’!
荷ヲe′<クーロン)、U*を相対論補正された加速電
圧(V)、B (z)をレンズの光軸に沿った座標Zに
おける磁界(ガウス)とすると、磁界型電子レンズは以
下の式で表わされる角度0だけ像を回転させる。
That is, Denshi no Silence 11: Q&A mo (KO>, Denshi'!
Assuming that the load is e′ < Coulomb), U* is the relativistically corrected accelerating voltage (V), and B (z) is the magnetic field (Gauss) at the coordinate Z along the optical axis of the lens, the magnetic field type electron lens is as follows. Rotate the image by an angle 0 expressed by the equation.

この上記(1)式の右辺は、ノをレンズの起磁力(アン
ペア・ターン)とするとき、0.3377J/ffと表
わされ、この値は良く使用される100KVの加速電圧
においては、0.0322Jとなる。
The right-hand side of the above equation (1) is expressed as 0.3377 J/ff, where Φ is the magnetomotive force (ampere turn) of the lens, and this value is 0.3377 J/ff at the commonly used acceleration voltage of 100 KV. It becomes .0322J.

[発明が解決しようとする問題点] ところで、電子レンズの起磁力を変化させると、焦点距
離fが変化するため観察倍率が変化する。
[Problems to be Solved by the Invention] By the way, when the magnetomotive force of the electron lens is changed, the focal length f changes, and therefore the observation magnification changes.

この観察倍率の変化は好ましくないため、電子レンズは
励!i電流の甲位量の変化に対する焦点距離の変化率の
小さい最大起磁力の近傍で使用するのが望ましいが、中
間レンズは主どして倍率を変化させるためのものである
ため、高倍観察状態においてのみ最大励1電流値で使用
されるだGノである。
This change in observation magnification is undesirable, so the electron lens is recommended! It is desirable to use it near the maximum magnetomotive force, where the rate of change in focal length with respect to changes in the amount of current is small, but since the intermediate lens is primarily used to change magnification, it is suitable for high-magnification observation conditions. It is used only at the maximum excitation current value.

従って、像回転レンズとしては適切でなく、又、対物レ
ンズも、焦点合せのために微小量変化させるだ番ノで励
!i電流を殆んど固定して使用されるため、像回転レン
ズとして適切でない。勿論、対物。
Therefore, it is not suitable as an image rotation lens, and the objective lens must also be changed by a minute amount for focusing. It is not suitable as an image rotating lens because it is used with almost a fixed current. Of course, the object.

中間、投影の各1ノンズの起磁力を複雑に連動して変化
さ1!れば、倍率を殆ど変化さυ゛ずに像回転を行なう
ことができるが、装置の製造コストが高くなるどいつ問
題がある。
The magnetomotive force of each nons in the middle and projection changes in a complex manner 1! In this case, image rotation can be performed with almost no change in magnification, but there is a problem in that the manufacturing cost of the apparatus increases.

本発明は、このような従来の問題を解決すべくなされた
もので、比較的広範囲の像回転をわずがな倍率変化ぐ行
ない(qる4M造簡単で製造コストの低廉な電子顕微鏡
を捉供することを目的としている。
The present invention was made in order to solve these conventional problems, and it is possible to perform image rotation over a relatively wide range with a slight change in magnification. The purpose is to provide

[問題点を解決するための手段] このような目的を達成するため、本発明は対物及び中間
レンズによって結像された電子顕微鏡像を像観察スクリ
ーン上に投影するための投影レンズと、該投影レンズに
励磁電流を供給するための電源を備えた装置において、
該スクリーン上に投影される像の該投影レンズによる回
転角θを指定する手段ど、該指定された回転角θが18
0度より大きいか否かを判定し180 r&以下の場合
にはθに3一 対応した励磁電流を該投影レンズに供給し、大きい場合
には360−θに対応した励磁電流と絶対値が等しく符
号の異なる励11電流を該投影レンズに供給する手段を
具備することを特徴としている。
[Means for solving the problems] In order to achieve such an object, the present invention provides a projection lens for projecting an electron microscope image formed by an objective and an intermediate lens onto an image observation screen, and a projection lens for projecting an electron microscope image formed by an objective and an intermediate lens onto an image observation screen. In a device equipped with a power source for supplying excitation current to a lens,
The means for specifying the rotation angle θ of the image projected on the screen by the projection lens, etc., when the specified rotation angle θ is 18
It is determined whether or not it is greater than 0 degrees, and if it is less than 180 r & θ, an excitation current corresponding to 3-1 to θ is supplied to the projection lens, and if it is larger, the absolute value is equal to the excitation current corresponding to 360 - θ. The present invention is characterized in that it includes means for supplying excitation currents of different signs to the projection lens.

[発明の作用] 以下、本発明において基本となっている考えを説明する
[Operation of the invention] The basic idea of the present invention will be explained below.

投影レンズの焦点距離を「、レンズの磁極片のギャップ
間隔をS、111片の孔径をす、投影レンズの起磁力を
J(アンペア・ターン)、加速電圧の相対論補正値をt
J* (KV)とす・ると、「/(S+b)とJ2 /
U*との関係は第5図に示すようになり、この図から最
大起磁力即ち、J2/lJ*−200付近で投影レンズ
を使用すれば、Jを変えて像を回転させても、fの変化
、従って倍率の変化は小さいことが分る。更に、投影レ
ンズの起磁力Jを最大付近で変化させた場合に、像の回
転角θ(度)がどのように変化し、J2 /U* =2
84における倍率を基準として倍率比がどのように変化
するかを調べたところ、第6図に示す如き結束が得られ
た。この結束より、投影レンズの励磁をJ2/U*= 
112から284桿度まで変化させると、像回転角を約
67度変化させることができ、これに伴う倍率の変化は
±10%程度の実用上問題にならない範囲にあることが
分った。尚、第6図において縦軸は倍率比(%)を表わ
しており、横軸は像回転角θ又はJ2 /U*を表わし
ている。
The focal length of the projection lens is ``, the gap distance between the magnetic pole pieces of the lens is S, the hole diameter of the 111 pieces is ``, the magnetomotive force of the projection lens is J (ampere turns), and the relativistic correction value of the accelerating voltage is t.
If we write J* (KV), we get "/(S+b) and J2/
The relationship with U* is shown in Figure 5. From this figure, it can be seen that if the projection lens is used at the maximum magnetomotive force, that is, around J2/lJ*-200, even if J is changed and the image is rotated, f It can be seen that the change in , and therefore the change in magnification, is small. Furthermore, when the magnetomotive force J of the projection lens is changed near the maximum, how does the rotation angle θ (degrees) of the image change, and J2 /U* = 2
When we investigated how the magnification ratio changed with reference to the magnification in 84, we found that the unity shown in FIG. 6 was obtained. From this unity, the excitation of the projection lens is J2/U*=
It was found that by changing the image rotation angle from 112 to 284 degrees, the image rotation angle can be changed by about 67 degrees, and the change in magnification associated with this change is within a range of about ±10%, which is not a problem in practice. In FIG. 6, the vertical axis represents the magnification ratio (%), and the horizontal axis represents the image rotation angle θ or J2/U*.

更に又、投影レンズによる像回転角θが180度になる
起磁力において、投影レンズに供給する励磁電流の極性
を切換えれば、像回転角は−180度となるため極性切
換え前と同じ方向の像を維持でき、この状態で励′磁電
流の絶対値を減少させてゆけば、倍率の変化を前記10
%内に止めて更に像を約67度変化させることができる
Furthermore, in a magnetomotive force where the image rotation angle θ due to the projection lens is 180 degrees, if the polarity of the excitation current supplied to the projection lens is switched, the image rotation angle becomes -180 degrees, so the image rotation angle θ becomes -180 degrees, so the image rotation angle θ becomes -180 degrees. If the image can be maintained and the absolute value of the excitation current is decreased in this state, the change in magnification can be reduced to the above 10.
%, the image can be further changed by about 67 degrees.

E実施例] 以下、上述した考えに基づく本発明の実施例を詳述する
E Example] Hereinafter, examples of the present invention based on the above-mentioned idea will be described in detail.

第1図は本発明の一実施例を示すためのもので、図中1
は電子銃であり、この電子銃1より発生し100K V
に加速された電子線EBは第1.第2の集束レンズ2,
3により集束されて試料4に照射される。試料4を透過
した電子線は対物、中間。
FIG. 1 is for showing one embodiment of the present invention.
is an electron gun, and the electron gun 1 generates 100K V
The electron beam EB accelerated to 1. second focusing lens 2,
3 and irradiates the sample 4. The electron beam transmitted through sample 4 is objective, intermediate.

及び投影レンズ5.6.7により蛍光板8上に結像され
る。9は投影レンズ7の励磁電源であり、この励磁電源
9よりの励磁電流は極性切換回路10を介して投影レン
ズ7に供給される。極性切換回路10は電?lI9の正
端子に接続されるレンズコイルの端子を切換えることに
より極性を切換えるための回路である。11は0度から
134度にわたる像の相対回転角ω(回転角θ−113
度を基準とする回転角)を指示するためのロータリーエ
ンコーダであり、このロータリーエンコーダ11よりの
出力信号は中央演算処理装置12に供給されている。1
3は中央演算処理装置12に接続された記憶装置であり
、この記憶装置13にはω−0から 134/ 2=6
7各ωの値に対応する投影レンズの励磁電流値を指定す
る信号がテーブルとして記憶されている。記憶装置13
から読み出された励磁指定信号はDA変換器14を介し
て前記励磁電源9に供給され、励磁電源9はこの励磁指
定信号に基づいた励磁電流を発生する。又、中央演算処
理装@12よりDA変換器15を介して切換制御信号が
前記極性切換回路10に供給されている。
and is imaged onto the fluorescent screen 8 by the projection lens 5.6.7. Reference numeral 9 denotes an excitation power source for the projection lens 7 , and an excitation current from the excitation power source 9 is supplied to the projection lens 7 via a polarity switching circuit 10 . Is the polarity switching circuit 10 electric? This is a circuit for switching the polarity by switching the terminal of the lens coil connected to the positive terminal of lI9. 11 is the relative rotation angle ω of the image ranging from 0 degrees to 134 degrees (rotation angle θ−113
The rotary encoder 11 is a rotary encoder for instructing the rotation angle (with reference to degrees), and the output signal from the rotary encoder 11 is supplied to the central processing unit 12. 1
3 is a storage device connected to the central processing unit 12, and this storage device 13 stores data from ω-0 to 134/2=6
7. Signals specifying the excitation current value of the projection lens corresponding to each value of ω are stored as a table. Storage device 13
The excitation designation signal read from the excitation designation signal is supplied to the excitation power supply 9 via the DA converter 14, and the excitation power supply 9 generates an excitation current based on this excitation designation signal. Further, a switching control signal is supplied from the central processing unit @12 to the polarity switching circuit 10 via the DA converter 15.

このような構成において、ロータリーエンコーダ11に
より操作者がある回転角ωを指定すると、中央演算処理
装置12はω〉67〈即ちθ> 180)か否か判定し
、ω≦67(0≦ 180)の場合には、記憶装置13
に記憶されているωに対応した励磁指定信号を読み出し
て、DA変換器14を介して励磁電源9に供給する。又
、ω〉67(θ> ’180)の場合には、中央演算処
理装置12は134−ω(叩ら360−θ)に対応した
記憶装置13のアドレスにおける励磁指定信号を読み出
して励磁電源9に供給すると共に、DA変換器15を介
して極性切換回路10に極性を逆極性にするためのハイ
レベル伏目を供給する。そのため、ロータリーエンコー
ダ11によって指定される回転角θ又はωど励1雷源9
に供給される励磁指定信号との関係は第2図に示す如き
ものとなり、又回転角θ(a))と極付切換回路10に
供給される信号のレベルとの関係は第3図に示す如ぎも
のとなる。従って、回転角度θ(ω)と投影レンズ7に
供給される起磁力J(アンペタ・ターン)との関係は第
4図の直線にで示されるようになり、又、5585アン
ペア・ターンの励磁にお()る倍率を基準とする各角磨
θ(ω)に対応するイ8率は同図の曲線Uで示J如きも
のとなる。尚、第4図において、横軸は0又はω(度)
を表わしており、左の縦軸は起磁力(アンペア・ターン
)、右の縦軸は倍率比(%)を表わしている。このグラ
フから明らかなように、蛍光板8に投影される像を約1
34度回転さ■ることができ、又、(れに伴う倍率の変
化を:110%程度に押えることができる。
In such a configuration, when the operator specifies a certain rotation angle ω using the rotary encoder 11, the central processing unit 12 determines whether ω>67 (that is, θ>180), and determines whether ω≦67 (0≦180). In this case, the storage device 13
The excitation designation signal corresponding to ω stored in is read out and supplied to the excitation power supply 9 via the DA converter 14. Further, in the case of ω>67 (θ>'180), the central processing unit 12 reads the excitation designation signal at the address of the storage device 13 corresponding to 134-ω (hit 360-θ) and sets the excitation power supply 9 At the same time, a high-level bindoff signal is supplied to the polarity switching circuit 10 via the DA converter 15 to reverse the polarity. Therefore, when the rotation angle θ or ω is specified by the rotary encoder 11, the excitation 1 lightning source 9
The relationship between the excitation designation signal supplied to the pole switching circuit 10 is as shown in FIG. 2, and the relationship between the rotation angle θ(a)) and the level of the signal supplied to the pole switching circuit 10 is as shown in FIG. Becomes a fairy tale. Therefore, the relationship between the rotation angle θ (ω) and the magnetomotive force J (ampeta-turns) supplied to the projection lens 7 is as shown by the straight line in FIG. The A8 ratio corresponding to each angle polishing θ(ω) based on the magnification of O() is as shown by curve J in the figure. In addition, in Fig. 4, the horizontal axis is 0 or ω (degrees)
The left vertical axis represents the magnetomotive force (ampere turns), and the right vertical axis represents the magnification ratio (%). As is clear from this graph, the image projected onto the fluorescent screen 8 is approximately 1
It can be rotated 34 degrees, and the change in magnification associated with this can be kept to about 110%.

本発明は、上述した実施例に限定されることなく幾多の
変形が可能である。
The present invention is not limited to the embodiments described above, and can be modified in many ways.

例えば、上述した実施例においては、投影レンズ逆励磁
するため、電源9の正端子に接続されるレンズコイルの
端子を切換えるようにしたが、端子を切換える代りに電
源から発生する電流値の符号を反転させるようにしても
良い。
For example, in the embodiment described above, in order to reverse excite the projection lens, the terminal of the lens coil connected to the positive terminal of the power supply 9 is switched, but instead of switching the terminal, the sign of the current value generated from the power supply is changed. It may be reversed.

更に又、本発明は電子線の加速電圧が100K V以外
の場合にも適用できることは勿論であり、伯の加速電圧
U *の場合には、投影レンズの起磁力、」を略 112≦J2/lJ*≦284で規定される範囲で変化
させれば良い。
Furthermore, it goes without saying that the present invention can be applied to cases where the accelerating voltage of the electron beam is other than 100 KV, and in the case of the accelerating voltage U*, the magnetomotive force of the projection lens is approximately 112≦J2/ It is sufficient to vary within the range defined by lJ*≦284.

[発明の効果] 1−述したd1明から明らか4rように、本発明にJ3
いては、投影レンズによる回転角が180度になる励磁
電流を境界どして、投影レンズに供給される励磁電流祠
Y)を反転するようにしているため、本発明により、倍
率を殆ど変化させずに大きく像を回転させることができ
、構造が簡単で製造コス1への低廉な電子顕微鏡が提供
される。
[Effect of the invention] 1-As is clear from the above d1 light, the present invention has J3
In the present invention, the excitation current (Y) supplied to the projection lens is reversed at the boundary of the excitation current that causes the rotation angle of the projection lens to be 180 degrees. To provide an electron microscope that can rotate an image by a large amount without moving, has a simple structure, and is inexpensive to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すための図、第2図は各
回転角度と励磁電源に供給される励磁指定信号との関係
を示すだめの図、第3図は各回転角度ど極性切換回路に
供給される切換信号どの関係を示Jための図、第4図は
各回転角度と投影しンズの起磁力及び増倍率の変化を示
1−ための図、第5図は投影レンズの最大起磁力付近に
おける起磁力と焦点距離との関係を示すための図、第6
図は投影レンズの起磁力又は像回転角と倍率値との関係
を示すための図である。 1:電子銃、2,3:集束レンズ、4:試別、5:対物
レンズ、6:中間レンズ、7:投影レンズ、8:蛍光板
、9:励磁電源、10:[I竹切換回路、11:ロータ
リーエンコーダ、12:中央演算処理装置、13:記憶
装置、14.15:DA変挨器。
Fig. 1 is a diagram showing one embodiment of the present invention, Fig. 2 is a diagram showing the relationship between each rotation angle and the excitation designation signal supplied to the excitation power supply, and Fig. 3 is a diagram showing the relationship between each rotation angle and the excitation designation signal supplied to the excitation power supply. Figure 4 is a diagram showing the relationship between the switching signals supplied to the polarity switching circuit. Figure 4 is a diagram showing changes in the magnetomotive force and multiplication factor of the projection lens with each rotation angle. Figure 5 is the diagram for projection. Diagram 6 showing the relationship between magnetomotive force and focal length near the maximum magnetomotive force of a lens
The figure is a diagram showing the relationship between the magnetomotive force or image rotation angle of the projection lens and the magnification value. 1: Electron gun, 2, 3: Focusing lens, 4: Testing, 5: Objective lens, 6: Intermediate lens, 7: Projection lens, 8: Fluorescent screen, 9: Excitation power supply, 10: [I bamboo switching circuit, 11 : Rotary encoder, 12: Central processing unit, 13: Storage device, 14.15: DA transformer.

Claims (2)

【特許請求の範囲】[Claims] (1)対物及び中間レンズによって結像された電子顕微
鏡像を像観察スクリーン上に投影するための投影レンズ
と、該投影レンズに励磁電流を供給するための電源を備
えた装置において、該スクリーン上に投影される像の該
投影レンズによる回転角θを指定する手段と、該指定さ
れた回転角θが180度より大きいか否かを判定し18
0度以下の場合にはθに対応した励磁電流を該投影レン
ズに供給し、大きい場合には360−θに対応した励磁
電流と絶対値が等しく符号の異なる励磁電流を該投影レ
ンズに供給する手段を具備することを特徴とする電子顕
微鏡。
(1) In an apparatus equipped with a projection lens for projecting an electron microscope image formed by an objective and an intermediate lens onto an image observation screen, and a power supply for supplying excitation current to the projection lens, means for specifying a rotation angle θ by the projection lens of an image projected on the image; and determining whether the specified rotation angle θ is larger than 180 degrees;
If it is less than 0 degrees, an excitation current corresponding to θ is supplied to the projection lens, and if it is larger, an excitation current having an equal absolute value and a different sign from the excitation current corresponding to 360-θ is supplied to the projection lens. An electron microscope characterized by comprising means.
(2)Jを該投影レンズの起磁力(アンペア・ターン)
、U^*を相対論補正された加速電圧(KV)とすると
き、該投影レンズの起磁力Jを略 112≦J^2/U^*≦284((アンペア・ターン
)^2/KV)で規定される範囲で変化させるようにし
た特許請求の範囲第(1)項記載の電子顕微鏡。
(2) J is the magnetomotive force of the projection lens (ampere turns)
, U^* is the relativistically corrected accelerating voltage (KV), then the magnetomotive force J of the projection lens is approximately 112≦J^2/U^*≦284 ((ampere-turn)^2/KV) The electron microscope according to claim (1), wherein the electron microscope is changed within the range defined by (1).
JP22698484A 1984-10-29 1984-10-29 Electron microscope Pending JPS61104549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22698484A JPS61104549A (en) 1984-10-29 1984-10-29 Electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22698484A JPS61104549A (en) 1984-10-29 1984-10-29 Electron microscope

Publications (1)

Publication Number Publication Date
JPS61104549A true JPS61104549A (en) 1986-05-22

Family

ID=16853681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22698484A Pending JPS61104549A (en) 1984-10-29 1984-10-29 Electron microscope

Country Status (1)

Country Link
JP (1) JPS61104549A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151177A (en) * 1975-06-20 1976-12-25 Hitachi Ltd Electron beam energy analyser
JPS52137257A (en) * 1976-05-12 1977-11-16 Jeol Ltd Electron microscope
JPS59148255A (en) * 1983-02-10 1984-08-24 Jeol Ltd Scanning electron microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151177A (en) * 1975-06-20 1976-12-25 Hitachi Ltd Electron beam energy analyser
JPS52137257A (en) * 1976-05-12 1977-11-16 Jeol Ltd Electron microscope
JPS59148255A (en) * 1983-02-10 1984-08-24 Jeol Ltd Scanning electron microscope

Similar Documents

Publication Publication Date Title
US4044255A (en) Corpuscular-beam transmission-type microscope including an improved beam deflection system
JP2001511303A (en) Correction device for spherical aberration correction in particle-optical apparatus
US2547994A (en) Electronic microscope
GB2061609A (en) Compensation for spherical aberration using a sextupale
US2580675A (en) Correction device for microscopes of the reflection mirror type
JPS62208632A (en) Apparatus for ion projector
US5442182A (en) Electron lens
US6720558B2 (en) Transmission electron microscope equipped with energy filter
JPS61104549A (en) Electron microscope
JP3455006B2 (en) Charged particle beam equipment
US4520264A (en) Electron microscope
KR20040034600A (en) Slit lens arrangement for particle beams
JPS5944743B2 (en) Irradiation electron lens system for scanning electron microscopes, etc.
JPH053009A (en) Axial frame correction system in electronic microscope
JPS5953658B2 (en) electronic lens
JP2003338259A (en) Electron beam device provided with electromagnetic lens having no remnant magnetizm
JP3234373B2 (en) Magnetic field type electron lens and electron beam device using the same
JPH05128986A (en) Magnetic field type lens
JPH10303118A (en) Electron beam projection optical system
JPS6245662B2 (en)
JPS6241376B2 (en)
JPS589545B2 (en) How to get the most out of your day
JPS62110241A (en) Probe current controlling method for electron microscope and device thereof
JPS58140955A (en) Projection television receiver
JPS6325456B2 (en)