JPS61104317A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS61104317A
JPS61104317A JP22168984A JP22168984A JPS61104317A JP S61104317 A JPS61104317 A JP S61104317A JP 22168984 A JP22168984 A JP 22168984A JP 22168984 A JP22168984 A JP 22168984A JP S61104317 A JPS61104317 A JP S61104317A
Authority
JP
Japan
Prior art keywords
film
alloy
magnetic recording
sliding resistance
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22168984A
Other languages
Japanese (ja)
Inventor
Yukio Honda
幸雄 本多
Masaaki Futamoto
二本 正昭
Seiichi Asada
朝田 誠一
Koji Nishimura
孝司 西村
Kazuyoshi Yoshida
吉田 和悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP22168984A priority Critical patent/JPS61104317A/en
Publication of JPS61104317A publication Critical patent/JPS61104317A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve corrosion resistance and sliding resistance by forming a protective film consisting of a material selected from the group of an alloy consisting essentially of Si, Ge and alloy consisting essentially of Ge on a thin ferromagnetic metallic film. CONSTITUTION:Ge is evaporated from a vapor deposition source 3 to form a Ge layer 10 on a polyimide film substrate 1 while said substrate 1 is heated by a heater 2 in a vacuum. A Co-Cr alloy is in succession evaporated from a vapor deposition source 4 to form a ferromagnetic film 11 consisting of Cr thereon. Ge is further evaporated from a vapor deposition source 5 to form protective layer 12 consisting of Ge thereon. The sliding resistance is thus improved by providing the layer 12 and particularly the effect of the improvement is made remarkable by executing continuously the formation of the film 11 and the layer 12 in the vacuum.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、磁気記録媒体の改良に係り、特に耐蝕性、耐
ヘツド摺動性の向上を図ることを目的とするものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the improvement of magnetic recording media, and particularly aims at improving corrosion resistance and head sliding resistance.

〔発明の背景〕[Background of the invention]

近年高密度記録の要求の高まりにこたえて、真空蒸着、
スパッタリング、あるいはイオンブレーティング法など
によって形成される強磁性金属薄膜を記録媒体とする。
In response to the increasing demand for high-density recording in recent years, vacuum deposition,
The recording medium is a ferromagnetic metal thin film formed by sputtering or ion blating.

いわゆるバインダーを使用しない非バインダー型の磁気
記録媒体が注目を浴び、実用化への努力が行なわれてい
る。この型の磁気記録媒体では磁気特性の改良もさるこ
とながら、酸化等による媒体の変質防止およびヘッドと
の接触に対する強度である耐摺動性の向上が実用化上解
決すべき重要課題となっている。
So-called binder-free magnetic recording media that do not use a binder have been attracting attention, and efforts are being made to put them into practical use. In addition to improving the magnetic properties of this type of magnetic recording medium, important issues to be solved for practical use include preventing deterioration of the medium due to oxidation, etc., and improving sliding resistance, which is the strength against contact with the head. There is.

媒体の変質防止および耐摺動性の向上を目的とした保護
層の形成法としては磁気記録媒体である強磁性金属薄°
膜の表面を酸化させる方法(特公昭42−20025)
、窒化させる方法(特開昭54−14311)が知られ
ている。しかし酸化層や窒化層の厚さを制御するのが難
かしく、また酸化や窒化によって強磁性金属膜の磁気特
性が変化するという問題がある。
A method for forming a protective layer for the purpose of preventing deterioration of the medium and improving its sliding resistance is to use thin ferromagnetic metal for magnetic recording media.
Method for oxidizing the surface of a film (Special Publication No. 1973-20025)
A method of nitriding (Japanese Unexamined Patent Publication No. 14311/1983) is known. However, there are problems in that it is difficult to control the thickness of the oxide layer or nitride layer, and the magnetic properties of the ferromagnetic metal film change due to oxidation or nitridation.

また、保護層として耐酸化性の金属1例えばRh、Au
、Pt、Pd、Cr、AQ、Pd−B、GeS n 、
 A g −Cuなどを用いる方法(特開昭53−40
505.特開昭55−73932)、酸化シリコン膜を
用いる方法(特開昭52− 127203、特開昭50−80102.米国特許3,
109,746.米国特許3,353,166)あるい
は有機物質を主成分とする膜を設ける方法(特開昭54
−143114)が知られている。
In addition, as a protective layer, an oxidation-resistant metal 1 such as Rh, Au, etc.
, Pt, Pd, Cr, AQ, Pd-B, GeS n ,
Method using A g -Cu etc. (Japanese Unexamined Patent Publication No. 53-40
505. JP-A-55-73932), method using silicon oxide film (JP-A-52-127203, JP-A-50-80102, U.S. Patent 3,
109,746. U.S. Pat.
-143114) is known.

しかし上記金属保護膜では耐触性はあるものの耐摺動性
の点でまだ十分ではなく、酸化シリコンを用いる方法は
耐摺動性の点である程度の改善は認められるものの、電
気的に絶縁性であるために磁気記録システムで動作時に
発生する静電気の除去が十分にでき難いという問題があ
る。さらに有機物質を主成分とする膜では静電気の問題
とともに粉塵が付着し易いという問題がある。
However, although the above-mentioned metal protective film has contact resistance, it is still not sufficient in terms of sliding resistance, and the method using silicon oxide shows some improvement in sliding resistance, but it is not electrically insulating. Therefore, there is a problem in that it is difficult to sufficiently remove static electricity generated during operation of a magnetic recording system. Furthermore, films mainly composed of organic substances have the problem of static electricity and the tendency for dust to adhere to them.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の保護層よりも優れた耐触性、耐
摺動性を保有する保護層が形成されてなる磁気記録媒体
を提供することである。
An object of the present invention is to provide a magnetic recording medium on which a protective layer is formed that has better contact resistance and abrasion resistance than conventional protective layers.

〔発明の概要〕[Summary of the invention]

すなわち本発明は蒸着法、スパッタ法あるいはイオンブ
レーティング法等のペーパーデポジション法で基板に強
磁性金属薄膜を形成した後、空気に晒すことなく連続し
てSiを主成分とする合金、GeもしくはGeを主成分
とする合金から成る保護層をペーパーデポジション法で
形成し、耐蝕性と耐摺動性が優れた磁気記録媒体を製造
する方法を提供するものである。
That is, in the present invention, after forming a ferromagnetic metal thin film on a substrate by a paper deposition method such as vapor deposition method, sputtering method, or ion blating method, it is continuously coated with an alloy mainly composed of Si, Ge or The present invention provides a method for manufacturing a magnetic recording medium with excellent corrosion resistance and abrasion resistance by forming a protective layer made of an alloy containing Ge as a main component by a paper deposition method.

ここで保護層の形成を強磁性金属膜の形成に続いて連続
して行なうのは、以下の理由による1強磁性金属膜を形
成した後空気中に取り出したり、あるいは膜形成装置中
に長時間放置すると、その表面に油蒸気、水蒸気などが
吸着し酸化、汚染が生じる。この上に保護膜を形成する
と、これらの酸化層や吸着物の影響で保護膜と強磁性金
属膜の間の接合力が低下し、良好な耐摺動性が得られな
&1゜ 強磁性金属膜の形成に連続してSiを主成分とする合金
、GoもしくはGeを主成分とする合金から成る保護膜
を形成すると1強磁性金属膜表面が清浄で活性な状態で
保護膜材料が付着されるので両者の結合強度は大きくな
り、耐摺動性も向上する。また、強磁性金属膜の形成後
、大気に晒す−となく連続して保護膜を形成すると、i
li者の膜の界面に酸化層の形成を防止でき、その結果
両者の膜の結合強度は大きくなり、耐摺動性及び耐触性
を向上できる0強磁性金属膜の形成時に基板を加熱する
場合は、保護膜の形成が終了するまで基板加熱を続ける
のが望ましい、これは加熱することにより、ペーパーデ
ポジション装置の薄膜形成室内に存在する残留ガスの吸
着を防ぐことができることによる。
The reason why the protective layer is formed continuously after the formation of the ferromagnetic metal film is as follows. If left unattended, oil vapor, water vapor, etc. will adsorb onto its surface, causing oxidation and contamination. If a protective film is formed on top of this, the bonding force between the protective film and the ferromagnetic metal film will decrease due to the effects of these oxide layers and adsorbed substances, making it impossible to obtain good sliding resistance. When a protective film made of an alloy containing Si as a main component, Go or Ge as a main component is formed immediately after the film is formed, the protective film material is deposited on the surface of the ferromagnetic metal film in a clean and active state. Therefore, the bonding strength between the two is increased, and the sliding resistance is also improved. In addition, if a protective film is formed continuously after forming a ferromagnetic metal film without exposing it to the atmosphere,
The formation of an oxide layer at the interface of the ferromagnetic metal film can be prevented, and as a result, the bonding strength between the two films is increased, and the sliding and contact resistance can be improved. In this case, it is desirable to continue heating the substrate until the formation of the protective film is completed. This is because heating can prevent adsorption of residual gas present in the thin film forming chamber of the paper deposition apparatus.

保護膜の厚さは、充分な保護作用が得られること、磁気
記録層面と磁気ヘッドの間隙によるスペーシングロスに
よって磁気記録再生出力が低下しないこと1等の条件に
よって0.003〜0.3μm、好ましくは0.1−0
.15μmの範囲が良い。
The thickness of the protective film is 0.003 to 0.3 μm, depending on the following conditions: that a sufficient protective effect is obtained, and that the magnetic recording and reproducing output is not reduced due to spacing loss due to the gap between the magnetic recording layer surface and the magnetic head. Preferably 0.1-0
.. A range of 15 μm is preferable.

保護膜材料としてSiを主成分とする合金、 Geおよ
びGeを主成分とする合金が望ましいのは。
As the protective film material, alloys mainly composed of Si, Ge and alloys mainly composed of Ge are preferable.

薄膜の形成が容易で、膜緻密で硬度が大きく、耐摩耗性
が優れ、かつ強磁性金属との化学的親和力が大きく接合
強度も大きくなるためである。さらにSiを主成分とす
る合金e G6# Geを主成分とする合金は耐蝕性に
も優れ、また有機材料系の潤滑剤を耐摺動性の一層の向
上を目的として使用する場合にも有機材料との新和性が
良い、 Si、 Ge合金の合金元素としては、Ge(
SL) e Sny CgSb、Bi、Bなどを上記の
特長を損わない範囲(<50at%)で加えても良い、
また、Siを主成分とする合金GeおよびGoを主成分
とする合金は非晶質である方が均質な膜を得易いという
点で望ましいが、結晶質が含まれていても良い。Siを
主成分とするGeおよびGeを主成用とする合金から成
る保護膜を形成するときの基板温度は、接合強度を大き
く保つと同時に強磁性金属膜の磁気特性を劣化させない
範囲の50〜400℃であることが望ましい。
This is because it is easy to form a thin film, has a dense film, high hardness, excellent wear resistance, and has a large chemical affinity with ferromagnetic metals, resulting in high bonding strength. Furthermore, alloys mainly composed of Si e G6# alloys mainly composed of Ge have excellent corrosion resistance, and when using organic material-based lubricants for the purpose of further improving sliding resistance, Ge (
SL) e Sny CgSb, Bi, B, etc. may be added within the range (<50at%) that does not impair the above features.
Further, although it is preferable that the alloy Ge whose main component is Si and the alloy whose main component is Go are amorphous because it is easier to obtain a homogeneous film, they may contain crystalline materials. The substrate temperature when forming a protective film made of Ge containing Si as a main component or an alloy containing Ge as a main component is within a range of 50°C to 50°C, which is a range that maintains high bonding strength and does not deteriorate the magnetic properties of the ferromagnetic metal film. The temperature is preferably 400°C.

本発明に係る強磁性金属膜としては、Co−Cr。The ferromagnetic metal film according to the present invention is Co-Cr.

Go −V 、 Go −Mo、 Go −W 、 G
o −Re、 Co −0、Co −Cr −Rh、 
Go −Cr −Ru、 Go −Ni −0、co−
Ni、co−P、C0−B、C0−8i。
Go-V, Go-Mo, Go-W, G
o -Re, Co -0, Co -Cr -Rh,
Go -Cr -Ru, Go -Ni -0, co-
Ni, co-P, C0-B, C0-8i.

Go −Y 、 Go −La、 Go −Pr、 C
o −ce、 Go −8m、Co−Mn、Co−N1
−P、Go−Ni−Cu。
Go-Y, Go-La, Go-Pr, C
o-ce, Go-8m, Co-Mn, Co-N1
-P, Go-Ni-Cu.

Go−Ni−Hg、Go−Ni−W、Go−Ni−Re
Go-Ni-Hg, Go-Ni-W, Go-Ni-Re
.

Go −Mn −P 、 Go −Zn −PなどのC
o基合金膜。
C such as Go-Mn-P and Go-Zn-P
O-based alloy film.

Fe−Co、Fe−Ni、Fe−8i、Fe−Rh、F
e−V等のFe合金膜を蒸着法、スパッタリング法。
Fe-Co, Fe-Ni, Fe-8i, Fe-Rh, F
Evaporation method or sputtering method for Fe alloy film such as e-V.

イオンブレーティング法等のペーパーデポジション法で
形成したものが相当する。強磁性金属膜の厚さは0.0
3〜5μmであり、高密度の磁気記録を実現するために
は0.05〜1μmの膜がより望ましい。
This corresponds to one formed by a paper deposition method such as an ion blating method. The thickness of the ferromagnetic metal film is 0.0
The film thickness is 3 to 5 μm, and in order to realize high-density magnetic recording, a film of 0.05 to 1 μm is more desirable.

強磁性金属膜を形成する基板材料としては、ポリイミド
、ポリカーボネイト、ポリ塩化ビニリデン、ポリエチレ
ンテレフタレート、ポリエチレンナフタレート、酢酸セ
ルロース、ポリアミドのような高分子材料、アルミニウ
ム、ステンレス銅。
Substrate materials forming the ferromagnetic metal film include polymer materials such as polyimide, polycarbonate, polyvinylidene chloride, polyethylene terephthalate, polyethylene naphthalate, cellulose acetate, polyamide, aluminum, and stainless steel copper.

黄銅のような金属材料、あるいはガラス、セラミックを
用いることができる。またこれらの材料から成る基板と
強磁性金属膜の間に他の材料からなる薄膜の層が設けら
れても良い、基板の形状としては、ディスク、テープ、
ドラムのいずれでも良い。
A metal material such as brass, glass, or ceramic can be used. Furthermore, a thin film layer made of other materials may be provided between the substrate made of these materials and the ferromagnetic metal film.The shape of the substrate may be disk, tape,
Any drum is fine.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明を実施例で説明する。 The present invention will be explained below using examples.

実施例1 基板としてポリイミドフィルムを用いて、第1図に示す
構成の蒸着装置を用いて磁気記録媒体を作製した。lX
l0−“Torrの真空中でポリイミドフィルム基板l
を赤外線加熱ヒータ2で200℃に加熱しながら蒸着源
3からQeを蒸発させ、基板上に300人のGe層を形
成した。つづいて基板温度150℃で蒸着源4からGo
−Cr合金を蒸発させ、膜厚3500λのCo−21w
t。
Example 1 A magnetic recording medium was manufactured using a vapor deposition apparatus having the configuration shown in FIG. 1 using a polyimide film as a substrate. lX
l0 - Polyimide film substrate l in a vacuum of Torr
While heating the substrate to 200° C. with an infrared heater 2, Qe was evaporated from the evaporation source 3 to form a 300-layer Ge layer on the substrate. Next, go from the evaporation source 4 at a substrate temperature of 150°C.
-Co-21w with a film thickness of 3500λ by evaporating the Cr alloy
t.

%Crの強磁性金属膜を形成した。さらに同じ基  へ
板温度で蒸着源5よりGeを蒸発させ膜厚200人のG
oから成る保護層を形成し、第2図に示す構造の磁気記
録媒体を作製した。ここでポリイミドフィルム上に30
0人のGeを付着したのは。
%Cr ferromagnetic metal film was formed. Further, Ge was evaporated from the evaporation source 5 at the same substrate temperature to obtain a film with a thickness of 200 g.
A protective layer consisting of O was formed, and a magnetic recording medium having the structure shown in FIG. 2 was produced. Here, 30
0 people attached Ge.

G o −Cr膜の磁気特性の改善と付着強度の増大を
図るためである。
This is to improve the magnetic properties and increase the adhesion strength of the Go-Cr film.

同様の条件で、Go保護層の代りにGe−3vt%C,
Go−Lout%Si、  Go−30vt% Sn、
  Ge25vt%Sb* Ge  10ut%Bを用
いて同様な構造を持つ磁気記録媒体を作製した。この製
造条件で作製した試料をAグループとする。
Under similar conditions, Ge-3vt%C instead of Go protective layer,
Go-Lout%Si, Go-30vt%Sn,
A magnetic recording medium having a similar structure was fabricated using Ge25vt%Sb*Ge10ut%B. The samples produced under these manufacturing conditions are referred to as group A.

比較試料として、Co−Cr合金膜を形成した後基板温
度を室温まで下げ10時間保った後150℃に基板を加
熱して保護膜を形成した以外は前記と同様な条件で薄膜
形成を行なった磁気記録媒体を一組作製した。この製造
条件で作製した試料をBグループとする。さらに別の比
較試料として、Go−Cr合金膜、の形成後基板温度を
室温まで下げ。
As a comparison sample, a thin film was formed under the same conditions as above, except that after forming a Co-Cr alloy film, the substrate temperature was lowered to room temperature, maintained for 10 hours, and then heated to 150°C to form a protective film. A set of magnetic recording media was manufactured. Samples produced under these manufacturing conditions are designated as Group B. As another comparison sample, after forming a Go-Cr alloy film, the substrate temperature was lowered to room temperature.

蒸着装置を開けて空気に10時間露出した後再びlXl
0−”Torrの真空に排気して基板温度150℃で保
護膜を形成した以外は最初に述べた場合と同様な条件で
薄膜形成を行なった磁気記録媒体を一組作製した。この
製造条件で作製した試料をCグループとする。この他、
保護膜の形成していない試料をA、B、Cの各グループ
で標準試料として準備した。
After opening the deposition apparatus and exposing it to air for 10 hours,
A set of magnetic recording media was manufactured in which a thin film was formed under the same conditions as in the first case, except that the protective film was formed at a substrate temperature of 150° C. under a vacuum of 0-” Torr. Under these manufacturing conditions. The prepared samples are group C.In addition,
Samples on which no protective film was formed were prepared as standard samples in each group A, B, and C.

このようにして得られた各試料からディスク試料を切+
1出し、下記の方法で耐摺動性テストを行なった。ディ
スク回転装置に各試料ディスクをセットし、荷重10g
のヘッドを接触させてディスクを1.5m/sの速度で
連続回転させ、磁気記録媒体薄膜に傷が生じるまでの回
転の数を測定した。結果を表1に示す。
Cut a disk sample from each sample thus obtained.
1, and a sliding resistance test was conducted using the following method. Set each sample disk on the disk rotation device and apply a load of 10g.
The disk was continuously rotated at a speed of 1.5 m/s by contacting the magnetic recording medium head, and the number of rotations until a scratch appeared on the magnetic recording medium thin film was measured. The results are shown in Table 1.

表1の結果より明らかなように、耐摺動性は保護層を設
けることによって大幅に改善される。とくに真空中で強
磁性金属膜と保護層の形成を連続して行なったA、Bグ
ループの耐摺動性の、向上効果が著しく、基板温度を高
温に保ったまま連続して膜形成を行なったAグループの
試料の耐摺動性が特に優れている。
As is clear from the results in Table 1, the sliding resistance is significantly improved by providing the protective layer. In particular, the effect of improving the sliding resistance of Groups A and B, in which the ferromagnetic metal film and protective layer were formed successively in vacuum, was remarkable; The sliding resistance of the A group samples was particularly excellent.

つまり、耐摺動性を上げるには強磁性金属膜と保護層の
形成を途中で空気に晒すことなく連続して行なうことが
第一の条件として必要であり、さらに基板温度を高温に
保ったまま膜の形成を連続して行なえば更に望ましい結
果が得られる1本実施例で述べたCo−Cr合金膜とG
eもしくはGe合金からなる保護層の組合せについて真
空度の効果を類似の実験によって調べたところ5X10
−’      T orrより悪い真空になるとCo
−Cr合金膜と保護層の接合強度が低下し、耐摺動性が
悪くなる傾向が認められた。上記の磁性薄膜においてC
o −−Cr合金膜と保護層界面をオージェ電子分析を
行なったところ、悪い真空で作製した磁性薄膜では界面
付近に酸化層が形成されていることが確認された。また
、Co−Cr合金膜を形成してから保護膜を形成しはじ
める間の基板温度の耐摺動性に及ぼす効果を調べたとこ
ろ、基板の最低の温度が50℃を切ると表面に真空中の
残留ガス吸着し易(、やはり耐摺動性が悪くなった。
In other words, in order to improve the sliding resistance, the first condition is to form the ferromagnetic metal film and the protective layer continuously without exposing them to air in between, and also to maintain the substrate temperature at a high temperature. A more desirable result can be obtained by continuously forming the Co-Cr alloy film and the G film described in this example.
Similar experiments were conducted to investigate the effect of the degree of vacuum on the combination of protective layers made of e or Ge alloy.
-' When the vacuum becomes worse than T orr, Co
It was observed that the bonding strength between the -Cr alloy film and the protective layer decreased, and the sliding resistance tended to deteriorate. In the above magnetic thin film, C
When Auger electron analysis was performed on the interface between the o --Cr alloy film and the protective layer, it was confirmed that an oxide layer was formed near the interface in the magnetic thin film produced in a bad vacuum. In addition, when we investigated the effect of the substrate temperature on the sliding resistance after forming the Co-Cr alloy film and starting to form the protective film, we found that when the lowest temperature of the substrate was less than 50℃, the surface was exposed to vacuum. easily adsorbed residual gas (and the sliding resistance deteriorated as well).

一方、基板温度が高過ぎるとポリイミド基板が変質する
ため400℃以下とすることが必要であった。
On the other hand, if the substrate temperature is too high, the quality of the polyimide substrate changes, so it was necessary to keep it at 400° C. or lower.

ここで、Co−Cr強磁性金属膜の代りに、G。Here, G is used instead of the Co--Cr ferromagnetic metal film.

−V、Go−W、Co−Re、Go−Ni、Go−Cr
−Rh、Co−Cr−Ru、Co−8i、Co−Y、C
-V, Go-W, Co-Re, Go-Ni, Go-Cr
-Rh, Co-Cr-Ru, Co-8i, Co-Y, C
.

−La、 Co−Pr、 Go−Ce、 Go−8m、
 Go −Mn、 Fe−Go、 Fe−Ni、 Fe
−5i、 Fe−Rh。
-La, Co-Pr, Go-Ce, Go-8m,
Go-Mn, Fe-Go, Fe-Ni, Fe
-5i, Fe-Rh.

Fe−Vの強磁性金属膜を用いた場合にもいずれも同様
の効果が詔められ1強磁性金属膜を形成後連続してGe
もしくはGeを主成分とする合金から成る保護層を形成
することにより、耐摺動性が著しく向上することがわか
った。
A similar effect is also suggested when a Fe-V ferromagnetic metal film is used. After forming one ferromagnetic metal film, Ge
Alternatively, it has been found that the sliding resistance can be significantly improved by forming a protective layer made of an alloy containing Ge as a main component.

実施例2゜ 基板として表面をアルマイト化した直径100m、厚さ
2wnのAQ円板を用いて、連続スパッタ装置を用いて
以下の手順で磁気記録媒体を作製した。連続スパッタ装
置の試料室を5X10−’T orrまで排気した後3
X10−”TorrのArガスを導入し、高周波出力4
W/c11.基板温度100℃の条件でGo−80wt
%Zr−9,5wt%Mo合金を5000人の膜厚スパ
ッタ蒸着した。
Example 2 A magnetic recording medium was fabricated using a continuous sputtering apparatus in the following procedure using an AQ disk having an alumite surface and having a diameter of 100 m and a thickness of 2 wn as a substrate. After evacuating the sample chamber of the continuous sputtering device to 5X10-' Torr,
Introducing Ar gas at X10-” Torr, high frequency output 4
W/c11. Go-80wt under the condition of substrate temperature 100℃
% Zr-9, 5 wt % Mo alloy was sputter deposited to a thickness of 5000.

ついでスパッターターゲットをGo−20,2wt%C
r合金に交換した。この間、試料室内は3X10−3T
orrのAr雰囲気、基板温度は100°Cに保たれて
いた。Co−Cr合金膜を2000人同様な条件でスパ
ッタ蒸着した。さらに同様にスパッターターゲットをG
eに交換し、基板温度を150℃に設定し、同様なスパ
ッタ条件でGeから成る200人の保MMを形成した。
Then, the sputter target was Go-20, 2wt%C.
Replaced with r alloy. During this time, the sample chamber is 3X10-3T.
The Ar atmosphere in orr and the substrate temperature were maintained at 100°C. A Co--Cr alloy film was sputter-deposited by 2000 people under the same conditions. Furthermore, the sputter target is
The substrate temperature was set at 150° C., and 200-layer MM made of Ge was formed under the same sputtering conditions.

Geスパッターターゲットの代りにGe−2vt%C,
Ge−15v七%B、Ge−15wt%Si、Ge−1
0wt;% Sn、  Ge−40ut% Sb、  
Ge−5wt%Mn、 Ge −3wlh%Crの各ス
パッターターゲットを用いた以外は前記と同様な条件で
磁気記録媒体を作製した。この試料群をDグループとす
る。
Ge-2vt%C instead of Ge sputter target,
Ge-15v7%B, Ge-15wt%Si, Ge-1
0wt;%Sn, Ge-40ut%Sb,
Magnetic recording media were produced under the same conditions as above except that sputter targets of Ge-5wt%Mn and Ge-3wlh%Cr were used. This sample group is designated as D group.

比較試料としてGo−Cr合金膜を形成した後基板温度
を室温まで下げ3X10−’TorrのAr雰囲気中で
24時間保った後、基板を150℃に加熱して保護膜を
形成した以外は前記と同様な条件で薄膜形成を行なった
磁気記録媒体を一組作製した。これらの試料をEグルー
プとする。
As a comparison sample, after forming a Go-Cr alloy film, the substrate temperature was lowered to room temperature and kept in an Ar atmosphere of 3 x 10-' Torr for 24 hours, and then the substrate was heated to 150 °C to form a protective film. A set of magnetic recording media was manufactured in which thin films were formed under similar conditions. These samples are designated as Group E.

別の比較試料として、Go−Cr合金膜の形成後基板温
度を室温まで下げ、装置から取りはずして別のスパッタ
装置に装着し、6X10−’Torrまで排気した後2
XlO−’TorrのArガスを導入し5 W/ciの
条件でGeおよび一連のGe合金から成る200λの保
護層を形成した以外は本実施例の最初に述べたのと同様
の条件で薄膜形成を行なった磁気記録媒体を一組作製し
た。これらの試料群をFグループとする。
As another comparison sample, after forming the Go-Cr alloy film, the substrate temperature was lowered to room temperature, removed from the apparatus, placed in another sputtering apparatus, and evacuated to 6X10-' Torr.
A thin film was formed under the same conditions as described at the beginning of this example except that an Ar gas of XlO-'Torr was introduced and a 200λ protective layer made of Ge and a series of Ge alloys was formed under conditions of 5 W/ci. A set of magnetic recording media was fabricated. These sample groups will be referred to as F group.

この他、保護層を形成していない試料をり、E。In addition, there was a sample E with no protective layer formed.

Fの各グループの試料を作る際に1個ずつ作製した。こ
のようにして得られた試料を実施例1と同様な条件で耐
摺動テストを行なった。結果を表2に示す。
When preparing samples for each group of F, one sample was prepared. The thus obtained sample was subjected to a sliding resistance test under the same conditions as in Example 1. The results are shown in Table 2.

表2の結果より明らかなように、耐摺動性はGeもしく
はGe合金から成る保護層を設けることによって大幅に
改善されることがわかった。とくに強磁性金属膜と保護
層の形成を連続して行なったDグループの試料の耐摺動
性の向上の効果が著しい、基板温度を高温に保ったまま
連続して膜形成を行なったDグループの試料の耐摺動性
が特に優れていることがわかった。
As is clear from the results in Table 2, it was found that the sliding resistance was significantly improved by providing a protective layer made of Ge or a Ge alloy. In particular, the effect of improving the sliding resistance of the samples in Group D, in which the ferromagnetic metal film and protective layer were formed successively, was remarkable.Group D, in which the films were formed continuously while maintaining the substrate temperature at a high temperature. It was found that the sliding resistance of the sample was particularly excellent.

D、E、F各グループの試料において、強磁性金属膜と
保護層界面をオージェ電子分析を行なったところ、D、
Eグループの試料に比べてFグループの試料では界面に
酸化層や炭素化物の吸着層が形成されていることを確認
した。
When Auger electron analysis was performed on the interface between the ferromagnetic metal film and the protective layer in the samples of groups D, E, and F, it was found that D,
It was confirmed that an oxide layer and a carbonide adsorption layer were formed at the interface in the F group samples compared to the E group samples.

基板温度を高温に保つことにより強磁性金属膜の表面に
試料室内の油蒸気などの不純物の吸着を防ぐことができ
、このため保護層と強磁性金属膜の接合強度が大きくな
ったためと解釈できる。しかし、基板温度が400℃以
上になると強磁性金属膜の磁気特性が劣化したり1強磁
性金属膜と保護層材料が反応する等の問題が生じた。従
って基板温度は400℃を越えないようにする必要があ
る。
It can be interpreted that this is because by keeping the substrate temperature at a high temperature, impurities such as oil vapor in the sample chamber can be prevented from being adsorbed on the surface of the ferromagnetic metal film, and this increases the bonding strength between the protective layer and the ferromagnetic metal film. . However, when the substrate temperature exceeds 400° C., problems such as deterioration of the magnetic properties of the ferromagnetic metal film and reaction between the ferromagnetic metal film and the protective layer material occur. Therefore, it is necessary that the substrate temperature does not exceed 400°C.

さらに、AM基板の代りにポリイミド、ポリエチレンテ
レフタレート、ポリカーボネイト、ポリ塩化ビニリデン
、ガラス、黄銅を基板に用いた場合も類似の効果が得ら
れた。
Furthermore, similar effects were obtained when polyimide, polyethylene terephthalate, polycarbonate, polyvinylidene chloride, glass, or brass was used as the substrate instead of the AM substrate.

また、An基板上にCo−Crの代りにGo−V。Also, Go-V instead of Co-Cr on the An substrate.

Co −Mo、 Co −Re、 Go −Cr −R
h、 Go −Cr−Ru、Co’−Ni−0,Go−
Ni、Go−P、C。
Co-Mo, Co-Re, Go-Cr-R
h, Go-Cr-Ru, Co'-Ni-0, Go-
Ni, Go-P, C.

−B 、 Go −Si、 Co−Ni −P 、 G
o−Ni −B 。
-B, Go-Si, Co-Ni-P, G
o-Ni-B.

Go−Ni−Ag、 Go−Ni−Nd、 Go−Ni
−Ce+Co−Ni−Zn、 Go−Ni−Cu、 G
o−Ni−Hg。
Go-Ni-Ag, Go-Ni-Nd, Go-Ni
-Ce+Co-Ni-Zn, Go-Ni-Cu, G
o-Ni-Hg.

Go −Ni −W 、 Go −Ni −Re、 C
o −Mn −P 。
Go-Ni-W, Go-Ni-Re, C
o -Mn-P.

Go−Zn−’P、Fe−Go、Fe−Ni、Fe−5
i。
Go-Zn-'P, Fe-Go, Fe-Ni, Fe-5
i.

Fe−Rh、Fe−V合金膜のいずれを用いてもGeも
しくはGe合金から成る保護層を強磁性金属膜の形成に
連続して付着することにより、同様に耐摺動性が大幅に
向上する効果が認められた。
Regardless of whether Fe-Rh or Fe-V alloy films are used, the sliding resistance can be greatly improved by attaching a protective layer made of Ge or Ge alloy in succession to the formation of the ferromagnetic metal film. The effect was recognized.

なお、保護層はX線回折によりいずれも非晶質と認めら
れた。
In addition, all of the protective layers were recognized to be amorphous by X-ray diffraction.

実施例3゜ 実施例1における蒸着源5からGeの代りに81を蒸発
させる他は、実施例1と同様の条件でSiを保護膜とす
る磁気記録媒体を作成した。また。
Example 3 A magnetic recording medium using Si as a protective film was produced under the same conditions as in Example 1, except that 81 was evaporated from the evaporation source 5 instead of Ge in Example 1. Also.

実施例1と同様に、Si保護層の代りに5i−3wt%
C,Si−10wt%Get si −30wt、%S
n、 5i−25vt%Sb、 Si −10wt%B
を用いて同様な構造を持つ磁気記録媒体を作製した。こ
の製造条件で作製した試料をGグループとする。
As in Example 1, 5i-3wt% was used instead of the Si protective layer.
C, Si-10wt%Get si-30wt,%S
n, 5i-25vt%Sb, Si-10wt%B
A magnetic recording medium with a similar structure was fabricated using this method. Samples produced under these manufacturing conditions are designated as Group G.

比較試料として、実施例1におけるBグループと同様な
条件で薄膜形成を行なった磁気記録媒体を一組作製した
。この製造条件で作製した試料をtHグループとする。
As a comparative sample, a set of magnetic recording media was prepared in which thin films were formed under the same conditions as in Group B in Example 1. Samples produced under these manufacturing conditions are referred to as the tH group.

さらに別の比較試料として、実施例1におけるdグルー
プと同様な条件で薄膜形成を行なった磁気記録媒体を一
組作製した。この製造条件で作製した試料を■グループ
とする。
As another comparison sample, a set of magnetic recording media was prepared in which a thin film was formed under the same conditions as in the d group in Example 1. Samples produced under these manufacturing conditions are grouped as group (■).

この他、保護膜の形成していない試料をG、H。In addition, samples with no protective film formed are shown in G and H.

■の各グループで標準試料として準備した。A standard sample was prepared for each group in (2).

このようにして得られた各試料について実施例1と同様
の耐摺動性テストを行なった。結果を表3に示す。
The same sliding resistance test as in Example 1 was conducted on each of the samples thus obtained. The results are shown in Table 3.

表3の結果より明らかなように、実施例1と同様に耐摺
動性は保護層を設けることによって大幅に改善される。
As is clear from the results in Table 3, as in Example 1, the sliding resistance is significantly improved by providing the protective layer.

とくに真空中で強磁性全屈薄膜と保護層の形成を連続し
て行なったG、Hグループの耐摺動性の向上効果が著し
く、基板温度を高温に保ったまま連続して膜形成を行な
ったGグループの試料の耐摺動性が特に優れている。ま
た1本実施例で述べたCo−Cr合金膜とSiもしくは
Si合金からなる保護層の組合せについて真空度の効果
を類似の実験によって調べたところ 5XIO−’Torrより悪に真空になるとCo−Cr
合金膜と保護層の接合強度が低下し、耐摺動性が悪くな
る傾向が認められた。上記の磁性薄膜においてCo−C
r合金膜と保護層界面をオージェ電子分析を行なったと
ころ、悪い真空で作製した磁性薄膜では界面付近に酸化
層が形成されていることが確認された。また、Co−C
r合金膜を形成してから保護膜を形成しはじめる間の基
板温度の耐摺動性に及ぼす効果を調べたところ、基板の
最低の温度が50℃を切ると表面に真空中の残留ガスが
吸着し易く、やはり耐摺動性が悪くなった。
In particular, the effect of improving the sliding resistance of Groups G and H, in which the ferromagnetic fully refractive thin film and the protective layer were formed successively in vacuum, was remarkable, and the film formation was performed continuously while maintaining the substrate temperature at a high temperature. The sliding resistance of the G group samples was particularly excellent. In addition, when the effect of the degree of vacuum on the combination of the Co-Cr alloy film and the protective layer made of Si or Si alloy described in this example was investigated by a similar experiment, it was found that when the vacuum becomes worse than 5XIO-'Torr, the Co-Cr
It was observed that the bonding strength between the alloy film and the protective layer decreased, and the sliding resistance tended to deteriorate. In the above magnetic thin film, Co-C
When Auger electron analysis was performed on the interface between the r-alloy film and the protective layer, it was confirmed that an oxide layer was formed near the interface in the magnetic thin film produced in a bad vacuum. Also, Co-C
When we investigated the effect of the substrate temperature on the sliding resistance between the formation of the r-alloy film and the start of the protective film formation, we found that when the lowest temperature of the substrate was below 50°C, residual gas in the vacuum formed on the surface. It was easily adsorbed, and the sliding resistance was also poor.

また、Co−Cr強磁性金属薄膜の代りに、実施例1と
同様に他の強磁性金属薄膜を用いた場合にも、同様の効
果が認められた。
Furthermore, similar effects were observed when another ferromagnetic metal thin film was used in place of the Co--Cr ferromagnetic metal thin film as in Example 1.

実施例4゜ 実施例2において、Geのスパッターターゲットの代り
にSiのスパッターターゲットを用い。
Example 4 In Example 2, a Si sputter target was used instead of the Ge sputter target.

その時の基板温度を100℃に設定し、300人の保護
層を形成する他は、実施例2と同様な条件でSiを保護
膜とする磁気記録媒体を作成した。
A magnetic recording medium using Si as a protective film was produced under the same conditions as in Example 2, except that the substrate temperature at that time was set at 100° C. and a 300-layer protective layer was formed.

Siスパッターターゲットの代りに5i−2vt%C,
Si−15wt%B、Si=5wt%Qe、Si−10
wt%Sn、 Si −4Qwt、%Sb、 5i−5
v七%Mn、Si−3wt%Crの各スパッターターゲ
ットを用いた以外は前記と同様な条件で磁気記録媒体を
作製した。この試料群をJグループとする。
5i-2vt%C instead of Si sputter target,
Si-15wt%B, Si=5wt%Qe, Si-10
wt%Sn, Si-4Qwt,%Sb, 5i-5
A magnetic recording medium was produced under the same conditions as above except that sputter targets of v7% Mn and Si-3wt% Cr were used. This sample group is designated as J group.

比較試料として実施例2におけるEグループと同様な条
件で薄膜形成を行なった磁気記録媒体を一組作製した。
As a comparative sample, a set of magnetic recording media was prepared in which thin films were formed under the same conditions as in Group E in Example 2.

尚、保3層の厚さは300人である。これらの試料をに
グループとする。
The thickness of the third layer is 300 people. Group these samples into groups.

別の比較試料として、実施例2におけるFグループと同
様の条件で薄膜形成を行なった磁気記録媒体を一組作製
した。尚、保護層の厚さは300人である。これらの試
料群をLグループとする。
As another comparative sample, a set of magnetic recording media was prepared in which thin films were formed under the same conditions as in Group F in Example 2. Note that the thickness of the protective layer is 300 people. These sample groups will be referred to as L group.

この他、保護層を形成していない試料をJ、K。In addition, samples with no protective layer formed are J and K.

Lの各グループの試料を作る際に1個ずつ作製した。One sample was prepared for each group of L.

このようにして得られた試料を実施例1と同様な条件で
耐摺動性テストを行なった。結果を表4に示す。
The thus obtained sample was subjected to a sliding resistance test under the same conditions as in Example 1. The results are shown in Table 4.

表4の結果により明らかなように、実施例2と同様に耐
摺動性はSiもしくはSi合金から成る保護層を設ける
ことによって大幅に改善されることがわかった。とくに
強磁性金属薄膜と保護層の形成を連続して行なったJグ
ループの試料の耐摺動性の向上の効果が著しい。基板温
度を高温に保ったまま連続して膜形成を行なったJグル
ープの試料の耐摺動性が特に優れていることがわかった
As is clear from the results in Table 4, as in Example 2, it was found that the sliding resistance was significantly improved by providing a protective layer made of Si or Si alloy. In particular, the effect of improving the sliding resistance of the J group samples in which the ferromagnetic metal thin film and the protective layer were successively formed was remarkable. It was found that the sliding resistance of the J group samples, in which films were continuously formed while keeping the substrate temperature at a high temperature, was particularly excellent.

J、に、L各グループの試料において、強磁性金属膜と
保護層界面をオージェ電子分析を行なったところ、J、
にグループの試料に比べてLグループの試料では界面に
酸化層や炭素化物の吸着層が形成されていることを確認
した。
Auger electron analysis was performed on the interface between the ferromagnetic metal film and the protective layer in the samples of each group J, L, and J.
It was confirmed that an oxide layer and a carbonide adsorption layer were formed at the interface in the L group samples compared to the L group samples.

また、AQ基板の代りに、実施例2と同様に他の基板材
料を用いた場合も類似の効果が得られた。
Further, similar effects were obtained when other substrate materials were used instead of the AQ substrate as in Example 2.

また、AQ基板上にGo−Crの代りに実施例2と同様
に他の強磁性金属薄膜を用いてもSiもしくはSi合金
から成る保護層を強磁性金属薄膜の形成に連続して付着
することにより、同様に耐摺動性が大幅に向上する効果
が認められた。
Furthermore, even if another ferromagnetic metal thin film is used on the AQ substrate instead of Go-Cr in the same manner as in Example 2, a protective layer made of Si or Si alloy can be deposited continuously after the formation of the ferromagnetic metal thin film. Similarly, the effect of significantly improving the sliding resistance was observed.

なお、保護層はX線回折によりいずれも非晶質1と認め
られた。
Note that the protective layers were all recognized to be amorphous 1 by X-ray diffraction.

〔発明の効果〕〔Effect of the invention〕

これまでの説明から明らかなように、強磁性金属薄膜の
形成後連続してSiを主成分とする合金GeもしくはG
eを主成分とする合金から成る保護層を形成することに
より、強磁性金属薄膜と保護層の界面に余分の酸化層が
形成されるのを防止でき、その結果磁気記録媒体耐摺動
性を改善することができる。また強磁性金属薄膜の形成
後1表面をスパッタクリーニングして余分の酸化層を除
去した後連続して保護層を形成しても同様の改善をする
ことができる。さらに本発明による方法で製造した磁気
記録媒体表面にさらに高分子系潤滑剤を追加塗布するこ
とによって一層優れた耐摺動性が得られる。
As is clear from the above explanation, after the formation of the ferromagnetic metal thin film, the alloy Ge or G containing Si as the main component is continuously used.
By forming a protective layer made of an alloy whose main component is e, it is possible to prevent the formation of an extra oxide layer at the interface between the ferromagnetic metal thin film and the protective layer, and as a result, the sliding resistance of the magnetic recording medium is improved. It can be improved. A similar improvement can also be achieved by sputter cleaning one surface of the ferromagnetic metal thin film to remove an excess oxide layer and then forming a protective layer. Further, by additionally applying a polymeric lubricant to the surface of the magnetic recording medium produced by the method according to the present invention, even more excellent sliding resistance can be obtained.

Siを主成分とする合金Ge、Geを主成分とする合金
は化学的に安定な材料であり、これらの材料から成る保
護層を設けることにより、磁気記録媒体の耐蝕性の向上
を図ることができる。
Alloys containing Si as a main component Ge and alloys containing Ge as a main component are chemically stable materials, and by providing a protective layer made of these materials, it is possible to improve the corrosion resistance of a magnetic recording medium. can.

本発明によれば磁気記録媒体の耐蝕性と耐摺動性を同時
に改善することができる。
According to the present invention, it is possible to simultaneously improve the corrosion resistance and the sliding resistance of a magnetic recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気記録媒体の製造方法を実施す
るための装造装置の清成の例を示す図。 第2図は本発明によって作製した磁気記録媒体の断面構
造の一例である。 ■=基板、2:赤外線加熱ヒータ、3:Ge蒸発源、4
:Co−Cr蒸発源、5:Ge合金若しくはSi合金蒸
発源、6:基板供給ロール。 7:基板巻取ロール、8ニガイドロール。 9:しやへい板、10:Ge層、11:強磁性金属膜、
12:保護層。
FIG. 1 is a diagram showing an example of the preparation of a mounting device for carrying out the method of manufacturing a magnetic recording medium according to the present invention. FIG. 2 is an example of a cross-sectional structure of a magnetic recording medium manufactured according to the present invention. ■=Substrate, 2: Infrared heater, 3: Ge evaporation source, 4
: Co-Cr evaporation source, 5: Ge alloy or Si alloy evaporation source, 6: Substrate supply roll. 7: Board winding roll, 8 second guide roll. 9: Shiyahei plate, 10: Ge layer, 11: ferromagnetic metal film,
12: Protective layer.

Claims (1)

【特許請求の範囲】[Claims] 1、強磁性体金属薄膜上に、Siを主成分とする合金、
GeおよびGeを主成分とする合金の群から選ばれた材
料からなる保護膜を形成したことを特徴とする磁気記録
媒体。
1. An alloy containing Si as a main component on a ferromagnetic metal thin film,
A magnetic recording medium comprising a protective film made of a material selected from the group of Ge and alloys containing Ge as a main component.
JP22168984A 1984-10-22 1984-10-22 Magnetic recording medium Pending JPS61104317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22168984A JPS61104317A (en) 1984-10-22 1984-10-22 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22168984A JPS61104317A (en) 1984-10-22 1984-10-22 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61104317A true JPS61104317A (en) 1986-05-22

Family

ID=16770735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22168984A Pending JPS61104317A (en) 1984-10-22 1984-10-22 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61104317A (en)

Similar Documents

Publication Publication Date Title
JPH09190945A (en) Magnetic recording disk for horizontal recording and its manufacture
JPH0766544B2 (en) Method of manufacturing thin film magnetic disk
US5252367A (en) Method of manufacturing a magnetic recording medium
JP2001052330A (en) Magnetic recording medium and its manufacture and magnetic recording apparatus
JPS6122852B2 (en)
JPS6329330B2 (en)
JPS61104317A (en) Magnetic recording medium
EP0369226B1 (en) Magnetic recording medium
EP0513418B1 (en) Magnetic recording medium
JP2819839B2 (en) Magnetic disk substrate and magnetic recording medium using the same
KR100639620B1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JPS61104316A (en) Magnetic recording medium and its production
GB2254620A (en) Magnetic disk with high coercive force
JPH03273525A (en) Production of magnetic recording medium
JPH05143953A (en) Magnetic recording medium
JPH04255908A (en) Substrate for magnetic disk
JPH01251313A (en) Magnetic recording medium
JPS6330691B2 (en)
JPS62283412A (en) Magnetic recording medium
JPS61210516A (en) Magnetic recording medium and its production
JP2538123B2 (en) Fixed magnetic disk and manufacturing method thereof
JPH0715753B2 (en) Magnetic recording medium
JPH11339244A (en) Magnetic recording medium and production thereof
JPH04229411A (en) Magnetic recording medium and production thereof
JPH07320257A (en) Magnetic recording medium and its production