JPS61102994A - Polymer composition for recovering petroleum - Google Patents

Polymer composition for recovering petroleum

Info

Publication number
JPS61102994A
JPS61102994A JP22414284A JP22414284A JPS61102994A JP S61102994 A JPS61102994 A JP S61102994A JP 22414284 A JP22414284 A JP 22414284A JP 22414284 A JP22414284 A JP 22414284A JP S61102994 A JPS61102994 A JP S61102994A
Authority
JP
Japan
Prior art keywords
oil
polymer
water
acrylamide
polymer composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22414284A
Other languages
Japanese (ja)
Other versions
JPH0410556B2 (en
Inventor
細谷 好夫
羊一 細川
新田 敦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Cyanamid Ltd
Original Assignee
Mitsui Cyanamid Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Cyanamid Ltd filed Critical Mitsui Cyanamid Ltd
Priority to JP22414284A priority Critical patent/JPS61102994A/en
Publication of JPS61102994A publication Critical patent/JPS61102994A/en
Publication of JPH0410556B2 publication Critical patent/JPH0410556B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は石油強制回収(E OR)に使用する圧入液に
関するものであり、圧入液の油層に対する抵抗ファクタ
ー及び残存抵抗ファクターを改良し、更に石油回収用薬
剤の使用効率を向上させるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an injection fluid used in forced oil recovery (EOR), and improves the resistance factor and residual resistance factor of the injection fluid against an oil layer, and further improves oil recovery. This improves the efficiency of drug use.

従来の技術 石油採掘技術は、現在までに大きく3つの段階を経て発
展して来た。第1段階は現在−次回収法と云われ油層の
もつ自然のエネルギーで自噴するままに油を回収するも
ので、回収率は埋蔵量の局程度と言われる。第2段階は
、自噴能力の減退した油田に、地表から人工的に水ある
いはガスを圧入して油を押し出すもので二次回収法と云
われる。
Conventional Technology Petroleum extraction technology has evolved through three major stages to date. The first stage is called the present-subsequent recovery method, in which oil is recovered as it self-gushes using the natural energy of the oil layer, and the recovery rate is said to be at the local level of reserves. The second stage is called the secondary recovery method, in which water or gas is artificially injected from the ground into oil fields where the artesian ability has diminished to push out the oil.

これらの回収法によっては、貯溜岩の孔隙に油滴として
存在する油、岩石表面に油膜として付着している油、二
次回収法のガス又は水に全く接触しない領域に存在する
油は、未回収となり、原油の局〜%が地下に残存すると
考えられている。
Depending on these recovery methods, oil that exists as oil droplets in the pores of reservoir rocks, oil that adheres to the rock surface as an oil film, and oil that exists in areas that do not come into contact with gas or water in secondary recovery methods may be untreated. It is believed that up to 50% of the crude oil remains underground after recovery.

加圧水又は加圧ガスを使用する第2次回収方法では(1
)圧入流体が低浸透率層または低浸透率領域を回避する
こと、(2)フィンガーリングを起こすこと、(3)粘
度の高い原油の下あるいは上を走ること、(4)割れ目
を通してチャネリングすること等が回収率を低くする原
因とされている。そこで更に石油回収率を向上すること
を目的として圧入水の流動抵抗を増すことが考えられ、
この手段としてポリマー水溶液を使用することが知られ
ており、合成ポリマーとしてポリアクリルアミド、バイ
オポリマーとしてザンサンガム等が実用に供されている
In the secondary recovery method using pressurized water or pressurized gas (1
) the injected fluid avoids low permeability layers or regions; (2) causes fingering; (3) runs under or over viscous crude oil; and (4) channels through fractures. These factors are said to be the cause of low recovery rates. Therefore, in order to further improve the oil recovery rate, it is considered to increase the flow resistance of the injection water.
It is known to use an aqueous polymer solution as a means for this purpose, and polyacrylamide as a synthetic polymer and xanthan gum as a biopolymer have been put into practical use.

この残存油を回収する技術が第3段階であって、 En
hanced Oil Recovery  (EOR
)と呼4fれている。
The third stage is the technology to recover this residual oil, and En
Hanced Oil Recovery (EOR)
) is called 4f.

本発明はEOR方法に関するものである。The present invention relates to an EOR method.

発明が解決しようとする問題点 前述の如く、ポリアクリルアミドを用いて圧入液の流動
抵抗を増加させることは既に知られてI/)るが、アク
リルアミド系重合体自体の改質につl、%ては未だ充分
検討されていない0本発明におI/\ては、ポリアクリ
ルアミド(アクリルアミド系重合体)に少量の添加物を
添加する二とにより、さらにすぐれた圧入液特性を発現
させる石油回収用薬剤を提供しようとするものである。
Problems to be Solved by the Invention As mentioned above, it is already known that polyacrylamide can be used to increase the flow resistance of injection fluid. This invention has not yet been sufficiently investigated.The present invention involves the addition of a small amount of additives to polyacrylamide (acrylamide-based polymer), thereby achieving even better oil recovery properties. The aim is to provide medicines for patients with disabilities.

問題点を解決するための手段・作用 本発明は、アクリルアミド系重合体100重量部とチオ
尿素類0.05〜5.0重量部とからなる抵抗′y y
 9 ’) −H、RU”itc#*ヮ7,7.−。ヤ
あ54た石油回収用重合体組成物〒ある。
Means/Function for Solving the Problems The present invention provides a resistor comprising 100 parts by weight of an acrylamide polymer and 0.05 to 5.0 parts by weight of a thiourea.
9') -H, RU"itc#*ヮ7,7.-. Yaa 54 polymer composition for oil recovery.

すなわち本発明は、従来石油強制回収に使用されている
ポリアクリルアミド水溶液にさらに少量のチオ尿素類を
添加することにより、石油回収率の増加につながる抵抗
ファクター(RF)及び残存抵抗ファクター(RRF)
を改良し、石油回収率を増加させ、又ポリアクリルアミ
ドの使用量も従来より少なくてすむ。
That is, the present invention adds a small amount of thioureas to the polyacrylamide aqueous solution conventionally used for forced oil recovery, thereby improving the resistance factor (RF) and residual resistance factor (RRF) that lead to an increase in oil recovery rate.
This improves the oil recovery rate and increases the oil recovery rate, and requires less polyacrylamide than before.

ここでRF及びRRFは次の方法で算出できることが知
られている* (Polymer 5cience a
nd Tech−nology Vol、2. Wat
er−9olub!e Polymers P2O3−
+2t3゜Water−Soluble  PoXテw
ets  in  Petroleum  Recov
ery)  。
It is known that RF and RRF can be calculated by the following method* (Polymer 5science a
nd Tech-nology Vol, 2. Wat
er-9olub! e Polymers P2O3-
+2t3゜Water-Solable PoX Tew
ets in Petroleum Recov
ery).

前述の加圧水による石油回収方法においては置換流体す
なわち加圧水と、被置換流体すなわち原油との易動度の
比が回収率に大きく影響することは古くから知られてい
る。
In the aforementioned oil recovery method using pressurized water, it has been known for a long time that the mobility ratio between the displacement fluid, ie, pressurized water, and the fluid to be replaced, ie, crude oil, greatly influences the recovery rate.

易動度比(M)は次のように定義される。The mobility ratio (M) is defined as follows.

M=(KW/ ルムW)/(KO/ シレ 0) 参 
参 φ (1)ここに、 Kwは不動油飽和率における水の相対浸透率Koは不動
水飽和率における油の相対浸透率ルWは水の粘度 ル0は油の粘度 通常の加圧水の場合MがlO〜30と非常に高い価をと
り、水の方が油より動き易い性質を示すことが低い油回
収率と関連するもので、何らかの手段によりMを1〜2
に低下させれば、油を押し出す作用がスムースに行われ
る。
M=(KW/lumu W)/(KO/sire 0) Reference
Reference φ (1) Here, Kw is the relative permeability of water at the saturation rate of immobile oil Ko is the relative permeability of oil at the saturation rate of immobile water Le W is the viscosity of water Le 0 is the viscosity of oil In the case of normal pressurized water M The fact that M has a very high value of lO~30 and that water is more mobile than oil is associated with a low oil recovery rate.
If the temperature is lowered to 100%, the action of pushing out the oil will be carried out smoothly.

ポリマー攻法においては上記水をポリブー溶液に読み替
えるわけであるが、このMを低下させるためのポリブー
溶液の性能を知るために、抵抗ファクターRFが測定さ
れる。
In the polymer attack method, the above-mentioned water is replaced with a Polybou solution, and in order to know the performance of the Polybou solution for lowering M, the resistance factor RF is measured.

RF= (Kw/JLw)/ (Kp/ルP)・・(2
)ここに、 KPは不動油飽和率にお1するポリマー溶液の相対浸透
率 ルpはポリマー溶液の粘度 このRFはポリマーの濃度、ポリマーの分子量および溶
媒の性質等に影響されるが、このRFの値が大きければ
石油回収用溶液として好ましいことは(1)式とその説
明から容易に理解される。次にアクリルアミド系重合体
溶液のもう一つの特徴は、一度ポリマー溶液を岩石に通
過させることによって、その岩石の浸透率を半永久的に
低下させることである。この浸透率の低下を表示するも
のが残存抵抗ファクターRRFである。
RF= (Kw/JLw)/(Kp/LeP)...(2
) Here, KP is the relative permeability of the polymer solution relative to the saturation rate of the fixed oil.p is the viscosity of the polymer solution.This RF is influenced by the concentration of the polymer, the molecular weight of the polymer, the properties of the solvent, etc. It is easily understood from equation (1) and its explanation that a large value of is preferable as an oil recovery solution. Another feature of the acrylamide polymer solution is that once the polymer solution is passed through the rock, it semi-permanently reduces the permeability of the rock. The residual resistance factor RRF indicates this decrease in permeability.

このRRFが大きくなればポリマー溶液通過後の岩石の
浸透率は小さくなり、原理的には原油層をポリマー溶液
層で押し、ポリマー溶液層を水層で押して原油を採掘す
るポリマー攻法にとっては好ましい現象である。
As this RRF increases, the permeability of the rock after passing through the polymer solution decreases, which is, in principle, preferable for the polymer exploration method in which crude oil is mined by pushing the crude oil layer with the polymer solution layer, and pushing the polymer solution layer with the water layer. It is a phenomenon.

なお、上記(2)及び(3)式は、   QL IL AlIΔP ただし、A:コアの断面積 L:コアの長さ Q:流量 であることから、次の(4)及び(5)式のようになる
In addition, the above equations (2) and (3) are as follows: become.

= (QW/ΔPw)(ΔPp/Qp)=(ΔPp/Q
p)/ (ΔPw/Qw)−−−(4)RRF= (Q
w/ΔPw)(ΔPw’/Qw’)=(ΔP’w/QW
’)/(ΔPw/Qw)@ *(5)発明者はこれら2
つの抵抗ファクターから本発明の石油回収用重合体組成
物の組成を特定の範囲に限定したものであって、アクリ
ルアミド系重合体100重量部に対しチオ尿素類の添加
量が0.05重量部未満であれば、上述の2つの抵抗フ
ァクターの上昇効果は期待できず、またチオ尿素類の添
加量が5.0重量部を超えるとかえって上述の2つの抵
抗ファクターが低下する。すなわち2つの抵抗ファクタ
ーはアクリルアミド系重合体100重量部に対しチオ尿
素類の添加量0.05〜5.0重量部の間に極大値を有
するのであって、チオ尿素類の添加;     量はさ
らに好ましくは0.5〜2.0重量部である。
= (QW/ΔPw) (ΔPp/Qp) = (ΔPp/Q
p)/(ΔPw/Qw)---(4)RRF= (Q
w/ΔPw)(ΔPw'/Qw')=(ΔP'w/QW
')/(ΔPw/Qw) @ *(5) The inventor has these 2
The composition of the oil recovery polymer composition of the present invention is limited to a specific range based on two resistance factors, and the amount of thioureas added is less than 0.05 parts by weight per 100 parts by weight of the acrylamide polymer. If so, the effect of increasing the two resistance factors mentioned above cannot be expected, and if the amount of thioureas added exceeds 5.0 parts by weight, the two resistance factors mentioned above will decrease on the contrary. That is, the two resistance factors have maximum values between 0.05 and 5.0 parts by weight of thioureas per 100 parts by weight of the acrylamide polymer; Preferably it is 0.5 to 2.0 parts by weight.

なお、本発明において、アクリルアミド系重合体とは、
アクリルアミド成分を含む全ての水溶性重合体を包含す
る。
In addition, in the present invention, the acrylamide polymer is
Includes all water-soluble polymers containing an acrylamide component.

具体的には、アクリルアミドと、アクリル酸(塩)、メ
タアクリル醸(塩)、2−アクリルアミド−2−メチル
プロパンスルホン酸(塩)等の共重合物、あるい−は、
これらの7ニオン性重合体に水溶性を損なわない範囲で
メタアクリルアミド、アクリロニトリル、ジメチルアミ
ノエチルメタアクリレート3級塩、4級化物、アクリル
酸低級アルキルエステル、等を含む重合物、また所謂共
重合反応に依ったものに限らず、重合抜挿々の化学反応
により、アミド基を他の官能基に変換したもの、例えば
アルカリにより加水分解したり、メチロール化したもの
を包含する。
Specifically, copolymers of acrylamide and acrylic acid (salt), methacrylic acid (salt), 2-acrylamide-2-methylpropanesulfonic acid (salt), or,
Polymers containing methacrylamide, acrylonitrile, dimethylaminoethyl methacrylate tertiary salts, quaternized products, lower alkyl acrylic esters, etc., to the extent that water solubility is not impaired, or so-called copolymerization reactions of these 7-ionic polymers. The present invention is not limited to those based on the above, but also includes those in which an amide group is converted into another functional group by chemical reactions in and out of polymerization, such as those in which an amide group is hydrolyzed with an alkali or converted into a methylol group.

また、上記の2種類以上の重合体の混合物を包含する。It also includes mixtures of two or more of the above polymers.

又見掛の重合度は10000以上のものが好まし1、%
Also, the apparent degree of polymerization is preferably 10,000 or more, 1.%.
.

又、本発明でいうチオ尿素類とは次の一般式(ただし式
中のRt、R2は水素、または主として炭素および水素
からなる有機の基を、またR3は主として炭素および水
素からなる有機の基をあられす)で示される構造部分を
少なくとも1個有する化合物である。
In addition, the thioureas referred to in the present invention refer to the following general formula (wherein Rt and R2 are hydrogen or an organic group mainly composed of carbon and hydrogen, and R3 is an organic group mainly composed of carbon and hydrogen). It is a compound having at least one structural moiety represented by the following.

たとえば、このようなチオ尿素類としては、チオ尿素、
N、N’−ジフェニルチオ尿素、ジオルト−トリルチオ
尿素、エチレン尿素などが挙げられる。
For example, such thioureas include thiourea,
Examples include N,N'-diphenylthiourea, diortho-tolylthiourea, and ethyleneurea.

また本発明の重合体組成物とは、アクリルアミド系重合
体とチオ尿素類が固体状で混合されている固体組成物の
みならず、使用状態において実質的にアクリルアミド系
重合体とチオ尿素類が共存する状態であればよく、溶液
あるいはスラリー状で共存する場合、ゲル状と粉末状で
混在する場合等も含むものであって、アクリルアミド系
重合体とチオ尿素類の混合方法について通常知られてい
る何れの方法をも用いることができる。
In addition, the polymer composition of the present invention is not only a solid composition in which an acrylamide polymer and a thiourea are mixed in solid form, but also a solid composition in which the acrylamide polymer and a thiourea coexist in a state of use. This includes cases where they coexist in solution or slurry form, gel form and powder form, etc., and the method for mixing acrylamide polymers and thioureas is generally known. Either method can be used.

しかして本発明の重合体組成物が石油回収に効果を発揮
する濃度は約1100pp 〜50,000ppm水溶
液であり、特に100PP11〜10,000ppa+
の濃度が好ましい。
Therefore, the concentration at which the polymer composition of the present invention is effective for oil recovery is about 1100 ppm to 50,000 ppm aqueous solution, particularly 100 PP11 to 10,000 ppm aqueous solution.
A concentration of is preferred.

実施例 アクリルアミド80モル%、アクリル酸ナトリウム20
モル%からなる共重合体で、その分子量が約15.00
0.000であるアクリルアミド系重合体を、食塩0.
14g/見、塩化カルシウム無水物0.18g/uを含
む塩水(溶媒)を用いて溶液中のアクリルアミド系重合
体の濃度が300ppmになるごとく調製し、粉末のチ
オ尿素を所定量加えて攪拌溶解し、第1表に示すチオ尿
素含有量の異るサンプル7ケを得た。
Example acrylamide 80 mol%, sodium acrylate 20
A copolymer consisting of mol%, its molecular weight is approximately 15.00
0.000 of an acrylamide polymer was mixed with 0.000 of common salt.
Using salt water (solvent) containing 14 g/u and 0.18 g/u of calcium chloride anhydride, the concentration of acrylamide polymer in the solution was adjusted to 300 ppm, and a predetermined amount of powdered thiourea was added and dissolved with stirring. Seven samples having different thiourea contents shown in Table 1 were obtained.

これら重合体組成物溶液サンプルについて油層岩のモデ
ルとして浸透率900〜1000ミリダルシーのベレア
砂岩を用いてコアテストを行った。
A core test was conducted on these polymer composition solution samples using Berea sandstone with a permeability of 900 to 1000 millidarcy as a model of oil reservoir rock.

1サンプル毎に新しいコアに次の順序で流体を流し、流
量Qとコア前後の圧力差ΔPを求め、(4)式、(5)
式により抵抗ファクターRFおよび残存抵抗ファクター
RRFを求めた。
For each sample, flow the fluid into a new core in the following order, find the flow rate Q and the pressure difference ΔP before and after the core, and use equations (4) and (5)
The resistance factor RF and the residual resistance factor RRF were determined using the formula.

なお、液温は25℃±1℃に保持した。Note that the liquid temperature was maintained at 25°C±1°C.

測定順序   流体   流量  座圧l     溶
媒   Qw   ΔPw2    サンプル  Qp
   ΔPp3     溶媒   QL、   ΔP
’wRF= (ΔPp/Qp)/(ΔPw/Qw) @
−−(4)RRF= (ΔP’W/QW’)/(ΔPw
/Qw)・―(5)得られた結果を第1表に示す。
Measurement order Fluid Flow rate Seat pressure l Solvent Qw ΔPw2 Sample Qp
ΔPp3 Solvent QL, ΔP
'wRF= (ΔPp/Qp)/(ΔPw/Qw) @
--(4) RRF= (ΔP'W/QW')/(ΔPw
/Qw) - (5) The obtained results are shown in Table 1.

第1表 重量部 剖 結果から判るようにチオ尿素添加量0.05〜5.0重
量%において、抵抗ファクター及び残存抵抗ファクター
が最大ピークを与え、これは前述のごとく石油回収率を
増加させるものである。
As can be seen from the autopsy results in Table 1, the resistance factor and residual resistance factor reach their maximum peaks when the amount of thiourea added is 0.05 to 5.0% by weight, which increases the oil recovery rate as mentioned above. It is.

発明の効果 本発明の石油回収用重合体組成物によれば、従来ポリマ
ー攻法に使用されているポリアクリルアミドの使用量の
削減あるいは石油回収率の向上を図ることができ、その
経済効果はきわめて大きい。
Effects of the Invention According to the polymer composition for oil recovery of the present invention, it is possible to reduce the amount of polyacrylamide used conventionally in polymer flooding methods or to improve the oil recovery rate, and the economic effect thereof is extremely high. big.

Claims (1)

【特許請求の範囲】[Claims] アクリルアミド系重合体100重量部とチオ尿素類0.
05〜5.0重量部とからなる抵抗ファクターおよび残
存抵抗ファクターの改良された石油回収用重合体組成物
100 parts by weight of acrylamide polymer and 0.0 parts by weight of thioureas.
A polymer composition for oil recovery with improved resistance factor and residual resistance factor comprising 0.05 to 5.0 parts by weight.
JP22414284A 1984-10-26 1984-10-26 Polymer composition for recovering petroleum Granted JPS61102994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22414284A JPS61102994A (en) 1984-10-26 1984-10-26 Polymer composition for recovering petroleum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22414284A JPS61102994A (en) 1984-10-26 1984-10-26 Polymer composition for recovering petroleum

Publications (2)

Publication Number Publication Date
JPS61102994A true JPS61102994A (en) 1986-05-21
JPH0410556B2 JPH0410556B2 (en) 1992-02-25

Family

ID=16809204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22414284A Granted JPS61102994A (en) 1984-10-26 1984-10-26 Polymer composition for recovering petroleum

Country Status (1)

Country Link
JP (1) JPS61102994A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927828A (en) * 1982-08-05 1984-02-14 Seikagaku Kogyo Co Ltd Preparation of amebocyte lysate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927828A (en) * 1982-08-05 1984-02-14 Seikagaku Kogyo Co Ltd Preparation of amebocyte lysate

Also Published As

Publication number Publication date
JPH0410556B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
CA1178040A (en) Enhanced oil displacement processes and compositions
US10655055B2 (en) Weak gel system for chemical enhanced oil recovery
EP0115836B1 (en) Polymeres useful in the recovery and processing of natural resources
US7956012B2 (en) Oil field treatment fluids with viscosified brines
US9023966B2 (en) Functional polymer for enhanced oil recovery
US5186257A (en) Polymers useful in the recovery and processing of natural resources
US6395853B1 (en) Water-soluble copolymers and their use for exploration and production of petroleum and natural gas
US4536303A (en) Methods of minimizing fines migration in subterranean formations
US4098337A (en) Method of improving injectivity profiles and/or vertical conformance in heterogeneous formations
BR112019019530B1 (en) FRACTURING FLUID, AND PROCESSES FOR PREPARING FRACTURING FLUID, FOR HYDRAULIC FRACTURING OF AN UNDERGROUND RESERVOIR, AND FOR REDUCING THE FRICTION OF A FRACTURING FLUID
US4277580A (en) Terpolymer of N-vinyl pyrrolidone in alkoxylated form
US4439332A (en) Stable emulsion copolymers of acrylamide and ammonium acrylate for use in enhanced oil recovery
EP1680478A2 (en) Synthetic filtration control polymers for wellbore fluids
US5270382A (en) Compositions and applications thereof of water-soluble copolymers comprising an ampholytic imidazolium inner salt
EP0180406B1 (en) Method of treating a subterranean formation
US4637467A (en) Permeability contrast correction
US20110263465A1 (en) Use Of Vinyl Phosphonic Acid For Producing Biodegradable Mixed Polymers And The Use Thereof For Exploring And Extracting Petroleum And Natural Gas
CA1320303C (en) Aminoalkylated polyacrylamide aldehyde gels, their preparation and use in oil recovery
US4219429A (en) Composition and process for stimulating well production
US3800877A (en) Process of flooding oil-bearing formations using aldehydes as oxygen scavengers in polymer solutions
EP0136773A2 (en) Composition for cross-linking carboxyl polymers and the use thereof in treating subterranean formations
CA2006981C (en) Enhanced oil recovery with high molecular weight polyvinylamine formed in-situ
CN106366244A (en) High-temperature-resistant and salt-resistant filtrate loss reducer for drilling fluid and preparation method and application of filtrate loss reducer
US3247900A (en) Method and composition for well treatment
JPS61102994A (en) Polymer composition for recovering petroleum