JPS61102083A - Super-lattice structure - Google Patents

Super-lattice structure

Info

Publication number
JPS61102083A
JPS61102083A JP22462384A JP22462384A JPS61102083A JP S61102083 A JPS61102083 A JP S61102083A JP 22462384 A JP22462384 A JP 22462384A JP 22462384 A JP22462384 A JP 22462384A JP S61102083 A JPS61102083 A JP S61102083A
Authority
JP
Japan
Prior art keywords
plane
heterojunction interface
superlattice structure
atoms
lattice structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22462384A
Other languages
Japanese (ja)
Inventor
Kentarou Onabe
尾鍋 研太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP22462384A priority Critical patent/JPS61102083A/en
Publication of JPS61102083A publication Critical patent/JPS61102083A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a super lattice structure having flatness on the junction interface in an atomic scale, by mating the hetero junction interface having a super lattice structure, which is formed by laminating different semiconductive material having zincblende system crystal lattices alternately, with the plane (110). CONSTITUTION:Super lattice structure is formed by laminating two kinds of layers of semiconductive material having zincblende system crystal lattice 1A-1D and 2A-2D alternately, then its hetero junction interface is mated with the plane (110). The plane (110) is coasely filled with atoms compared with the plane (100), with the result that impurity deeply penetrates into the inside of the crystal without being much obstructed by the atoms in the material, retaining the flatness of the hetero junction interface in spite of the dispersion of the impurity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超格子構造に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to superlattice structures.

(従来技術) 半導体超格子構造における電子状態の童子井戸効果もし
くは擬2次元電子ガス効果を利用する半導体素子が開発
されつつある。これら素子は、例えば半導体ンーザにお
いては、発光の効率、高温動作特性が通常のダブルへテ
ロ接合型半導体レーザに比べて優れている、等従来のも
のよりも優れ゛た特性あるいは従来に無い新しい特性を
備えており、その応用面も大きい。以上の超格子構造は
G&AJのような化合物半導体閃亜鉛鉱型結晶基板の(
100)面上に数10ないし数100オングストローム
の異なる半導体材料を交互に、分子線エピタキシー法ま
たは有機金属熱分解法等高度の膜厚制御性を有する結晶
成長法を用いてエピタキシャル成長させることによって
得られている(アプライド・フィツクス・レターズ(A
pPI 、 Phys 。
(Prior Art) Semiconductor elements that utilize the Dojiwell effect or quasi-two-dimensional electron gas effect of electronic states in a semiconductor superlattice structure are being developed. For example, in semiconductor lasers, these devices have characteristics superior to conventional semiconductor lasers, such as superior light emission efficiency and high-temperature operating characteristics compared to normal double heterojunction semiconductor lasers, or new characteristics not previously available. It has a wide range of applications. The above superlattice structure (
It is obtained by epitaxially growing different semiconductor materials of several tens to hundreds of angstroms on a 100) plane alternately using a crystal growth method with a high degree of film thickness controllability, such as molecular beam epitaxy or organometallic pyrolysis. (Applied Fixtures Letters (A)
pPI, Phys.

Lett、)39巻、1981年、786ページ)。Lett, Volume 39, 1981, Page 786).

(従来技術の問題点) しかし以上のような(100)面をヘテロ接合面として
得られる超格子構造では少なくとも次の2個の欠点があ
る。第1の欠点は結晶成長時の一原子層毎の完成度が不
充分なためにヘテロ接合界面に原子的尺度での凹凸が存
在し、これが超格子構造による量子井戸を作成した際の
量子準位のバラツキの原因になっていることである。量
子準位のバラツキは空間的な電子分布の局在や発光スペ
クトルの拡がυ等デバイス特性上好ましくない効果をも
たらす。第2の欠点は超格子構造がドーピング不純物に
よって破壊されることである。これは不純物原子の結晶
中での拡散が格子点上の母体原子の配置を入れ換えなが
ら進行するために生じる。
(Problems with the Prior Art) However, the superlattice structure obtained using the (100) plane as a heterojunction surface has at least the following two drawbacks. The first drawback is that the degree of perfection of each atomic layer during crystal growth is insufficient, so there are irregularities on an atomic scale at the heterojunction interface, which causes quantum quasi This is the cause of the variation in ranking. Variations in quantum levels have undesirable effects on device characteristics, such as localization of spatial electron distribution and broadening of the emission spectrum. A second drawback is that the superlattice structure is destroyed by doping impurities. This occurs because the diffusion of impurity atoms in the crystal progresses while changing the arrangement of host atoms on lattice points.

超格子構造の破壊は量子井戸効果そのものを消滅させて
しまうので極めて好ましくな込。
Destruction of the superlattice structure is extremely undesirable because it eliminates the quantum well effect itself.

(発明の目的) 本発明の目的は、上に述・ぺた欠点を除去し、原子的尺
度でのへテロ接合界面の平坦性を有する超格子構造を提
供することにある。
(Objective of the Invention) An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a superlattice structure having flatness of the heterojunction interface on an atomic scale.

(発明の構成) 本発明によれば、順次積層させる超格子構造のへテロ接
合界面を閃亜鉛鉱型結晶格子の(110)面に一致させ
るようにすることによシ、上記の目的を達することが出
来る。
(Structure of the Invention) According to the present invention, the above object is achieved by making the heterojunction interface of the superlattice structure stacked in sequence coincide with the (110) plane of the zincblende crystal lattice. I can do it.

(発明の作用・原理) 従来のようにヘテロ接合界面を(100)面とした場合
には、第3図(a)にその結晶断面を示すように、ヘテ
ロ接合界面に接する原子はその4個の結合手のうち2個
しか自分の属する半導体材料側の原子と結合させておら
ず、ヘテロ接合界面を隔てた異種半導体側の原子と結合
している結合手は1原子娼た92個である。この2個の
結合手を満たすように新たな原子が付着して結晶成長が
進行するが成長途中で表面に凹凸があっても表面に垂直
方向の成長が速いために原子層尺度での凹凸が緩和され
ないままに実際のへテロ接合界面が出来てしまう。
(Operation/Principle of the Invention) When the heterojunction interface is made into a (100) plane as in the past, as shown in the crystal cross section in Figure 3(a), the atoms in contact with the heterojunction interface are Only two of the bonds are bonded to atoms on the side of the semiconductor material to which they belong, and the number of bonds bonded to atoms on the side of the different semiconductor across the heterojunction interface is 92 bonds per atom. . New atoms are attached to fill these two bonds, and crystal growth progresses, but even if the surface is uneven during growth, the growth in the direction perpendicular to the surface is fast, so the unevenness on an atomic layer scale increases. An actual heterojunction interface is formed without being relaxed.

これ((対して本発明のようにヘテロ接合界面を(11
0)Lfrとした場合には事情が改善される。すち3個
までを自分の属する半導体材料側の原子と結合させてお
シ、ヘテロ接合界面を隔てた異種半導体側の原子と結合
している結合手は1原子当た1個しかない。この違いに
よシ結晶成長に際して一原子層毎の完成度に差が生じる
。すなわち(110)面上の成長においては、成長途中
で表面に原子層尺度の凹凸があったとき、結晶成長は面
に垂直な方向よりも面に平行な方向に対してよシ速やか
に生じ原子層尺度の平坦な面が得られやすい。以上の(
110)面の高い安定性は、閃亜鉛鉱型結晶の通常の弁
開面が(110)面となることからも理解できる。
This ((on the other hand, as in the present invention, the heterojunction interface is (11
0) If Lfr is used, the situation will be improved. Up to three of them are bonded to atoms on the side of the semiconductor material to which they belong, and only one bond per atom is bonded to atoms on the side of a different semiconductor across the heterojunction interface. This difference causes a difference in the degree of completion for each atomic layer during crystal growth. In other words, in the case of growth on the (110) plane, if the surface has irregularities on an atomic layer scale during growth, crystal growth occurs more rapidly in the direction parallel to the plane than in the direction perpendicular to the plane, and the atoms It is easy to obtain a flat surface on a layer scale. More than(
The high stability of the 110) plane can also be understood from the fact that the normal opening plane of zinc blende crystals is the (110) plane.

また(110)面をヘテロ接合界面とする超格子構造は
不純物拡散に対する安定性にも優れている。
Further, the superlattice structure with the (110) plane as the heterojunction interface has excellent stability against impurity diffusion.

ヘテロ接合界面に垂直な方向から眺めた結晶格子は丁度
第3図の(a)と(b)を交換したように見える。
The crystal lattice viewed from the direction perpendicular to the heterojunction interface appears to be exactly the same as those shown in FIG. 3 (a) and (b).

(100)面では原子が密に詰まりておシ、不純物はへ
テロ接合界面を横切って結晶中を拡散する際に格子点上
の母体原子と置換しながら進むことになる。これによシ
例え結晶成長時に平坦なヘテロ接合界面が得られていた
としても、不純物拡散によりヘテロ接合界面の平坦性が
失なわれてしまう。
Atoms are densely packed on the (100) plane, and when impurities cross the heterojunction interface and diffuse through the crystal, they proceed while replacing host atoms on the lattice points. As a result, even if a flat heterojunction interface is obtained during crystal growth, the flatness of the heterojunction interface is lost due to impurity diffusion.

これに対し本発明のように(110)面をヘテロ接合界
面とすれば、原子は(100)面に比べて粗に詰まって
いるために、不純物は母体原子にあまカ妨害されずに結
晶内部へ深く侵入しうる(チャンネリング)。不純物原
子は高々1回格子点上の母体原子と置換するだけで格子
点上に位置することができる。結局(110)面では(
100)面に比べてヘテロ接合界面が不純物拡散によっ
ても崩れにくいことが理解される。
On the other hand, if the (110) plane is used as a heterojunction interface as in the present invention, the atoms are packed more loosely than on the (100) plane, so impurities are not hindered by the host atoms and can be absorbed inside the crystal. can penetrate deeply (channeling). An impurity atom can be located on a lattice point by replacing the host atom on the lattice point at most once. In the end, on the (110) plane (
It is understood that the heterojunction interface is less likely to collapse due to impurity diffusion than the 100) plane.

結局超格子構造を用いて電子状態の量子井戸効果もしく
は擬2次元電子ガス効果を得ようとすれば、第1図に示
すような結晶の(110)面をヘテロ接合界面とする超
格子構造を採用することが効果的と言える。第1図にお
いてIAな込しIDは超格子構造を成す一方の半導体材
料の領域、2人ないし2Dは他方の半導体材料の領域を
示している。超格子構造を得るための2種の半導体材料
の適当な組み合わせとしては、ヘテロ接合界面における
格子整合を考慮して、GjLA3− AIAB 、 I
nAa−Garb 、 GaSb −AA!Sb 、 
GaAs −Zn5e等多数の系が考えられる。
After all, if we try to obtain a quantum well effect or a quasi-two-dimensional electron gas effect in the electronic state using a superlattice structure, we can create a superlattice structure with the (110) plane of the crystal as the heterojunction interface as shown in Figure 1. It can be said that hiring is effective. In FIG. 1, IA ID indicates a region of one semiconductor material forming a superlattice structure, and 2 or 2D indicates a region of the other semiconductor material. An appropriate combination of two types of semiconductor materials to obtain a superlattice structure is GjLA3-AIAB, I, taking into account lattice matching at the heterojunction interface.
nAa-Garb, GaSb-AA! Sb,
Many systems such as GaAs-Zn5e are possible.

(実施例) 以下本発明の有利な特性を用いた実施例について説明す
る。
(Example) Examples using the advantageous characteristics of the present invention will be described below.

第2図は本発明による(110)面をヘテロ接合界面と
するGaAs −AlA3超格子構造を活性層として周
込た半導体レーザの例である。(110)面を有するn
型GaAs基板3上にn型AlxGaニーXAsによる
第4のクラッド層4 、 GaAs−AJAs超格子構
造よシ成る活性層Se2型AIXG&1−xASによる
第2のクラッド層6をエピタキシャル成長させ、レーザ
動作に必要な電流を注入するための電極7および8が設
けられて−る。レーザ動作を生ぜしめるために当然クラ
ッド層3および5のエネルギーギャップは活性層4のエ
ネルギーギャップよシも大きい。レーザ共振器を形成す
るための反射面としては図中に示したように(110)
面と直交する二つの平行面すなわち(110)および(
110)面を周込ればよい。このようにヘテロ接合界面
の完全性の高す超格子構造の活性層からは、超格子構造
による量子井戸に閉じ込められた擬2次元電子ガスの状
態密度の特異性を反映してスペクトル幅がせまくかつ高
効率のレーザ発光が確実に得られる。
FIG. 2 is an example of a semiconductor laser according to the present invention having a GaAs-AlA3 superlattice structure with a (110) plane as a heterojunction interface as an active layer. n with (110) plane
A fourth cladding layer 4 made of n-type AlxGa-XAs and a second cladding layer 6 made of Se2-type AIXG & 1-xAS are epitaxially grown on a GaAs type substrate 3, and a second cladding layer 6 made of Se2 type AIXG & 1-xAS is grown by epitaxial growth. Electrodes 7 and 8 are provided for injecting a current. Naturally, the energy gap between the cladding layers 3 and 5 is also larger than that of the active layer 4 in order to produce laser operation. The reflecting surface for forming the laser resonator is (110) as shown in the figure.
Two parallel planes perpendicular to the plane, namely (110) and (
110) Just wrap around the surface. In this way, from an active layer with a superlattice structure in which the heterojunction interface has high integrity, the spectral width narrows, reflecting the singularity of the density of states of the quasi-two-dimensional electron gas confined in the quantum well of the superlattice structure. Moreover, highly efficient laser emission can be reliably obtained.

この実施例では説明のために半導体レーザとして最も簡
単な構造を示したが、例えば発光モード制御機構導入の
ため等半導体レーザのデバイス動作特性の向上のための
複雑な構造を採用したとしても、(110)面をヘテロ
接合界面とする超格子構造を用いている限シ事情は変わ
らない。
In this example, the simplest structure as a semiconductor laser is shown for explanation, but even if a complicated structure is adopted to improve the device operating characteristics of the semiconductor laser, for example, to introduce a light emission mode control mechanism, ( The situation remains the same as long as a superlattice structure is used in which the 110) plane is the heterojunction interface.

また以上の実施例は半導体レーザにつbて示したが、同
様の超格子構造はへテロ接合界面に平行に電流を流すよ
うな半導体デバイスにおいても優れた効果を示すことが
期待できる。すなわちヘテロ接合界面の平坦性が極めて
高いために界面に沿って移動する電子の散乱確率が小さ
く抑えられることになシ、高い電子移動度が期待でき、
超高速動作の半導体デバイスの実現に有利である。
Further, although the above embodiments have been shown in connection with a semiconductor laser, a similar superlattice structure can be expected to exhibit excellent effects in semiconductor devices in which current flows parallel to the heterojunction interface. In other words, since the flatness of the heterojunction interface is extremely high, the probability of scattering of electrons moving along the interface is kept small, and high electron mobility can be expected.
This is advantageous for realizing ultra-high-speed operating semiconductor devices.

(発明の効果) 以上説明したように、超格子構造のへテロ接合界面を閃
亜鉛鉱型結晶格子の(110)面に一致するように選択
することによシ、ヘテロ接合界面の原子的尺度における
平坦性に優れかつ不純物の拡散に際しても平坦性の失な
われない超格子構造が得られ、これによシ狭いスペクト
ル幅と高発光効率を有する高性能の半導体レーザが実現
できる。
(Effects of the Invention) As explained above, by selecting the heterojunction interface of the superlattice structure to match the (110) plane of the zincblende crystal lattice, the atomic scale of the heterojunction interface can be improved. A superlattice structure that has excellent flatness and does not lose its flatness even when impurities are diffused can be obtained, and thereby a high-performance semiconductor laser having a narrow spectral width and high luminous efficiency can be realized.

また高い電子移動度を有する半導体素子等、優れた素子
が実現できる。
Further, excellent devices such as semiconductor devices having high electron mobility can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における超格子構造を示す図、第2図は
本発明の実施例における半導体レーザの構造を示す図、
第3図は本発明の詳細な説明するための結晶構造を示す
図である。 図においてIAないしID・・・超格子構造を成す第1
の半導体材料からなる層、2Aないし2D・・・超格子
構造を成す第2の半導体材料からなる層。 3・・・(110)面を有するn型半導体基板、4・・
・n型AlxGa1−xASAsクラッド層・・・Ga
As −AIAS超格子構造を用いた半導体レーザの活
性層、6・・・p型AJxGa 1−、Asクラッド層
、7・・・p1111!極、訃−・n側電極。 −一 を麗人弁理士 内 原   晋 ゛・・144、\、−
FIG. 1 is a diagram showing a superlattice structure in the present invention, FIG. 2 is a diagram showing the structure of a semiconductor laser in an embodiment of the present invention,
FIG. 3 is a diagram showing a crystal structure for explaining the present invention in detail. In the figure, IA to ID...the first layer forming a superlattice structure.
2A to 2D... a layer made of a second semiconductor material forming a superlattice structure. 3... n-type semiconductor substrate having (110) plane, 4...
・N-type AlxGa1-xASAs cladding layer...Ga
Active layer of semiconductor laser using As-AIAS superlattice structure, 6... p-type AJxGa 1-, As cladding layer, 7... p1111! Pole, n-side electrode. -The beautiful patent attorney Susumu Uchihara ゛...144,\,-

Claims (1)

【特許請求の範囲】[Claims]  閃亜鉛鉱型結晶格子を有する異なる半導体材料を交互
に積層して成る超格子構造において、ヘテロ接合界面が
結晶の(110)面と一致するように選択されているこ
とを特徴とする超格子構造。
A superlattice structure formed by alternately stacking different semiconductor materials having a zincblende crystal lattice, characterized in that the heterojunction interface is selected to coincide with the (110) plane of the crystal. .
JP22462384A 1984-10-25 1984-10-25 Super-lattice structure Pending JPS61102083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22462384A JPS61102083A (en) 1984-10-25 1984-10-25 Super-lattice structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22462384A JPS61102083A (en) 1984-10-25 1984-10-25 Super-lattice structure

Publications (1)

Publication Number Publication Date
JPS61102083A true JPS61102083A (en) 1986-05-20

Family

ID=16816606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22462384A Pending JPS61102083A (en) 1984-10-25 1984-10-25 Super-lattice structure

Country Status (1)

Country Link
JP (1) JPS61102083A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300793A (en) * 1987-12-11 1994-04-05 Hitachi, Ltd. Hetero crystalline structure and semiconductor device using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300793A (en) * 1987-12-11 1994-04-05 Hitachi, Ltd. Hetero crystalline structure and semiconductor device using it

Similar Documents

Publication Publication Date Title
US6525335B1 (en) Light emitting semiconductor devices including wafer bonded heterostructures
EP0476689B1 (en) Semiconductor laser and manufacturing method of the same
JPH02114591A (en) Wide band gap semiconductor light emitting device
JP3589301B2 (en) Structure of quantum layer
JP4837012B2 (en) Light emitting element
JPH09298341A (en) Semiconductor laser element
JPH06237039A (en) Semiconductor laser
US6222205B1 (en) Layered semiconductor structure for lateral current spreading, and light emitting diode including such a current spreading structure
US20120073658A1 (en) Solar Cell and Method for Fabricating the Same
JP2947199B2 (en) Semiconductor quantum dot device and method of manufacturing the semiconductor quantum dot device
JPS61102083A (en) Super-lattice structure
JPH065920A (en) Light emitting element
JP3146710B2 (en) Light emitting element
JP4030692B2 (en) Semiconductor device and semiconductor light emitting device
JPH05160504A (en) Semiconductor laser device
JPS62154789A (en) Semiconductor light emitting element
JP2643322B2 (en) Compound semiconductor light emitting device
JP2976614B2 (en) Semiconductor laser device
JP3723314B2 (en) Semiconductor light emitting device
JP2962639B2 (en) Semiconductor light emitting device
Kushibe et al. New selective metalorganic chemical vapor deposition growth method for InAlAs with high aluminum composition
JPH0632335B2 (en) Method for manufacturing semiconductor laser
JPS6215866A (en) Semiconductor light-emitting element
JPH0680865B2 (en) Semiconductor superlattice
JPH0732269B2 (en) Semiconductor light emitting element