JPS61101684A - Azimuth controlling tail for horizontal shaft type windmill - Google Patents
Azimuth controlling tail for horizontal shaft type windmillInfo
- Publication number
- JPS61101684A JPS61101684A JP59221782A JP22178284A JPS61101684A JP S61101684 A JPS61101684 A JP S61101684A JP 59221782 A JP59221782 A JP 59221782A JP 22178284 A JP22178284 A JP 22178284A JP S61101684 A JPS61101684 A JP S61101684A
- Authority
- JP
- Japan
- Prior art keywords
- tail
- moment
- wind turbine
- angle
- wind
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 206010024229 Leprosy Diseases 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、駆動力伝達のだめの縦軸を水平軸型風車の方
位回動中心に設けた、航行式または定置式の水平軸型風
車の方位制御用尾翼に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a sailing type or a stationary horizontal axis type wind turbine in which the vertical axis of the driving force transmission reservoir is provided at the azimuth rotation center of the horizontal axis type wind turbine. Concerning a direction control tail.
水平軸型風車(以下[風車J)という)の方位回動中心
に設けた1駆動力伝達用の回転可能な縦軸(以下[縦軸
Jという)に、風車の水平軸から傘歯車で駆動力を伝達
する際、縦軸を中心とする風車方位面(水平面)内で、
回転トルクの反力であるモーメント(以下1回転モ〜メ
ノト」という)が発生し、そのため風車水平軸中心線と
風向が大きく食い違って風車出力は著しく低下する。A rotatable vertical shaft (hereinafter referred to as "vertical axis J") for transmitting driving force is provided at the azimuth rotation center of a horizontal axis type wind turbine (hereinafter referred to as [windmill J]), and is driven by a bevel gear from the horizontal axis of the windmill. When transmitting force, within the wind turbine azimuth plane (horizontal plane) centered on the vertical axis,
A moment (hereinafter referred to as "one rotation moment") which is a reaction force of the rotational torque is generated, and as a result, the wind turbine's horizontal axis center line and the wind direction are significantly different from each other, and the wind turbine output is significantly reduced.
従来、縦軸を持たない風車では前記の回転モーメントが
発生しないため、小型の風車では方位回動中心より風上
側に風車を設け、風下側の胴体後端に平板または対称翼
断面等を使った方位制御用尾翼(以下1尾翼」という)
を取り付けるか、または方位回動中心より風下側に風車
を設けて風車自体による復元力を利用し、方位制御をす
る程度で支障はない。Conventionally, wind turbines without a vertical axis do not generate the above rotational moment, so small wind turbines are installed upwind from the center of azimuth rotation, and a flat plate or symmetrical blade cross section is used at the rear end of the fuselage on the leeward side. Heading control tail (hereinafter referred to as 1 tail)
There is no problem in simply installing a wind turbine on the leeward side of the azimuth rotation center and using the restoring force of the wind turbine itself to control the azimuth.
しかし、縦軸を持つ風車では前記回転モーメントと釣り
合うモーメントを得るため、通常の場合、小型の風車で
は
(イ) 平板またに対称列断面等を使った尾翼を、風向
に対して迎角を付けて胴体後部に固着し、揚力を発生き
せる。However, in a wind turbine with a vertical axis, in order to obtain a moment that balances the rotational moment, normally in a small wind turbine (a) a tail blade using a flat plate or a symmetric row cross section is set at an angle of attack with respect to the wind direction. It attaches to the rear of the fuselage and generates lift.
(ロ)風車装置の側面に長く突設した腕の先に抵抗板を
固着し、抗力を発生きせる。(b) A resistance plate is fixed to the tip of a long arm protruding from the side of a wind turbine to generate a drag force.
(ハ)胴体後部に固着した迎角を付けな、い尾翼、また
は(イ)項で説明した尾翼のいずれかと、(ロ)項で説
明した抵抗板を組み合わせて使用する。(c) Use a combination of either a tail with no angle of attack fixed to the rear of the fuselage or the tail described in (a) and the resistance plate described in (b).
以上の(イ)〜(・1項の装置を使用する方法が考えら
れ、また実K[iてれているものもある。Methods using the apparatuses described in (a) to (.1) above can be considered, and there are also methods in which the actual K[i] is used.
(イ)項の場合、前記回転モーメントと釣り合っている
尾翼の揚力は、風車装置に方位復元安定性(以下「安定
性」という)を持たせるためには尾翼の得られる最大の
揚力より十5+に低く設定しなければならない。回転モ
ーメントと釣り合っている尾翼の揚力を、尾翼の得られ
る最大の揚力に近く設定すると、風車の回転トルクの僅
かな増大でも安定性が不足または負(Hになり尾翼は目
的を達成できない。平板や対称弦断面等の尾翼でに、得
られる揚力の最大値が小ざいので回転モーメントと釣り
合うための揚力も小きくなり、したがって尾翼面積を大
きくする必要がある。In the case of item (a), the lift of the tail that balances the rotational moment must be 15+ must be set low. If the lift of the tail, which is in balance with the rotational moment, is set close to the maximum lift that the tail can obtain, even a slight increase in the rotational torque of the wind turbine will result in insufficient or negative stability (H), and the tail will not be able to achieve its purpose. Since the maximum value of lift that can be obtained from a tail with a symmetrical or symmetrical chord cross section is small, the lift needed to balance the rotational moment is also small, and therefore the area of the tail must be increased.
(口1項の装置では、回転モーメントが一定の状態のと
きは釣り合わせることはできるが、回転モーメントの変
動を僅かな方位角の変化で補正する安定性を持たせるこ
とは不可能である。また、抵抗板の抗力によって回転モ
ーメ/トヲ釣り合わせているため、風車装置に作用する
抗力に抵抗板の抗力がそのまま追加される。これを[風
車を動力源として、スクリューにより進行する風車船]
等の航行式風力利用装置に2いて、空気抵抗だけについ
て考えると風に向って進行するときは各部分の空気抵抗
の合計が抗力として作用するので、性能低下を防ぐため
、極力、空気抵抗を減らす必要がある。これらの理由に
より抵抗板を使うこの方式%式%
(ハ)項の装置は(イ)ち・よび(ロ)項に比較して構
造が複雑になり、また空気抵抗が大きくなる。(With the device described in item 1, it is possible to balance the rotational moment when it is constant, but it is impossible to provide the stability to correct fluctuations in the rotational moment with slight changes in the azimuth angle. In addition, since the rotation force/toe is balanced by the drag force of the resistance plate, the drag force of the resistance plate is directly added to the drag force acting on the wind turbine device.
If you consider only air resistance in a navigation type wind power utilization device such as 2, when moving against the wind, the sum of the air resistance of each part acts as a drag force, so in order to prevent performance deterioration, it is necessary to reduce air resistance as much as possible. need to be reduced. For these reasons, this system using a resistor plate (c) has a more complex structure than the devices in (a) and (b), and has greater air resistance.
とい9問題点があった。There were nine problems.
本発明は、前記問題点を解決すべくなされたもので、特
許請求の範囲第1項、第2項、第3項に示す断面より成
る尾翼を使用して、前記回転モーメントと釣り合うモー
メントを発生させるための尾翼の揚力を効率良く生じさ
せ、前記(イ)〜(−1項に示した方位制御装置の持つ
欠点を除去した方位制御装置を構成する尾Rを提供する
ことを目的とする。The present invention has been made to solve the above-mentioned problems, and generates a moment that balances the rotational moment by using a tail blade having a cross section shown in claims 1, 2, and 3. It is an object of the present invention to provide a tail R constituting an azimuth control device that efficiently generates the lift force of the tail fins for the purpose of controlling the vehicle, and eliminates the drawbacks of the azimuth control devices shown in items (a) to (-1) above.
風車が方位回動中心よりJ虱北側に位置1.、風下側に
尾翼を設けた縦軸を持たない形式の風車装置vCj?い
ては、風車水平軸中心が風向よりずれた場合、風車自体
の抵抗によって生ずる不安定モーメントよりも尾翼が発
生する揚力によって生ずる安定モーメントを大きくして
、風車水平軸中心を再び風向に一致略せればよい。また
風車の抵抗によって生ずる不安定モーメントに風向を中
心にして左右対称なので、この不安定モーメントを打ち
消すだめに尾翼が発生する揚力によって生ずる安定モー
メントも左右対称でよい。そこで前記条件を満たすよう
、尾翼の水平方向の断面を対称にして尾翼面積を決定す
ればよい。The wind turbine is located north of the azimuth rotation center.1. , a wind turbine device vCj that has a tail on the leeward side and does not have a vertical axis? In this case, if the center of the wind turbine's horizontal axis deviates from the wind direction, the stabilizing moment caused by the lift generated by the tail is made larger than the unstable moment caused by the resistance of the wind turbine itself, and the center of the wind turbine's horizontal axis can be aligned with the wind direction again. Bye. Furthermore, since the moment of instability caused by the resistance of the wind turbine is symmetrical with respect to the wind direction, the moment of stability caused by the lift generated by the tail to cancel out this moment of instability may also be symmetrical. Therefore, in order to satisfy the above condition, the area of the tail fin may be determined by making the horizontal cross section of the tail fin symmetrical.
しかし縦軸を持つ風車では、回転トルクの反力により風
車を方位面(水平面)内で一方向に回転きせようとする
回転モーメントが発生する。そこで、この回転モーメン
トと釣り合って風車水平軸を常に風向と一致ブせるため
のモーメントを生じさせるため、尾翼に揚力を発生きせ
る必要がある。However, in a wind turbine with a vertical axis, the reaction force of the rotational torque generates a rotation moment that attempts to rotate the wind turbine in one direction within the azimuth plane (horizontal plane). Therefore, in order to balance this rotational moment and generate a moment to keep the horizontal axis of the wind turbine aligned with the wind direction, it is necessary to generate lift on the tail.
また安定性を得るためには、風向と風車水平軸がずれた
場合、風車装置における不安定モーメントの合計よりも
安定モーメントの合計を常に太きくしておく必要がある
。たたし回転モーメントについては、風車は常に一方向
に回転しようとするので、方位面(水平面)内では風向
を中心・にして片側では安定モーメント、反対側では不
安定モーメントと見なすことができる。このため、回転
モーメントと、風車の抵抗による左右対称な不安定モー
メントとの合計は、片側では安定モーメントと不安定モ
ーメントの合計になり、反対側では不安定モーメントと
不安定モーメントの合計になって、合計のモーメントは
左右非対称になる。そこで尾翼の揚力によって生ずる安
定モーメントを左右非対称にして、左右それぞれに各モ
ーメントの合計を安定モーメントにし、また左右対称に
近付けるようにすればよい。In addition, in order to obtain stability, when the wind direction and the horizontal axis of the wind turbine are misaligned, it is necessary to always make the sum of the stable moments larger than the sum of the unstable moments in the wind turbine device. Regarding the rotational moment, since the wind turbine always tries to rotate in one direction, it can be considered as a stable moment on one side and an unstable moment on the other side with the wind direction as the center in the azimuth plane (horizontal plane). Therefore, the sum of the rotating moment and the symmetrical unstable moment due to wind turbine resistance is the sum of the stable moment and the unstable moment on one side, and the sum of the unstable moment and the unstable moment on the other side. , the total moment becomes asymmetrical. Therefore, it is possible to make the stabilizing moment caused by the lift force of the tail wing asymmetrical, so that the sum of the respective moments on the left and right sides becomes the stabilizing moment, and it can be made closer to bilateral symmetry.
とあ釣り合いと安定性の二条性は、尾翼の断面に特許請
求の範囲第1項、第2項、第3項に示すキャンバ−付断
面より成る尾翼を、取付角を設けて胴体後部に固着し、
揚力を効率良く発生させて回転モーメントと釣り合うモ
ーメントを生じσせ、また安定性を得るために必要な、
尾翼の発生する揚力による左右非対称な安定モーメント
を有効に生じきせることにより満たすことができる。The two-strip property of balance and stability is achieved by attaching a tail wing having a cambered cross section shown in claims 1, 2, and 3 to the rear of the fuselage at an angle of attachment. death,
necessary to efficiently generate lift, create a moment that balances the rotational moment, and obtain stability.
This can be achieved by effectively generating an asymmetrical stabilizing moment due to the lift generated by the tail.
この発明の実施例を図面にもとづいて説明する。 Embodiments of the invention will be described based on the drawings.
第1図はこの発明の第1実施例を示し、同図へ)は尾翼
1aの側面図、同図(Blは同図(AIのW−W線断面
の拡大図を示す。尾翼1aの側面形と断面2のキャンバ
−の強弱ち−よび形状は、本図に限定きれることはなく
適宜設計しつる事項である。FIG. 1 shows a first embodiment of the present invention, and FIG. 1 is a side view of the tail fin 1a, and FIG. The shape and strength of the camber of the cross section 2 and the shape are not limited to those shown in this figure, but are matters to be designed as appropriate.
第2図はこの発明の第2実施例を示し、同図へ)は尾翼
1bの側面図、同図σ3)は同図囚のX−X線断面の拡
大図を示す、 Iヒ歿1bの側面図と断面3のキャッパ
−の強弱2よひ形状、断面3の外形は、本図に限定され
ることはなく適宜設計しつる事項である。Fig. 2 shows a second embodiment of the present invention, and Fig. 2) shows a side view of the tail 1b, and Fig. 3) shows an enlarged cross-sectional view taken along the line X-X of the same figure. The strength and weakness of the capper in the side view and cross-section 3, the shape of the capper, and the external shape of the cross-section 3 are not limited to those shown in this figure, but are matters to be designed as appropriate.
第3図はこの発明の第3実施例のうち溝状隙間5が−か
所の例を示し、同図IAIは尾翼ICの側面図、同図(
B+は同図(8)のY−Y線断面の拡大図を示す。尾翼
ICの側面形と断面4のキャッパ−の強弱2よび形状、
断面4の外形、溝状隙間5の形状および断面4上での位
置は、本図に限定されることはなく適宜設計しつる事項
である。FIG. 3 shows an example of the third embodiment of the present invention in which the groove-like gap 5 is located at - location, and IAI in the same figure is a side view of the tail IC, and FIG.
B+ shows an enlarged view of the cross section taken along the line Y-Y in FIG. The side shape of the tail IC, the strength and weakness 2 and shape of the capper in cross section 4,
The outer shape of the cross section 4, the shape of the groove-like gap 5, and the position on the cross section 4 are not limited to those shown in this figure, but are matters that can be designed as appropriate.
第4図はこの発明の第3実施例のうち溝状隙間7.8が
二か所の例を示し、同図へ)は尾1dの側面図、同図の
)は同図(5)のZ−Z線断面を示す。Fig. 4 shows an example of the third embodiment of the present invention in which the groove-like gaps 7.8 are provided at two locations. A cross section taken along the Z-Z line is shown.
尾1dの側面形と断面6のキャッパ−の強弱および形状
、断面6の外形、溝状隙間7,8の形状Pよひ断面6上
での位置は本図に限定されることはなく適宜設計しつる
事項である。The side shape of the tail 1d, the strength and shape of the capper on the cross section 6, the outer shape of the cross section 6, the shape P of the groove-like gaps 7 and 8, and the position on the cross section 6 are not limited to this figure and can be designed as appropriate. This is an important matter.
溝状隙間が二か所以上の場合も、各隙間の形状、断面上
での位置は前記の例と同様に適宜設計しつる事項である
。Even in the case where there are two or more groove-like gaps, the shape of each gap and the position on the cross section are matters to be appropriately designed as in the above example.
第5図はこの発明の作動原理を説明するための一部切断
11111面図、第す図は同じく作動原理を説明するだ
めの平面図である。FIG. 5 is a partially cutaway 11111 side view for explaining the operating principle of the present invention, and FIG. 5 is a plan view for explaining the operating principle.
船上1だは地上の瀝礎上に框直に立設された支持柱9の
上i14に、風車10を固着した回転軸12を取付けた
胴体11を方位面(水平面)内で回動できるように軸着
し、この胴体11の後端(風下側)に尾必1を取付角θ
を付けて固着する。まだ回転軸12に傘歯車13を固着
し、傘歯車13に噛み合う草歯車14は縦軸15に固着
する。If、lf(車13と傘歯車14の歯敬比、およ
び回転軸12と縦軸15の相互間の角度は適宜設計しつ
る事項である。On board the ship 1, the fuselage 11 has a rotary shaft 12 to which a wind turbine 10 is fixedly attached to the top i14 of the support pillar 9, which is vertically installed on a foundation on the ground, so that it can rotate in the azimuth plane (horizontal plane). The tail 1 is attached to the rear end (leeward side) of this fuselage 11 at an installation angle θ.
Attach and fix. The bevel gear 13 is still fixed to the rotating shaft 12, and the bevel gear 14 meshing with the bevel gear 13 is fixed to the vertical shaft 15. If, lf (the tooth ratio of the wheel 13 and the bevel gear 14, and the mutual angle between the rotating shaft 12 and the vertical shaft 15 are matters to be appropriately designed.
風車10に風が当り矢印下方向に回転すると、縦11(
1+ l 5の回転トルクの反力として、胴体11を方
位面(水平面)内で回転させようとする回転モーメツ)
QRが発生する。1だ縦軸15の中心(方位回動中心)
から風車10の中心までを距離eiとし、同様に縦軸1
5の中心から尾翼1の風圧中心までを距離e2 とする
。方位面(水平面)内での、風向と回転軸12中心の延
長線とのなす角度を角度βとする。しだがって尾翼の風
に対する迎角αは、風に向って右象限ではα=θ−!
同様に左象限ではα−θ+βとなり、β−0°の場合は
α=θとなる。When the wind hits the windmill 10 and rotates in the downward direction of the arrow, the vertical direction 11 (
1 + l A rotation force that attempts to rotate the fuselage 11 in the azimuth plane (horizontal plane) as a reaction force of the rotational torque of 5)
QR will be generated. 1. Center of vertical axis 15 (azimuth rotation center)
Let the distance ei be from to the center of the windmill 10, and similarly the vertical axis 1
5 to the wind pressure center of the tail 1 is defined as the distance e2. The angle between the wind direction and the extension of the center of the rotating shaft 12 in the azimuth plane (horizontal plane) is defined as angle β. Therefore, the angle of attack α of the tail with respect to the wind is α=θ−! in the right quadrant facing the wind.
Similarly, in the left quadrant, α-θ+β, and in the case of β-0°, α=θ.
尾翼1に対して迎角αで風が当ると風圧力Rが発生し、
風圧力Rは、回転@II I 2中心の延長線に直角な
揚力りと平行な力とに分解することができる。また風圧
力Rは、風に平行な抗力りと直角な力とに分解すること
ができる。但し//−0°の場合は、風圧力Rは同時に
揚力りと抗力りとに分解することができ、β−90°の
場合は揚力りと抗力りは同一となる。When the wind hits the tail 1 at an angle of attack α, a wind pressure R is generated,
The wind force R can be decomposed into a lift force perpendicular to the extension line of the rotation @II I 2 center and a force parallel to it. Further, the wind force R can be decomposed into a drag force parallel to the wind and a force perpendicular to the wind. However, in the case of //-0°, the wind pressure R can be simultaneously decomposed into lift force and drag force, and in the case of β-90°, lift force and drag force are the same.
第7凹はこの発明の各実施例の尾翼の断面ち・よひ参考
としての9τζ型の、迎角αと揚力系?2CLの関係を
示す一般的な線図である。断面2は第1実施例の断面で
、曲線2Cは第1実#iI’llに於ける迎角αと揚力
1系数CLの関係を示す曲線である。、同様に第2実施
例は断面3と曲線3Cで示し、第3夷癩例は代表として
断面4と曲線4Cで示す。断面Xsと曲、fi!XCは
、第1.第2.第3実施列ノ断面ン、3,4と曲線2c
、3c、4Cに比較するだめの対称感型のもので、参考
のため併記した。The seventh concave is the cross section of the tail plane of each embodiment of this invention.The angle of attack α and lift system of the 9τζ type as a reference? FIG. 2 is a general diagram showing the relationship between 2CLs. Cross section 2 is a cross section of the first embodiment, and curve 2C is a curve showing the relationship between angle of attack α and lift 1 series CL in the first actual #iI'll. Similarly, the second example is shown by cross section 3 and curve 3C, and the third leprosy example is shown by cross section 4 and curve 4C as a representative. Cross section Xs and curve, fi! XC is the first. Second. 3rd row cross section 3, 4 and curve 2c
, 3c, and 4C have a slightly symmetrical feel, and are listed together for reference.
尾翼1の揚力L (kq )は、断面の揚力係数CLに
比例し
L=CL l/2 f V2 A ・・・
・・・式illの関係にある。但しl・・空気密度(k
q−82/m” !V・・・尾翼に当る風速(m/s)
A・・尾翼面積(m゛)を示す。The lift force L (kq) of the tail 1 is proportional to the lift coefficient CL of the cross section, L=CL l/2 f V2 A...
...The relationship is expressed by the formula ill. However, l... air density (k
q-82/m”!V... Wind speed hitting the tail (m/s)
A: Indicates the tail area (m゛).
第8図は、この発明の尾翼を使用した風車装置の一般的
な方位復元安定曲線図である。中央横線は安定性、中正
(N)で、この線より上方は安定性、E(+)、下方は
安定性、負(−)を示す。FIG. 8 is a general azimuth restoration stability curve diagram of a wind turbine device using the tail of the present invention. The central horizontal line indicates stability, neutral positive (N), above this line indicates stability, E (+), and below this line indicates stability, negative (-).
縦線は角度Iを示し、中央縦線は角度βが0°、右IU
11縦線は角度βが(右)90°、左側縦線は角度βが
(左)90°を示す。モーメツ)MWは、風が風車10
を風下側に押す抗力にもとづき発生する方位回動中心を
中心とするモーメントを曲線で示し、モーメントMSは
尾翼1の揚力りにもとつき発生する方位回動中心を中心
とするモー、メノトを曲線で示す。モーメントQRは、
縦軸15の回転トルクの反力として方位面(水平面)内
に発生する回転モーメントを曲線で示し、モーメントM
Aは前記各モーメツ)MW、Ms 、QRの合計を曲線
で示す。ただし風車lOと尾翼1を除いた胴体Il自体
の安定性は、この発明では弱い正(±)になるが影響は
小ざいので安全側に考えて中正(N)とし、第8図では
省略しである。The vertical line indicates angle I, and the central vertical line indicates angle β of 0°, right IU.
The vertical line No. 11 indicates that the angle β is 90 degrees (right), and the left vertical line indicates that the angle β is 90 degrees (left). Mometsu) MW is the wind is a windmill 10
The curve shows the moment about the azimuth rotation center that is generated due to the drag force pushing the tail 1 to the leeward side. Shown as a curve. Moment QR is
The rotational moment generated in the azimuth plane (horizontal plane) as a reaction force of the rotational torque of the vertical axis 15 is shown by a curve, and the moment M
A shows the sum of the above-mentioned MW, Ms, and QR as a curve. However, the stability of the fuselage Il itself, excluding the wind turbine lO and tail fin 1, is weakly positive (±) in this invention, but since the influence is small, it is set as neutral (N) to be on the safe side, and is omitted in Figure 8. be.
次に風車装置の方位釣り合いについて述べる。Next, we will discuss the azimuth balance of the wind turbine system.
第5図および第6図に示す作動原理図で説明をすると、
風車10に風が当り回転すると同時に回転軸12、傘歯
車I3、傘歯車14、縦軸15の順に回転が伝わる。風
車10が矢印T゛の方向に回転すると、回転トルクの反
力として胴体11を方位1fi(水平面)内で回転きせ
ようとする矢印方向のモーメントQRが発生する。この
モーメツ)QRは縦軸1bの回転トルクの反力なので、
その値は傘歯小13.14の歯軍比により変化する7、
傘歯車13の歯数をN1、傘歯車14の歯数をN2 と
し、風車回転トルクをQwとすると
Q R= N 2 / N+ Q W −
一式(2)となる。風車回転トルクQwは角度βが00
の位置で最大になり、90°に近付いて風車の回転が停
止するとOになるような曲線変化をし、また回転モーメ
ントQRtd+戦車回転トルクQwに比)クリして変化
する。(式(2)診照)
風車10を風F側に押す抗力をDwとすると、抗力Dw
は角度βが00で最大になり90″で最小になるtつな
曲線変化をし、この抗力Dwにより風車10を方位面(
水平面)内で風下側に回動させようとするモーメントが
発生する。モーメントをMwとすると
hl w = D w sm βe+
”””式13)尾翼1に迎角Cχで風が当り、発生する
1虱王力Rの分力である揚力しにより胴体11を方位面
(水平面)内で回動させようとするモーメントが発生す
る。モーメントをMsとすると
M s = L (12−川一式(4)角度βが00の
場合、式(3)によりモーノ7)MWは0になるので角
度βが0°の状態を維持するためには縦軸15のトルク
反力による回転モーメントQRと尾翼1によるモーメン
トMsは約9合わなければならない。また風速が変化せ
ずに風車トルクQwが増大した場合の安定性を維持する
ためには、回転モーメントQRとモーメントMsとの釣
合点にPける尾翼1の揚力りを、その最大値である失速
点の揚力りより十分に低く設定しなければならないこと
は前述したユ虫りである。しだがって、式!1)で示し
たように揚力しは揚力係数CLに比!3’lJするので
、回転モーメントQRとモーノ7 トIVI sとの釣
合点にPける尾翼1の揚力係数CLをその最大値より十
分に低く設定すればよいことになる。Explaining the principle of operation shown in Figures 5 and 6,
When the wind hits the windmill 10 and causes it to rotate, the rotation is transmitted to the rotating shaft 12, bevel gear I3, bevel gear 14, and vertical shaft 15 in this order. When the windmill 10 rotates in the direction of the arrow T', a moment QR in the direction of the arrow is generated as a reaction force of the rotational torque, which attempts to rotate the body 11 within the direction 1fi (horizontal plane). This Mometsu) QR is the reaction force of the rotational torque of the vertical axis 1b, so
Its value changes depending on the tooth force ratio of the small bevel teeth 13.147,
When the number of teeth of the bevel gear 13 is N1, the number of teeth of the bevel gear 14 is N2, and the wind turbine rotation torque is Qw, Q R = N 2 / N + Q W −
The set becomes (2). The wind turbine rotation torque Qw has an angle β of 00
It reaches its maximum at the position of , and when it approaches 90° and the rotation of the windmill stops, the curve changes to O, and also changes sharply (relative to rotational moment QRtd + tank rotational torque Qw). (Check formula (2)) If the drag force pushing the wind turbine 10 toward the wind F side is Dw, then the drag force Dw
changes in a t-shaped curve where the angle β becomes maximum at 00 and minimum at 90'', and this drag force Dw moves the wind turbine 10 in the azimuth plane (
A moment is generated that tries to rotate it to the leeward side in the horizontal plane). If the moment is Mw, hl w = D w sm βe+
``''''Equation 13) When the wind hits the tail 1 at an angle of attack Cχ, the moment that tries to rotate the fuselage 11 in the azimuth plane (horizontal plane) is generated due to the lift force, which is a component of the 1st thrust force R. occurs.If the moment is Ms, then M s = L (12-Kawaichi set (4) If the angle β is 00, according to equation (3), MW becomes 0, so the angle β maintains the state of 0°. In order to do so, the rotational moment QR due to the torque reaction force of the vertical axis 15 and the moment Ms due to the tail 1 must match approximately 9.Also, in order to maintain stability when the wind turbine torque Qw increases without changing the wind speed. As mentioned earlier, the lift force of the tail 1 at the point of equilibrium between the rotational moment QR and the moment Ms must be set sufficiently lower than the lift force at the stall point, which is its maximum value. Therefore, as shown in equation 1), the lift force is !3'lJ compared to the lift coefficient CL, so the tail 1 at the point of balance between the rotational moment QR and the IVI s is It is sufficient to set the lift coefficient CL to be sufficiently lower than its maximum value.
しかし、釣合点に2ける尾翼1の揚力係数CLを低く設
定できないときは、羅列1の面積を増大させることによ
り揚力1系数CLを低く設定できる。However, if the lift coefficient CL of the tail 1 at the balance point 2 cannot be set low, the lift 1 series coefficient CL can be set low by increasing the area of the array 1.
尾翼1の取付角θば、第7図に於いて釣合点での揚力係
t!JcLK対応する迎角αを取付角θとする。If the attachment angle θ of the tail 1 is, the lift factor at the balance point in FIG. 7 is t! Let the angle of attack α corresponding to JcLK be the mounting angle θ.
この結果、角度βば00を保持し風車は風に正対したま
ま釣り合った状態で動力を発生し正常に作動する。釣合
点における揚力係数CLの数値決定は適宜設計しつる事
項である。As a result, the angle β00 is maintained, the wind turbine generates power in a balanced state while directly facing the wind, and operates normally. Numerical determination of the lift coefficient CL at the balance point is a matter of appropriate design.
以上の説明は第l、第2.第3の各実施例について適用
されるが、特に第3図に代表きれる第3実1@1ダ]の
尾翼ICの断面4ば、第1図に示す第1実@1タリの尾
翼1aの断面2や第2図に示す第2実施1111の尾翼
1bの断面3に比較して、嘱7図に示すように揚力係t
3.CLの最大値が太さい。このため回転モーメントQ
RとモーメントMSとの釣合点にPける揚力係aCLを
、第1および第2実施例に比較して大きく設定すること
ができる。しかし必要な揚力りは第12よび第2実施例
と変らないので、回転モーメントQRとモーメントMS
との釣合点の揚力係数CLを大きく設定した割合で尾1
1 l (の面積を縮小することができる。(式(1)
また必要なモーメントMsは第12よび第2実施例と変
らないので尾2X I Cの面積を縮小せずに距離e2
を短縮して胴体11を短かくすることもできる。(式(
4)参照)
第4図に示す第3実施例のうち、断面6のように二か所
の溝状隙間7,8を持つ尾翼1dについても、また溝状
隙間が二か所以上の場合についても、第3図に示す第3
実施例の尾翼ICに似た特性を持つため同じ方法を適用
することができる。The above explanation is given in Sections 1 and 2. This is applied to each of the third embodiments, but in particular, the cross section 4 of the tail IC of the third body 1 @ 1 da, which is represented in FIG. Compared to cross section 2 and cross section 3 of the tail 1b of the second embodiment 1111 shown in FIG.
3. The maximum value of CL is large. Therefore, the rotational moment Q
The lift coefficient aCL at the point of balance between R and moment MS can be set larger than in the first and second embodiments. However, since the required lifting force is the same as in the twelfth and second embodiments, the rotational moment QR and the moment MS
Tail 1 at a ratio that sets the lift coefficient CL at the equilibrium point to a large value.
The area of 1 l (can be reduced. (Equation (1)
Also, since the required moment Ms is the same as in the twelfth and second embodiments, the distance e2 can be reduced without reducing the area of the tail 2X I C.
It is also possible to shorten the fuselage 11 by shortening the length. (formula(
(See 4)) Among the third embodiment shown in FIG. 4, regarding the tail 1d having two groove-like gaps 7 and 8 as shown in cross-section 6, and also regarding the case where there are two or more groove-like gaps. Also, the third
Since it has similar characteristics to the tail IC of the embodiment, the same method can be applied to it.
次に風車装置の安定性について述べる。Next, we will discuss the stability of the wind turbine system.
第5図、第6図に示す作動原理図および第8図に示す風
車装置の方位復元安定曲線図により説明をすると、角度
βが00を示す線を中心にして胴体11後部が左象限に
ある場合は、回転モーメントQRは右廻りの一方向なの
で角度βが0°より遠去かろうとするだめ安定性は負(
−)であり、右象限にある場合は角度βが0°に近寄ろ
うとするので安定性が正(+)である、と見なせるので
、その状M’x第8図に曲線で回転モーメントQRとし
て図示シである。モーメツ)Mwは、風車が方位回動中
心より風上側に位置しているので、角度βが0°を示す
線より左右どちらかに振れるとそのま1風下側に回動す
る。したがって安定性が負(−)である状態を、第8図
に曲線でモーメントMWとして図示しである。To explain with reference to the operating principle diagrams shown in Figures 5 and 6 and the azimuth restoration stability curve diagram of the wind turbine device shown in Figure 8, the rear part of the fuselage 11 is in the left quadrant with the line where angle β is 00 as the center. In this case, since the rotational moment QR is in one direction clockwise, the stability is negative (
-), and when it is in the right quadrant, the angle β tends to approach 0°, so it can be considered that the stability is positive (+). This is the illustration. Since the wind turbine is located on the windward side from the azimuth rotation center, Mw rotates directly to the leeward side when the angle β swings to the left or right from the line indicating 0°. Therefore, the state in which the stability is negative (-) is illustrated by a curve in FIG. 8 as a moment MW.
尾翼1は方位回動中心より風下側にあるので風見安定を
持っている。しかし尾翼1は取付角θで胴体IIに固着
されているので、尾翼1によるモーノ/) M sが0
になるだめの揚力りがOになる角度βは、角度/ノが0
0を示子線より取付角θだけ右象限にずれた角度となる
。しだがってモーメントMSは左象限では安定性が正(
+)となる。しかし右象限については角度βが0°から
θ(尾翼1の取付角)までの間では、胴体11の後部を
、角度βが0′を示す線より遠去けよつとするモーメン
トMSが尾翼Iの揚力りにより生ずる。そのため、この
間ではモーノ/l−M Sの安定性は負(−)と見なす
ことができる。角度βが前記θより太きくなると尾翼1
の揚力りの方向は逆転し負(−)揚力となるが、この場
合の負(−)揚力は角度/3を減少をせて揚力りがOに
なる角度βまで戻ろうとするモーメツ)MSを生じきせ
る。したがって、この場合のモーメントMSの安定性は
正(+)である。The tail 1 is located on the leeward side of the azimuth rotation center, so it has weathervane stability. However, since the tail fin 1 is fixed to the fuselage II at an attachment angle θ, the mono/) M s due to the tail fin 1 is 0
The angle β at which the lifting force of the Nardame becomes O is the angle /no of 0.
0 is an angle shifted from the indicator line by the mounting angle θ to the right quadrant. Therefore, the moment MS has positive stability in the left quadrant (
+). However, in the right quadrant, when the angle β is between 0° and θ (the attachment angle of the tail 1), the moment MS that causes the rear part of the fuselage 11 to move away from the line where the angle β is 0' is This is caused by the lifting force of Therefore, during this period, the stability of Mono/l-MS can be considered negative (-). When the angle β becomes thicker than the above θ, the tail 1
The direction of the lift force is reversed and becomes a negative (-) lift force, but in this case, the negative (-) lift force decreases the angle /3 and returns to the angle β where the lift force becomes O. Let it come to life. Therefore, the stability of moment MS in this case is positive (+).
以上、説明したようにモーメツ1−Msは角度βが0°
を示す線を中心にして左象限では安定性は正(+)、右
象限では角度βが0°からθまでの間で安定性は負(−
)となり、角度βがθより大きくなると安定性は正(+
)である状態を、第8図に曲線でモーメントMsとして
図示しである。As explained above, the angle β of Mometsu 1-Ms is 0°
Stability is positive (+) in the left quadrant centered on the line indicating
), and when the angle β becomes larger than θ, the stability becomes positive (+
) is illustrated in FIG. 8 as a curved moment Ms.
風車装置が安定性を持つためには、回転モーメ/トQR
X風車10の抗力DwによるモーメノトMw、尾翼1が
発生する揚力りにより生ずるモーメツ)Msが合計6れ
た合計モーメントMAの値が、釣合点である角度βが0
0を示す線で0になる状態を除き、常に正(+)になり
、かつ適当な大きさを持つように定めなければならない
。第8図に曲線で図示したモーノ/ トMAは、以上説
明した結果を1とめたものである。In order for the wind turbine device to have stability, the rotational torque
The value of the total moment MA, which is a total of 6 moments (moment (Mw) caused by the drag force Dw of the wind turbine 10, Ms (moment caused by the lift force generated by the tail 1), is such that the angle β, which is the equilibrium point, is 0.
It must be set so that it is always positive (+) and has an appropriate size, except for the state where it becomes 0 on the line indicating 0. The mono/to MA shown by the curve in FIG. 8 is a combination of the results explained above.
このようにして風車装置の安定性が、常に正(+)で、
適当な太き式を持つように尾翼1断面の特性、面積A、
取付角θ、また距離e1.(12等を風車100太きき
、およびその特性に対して定めれば、この風車装置の方
位制御は確実に実施てれてその目的を達成することがで
きる。尾翼1の断面特性の選定、面積A、取付角θ、ま
だ距離e、。In this way, the stability of the wind turbine device is always positive (+),
In order to have an appropriate thickness formula, the characteristics of the cross section of the tail wing 1, area A,
Mounting angle θ and distance e1. (If 12 etc. is determined for a wind turbine 100 thick and its characteristics, the direction control of this wind turbine device can be carried out reliably and the purpose can be achieved. Selection of cross-sectional characteristics of the tail 1, area A, installation angle θ, still distance e,.
e2の数値決定は適宜設計しつる事項である。Determining the value of e2 is a matter of appropriate design.
風車10の羽根ピンチの変更、また負荷条件の変動等に
よる風車回転トルクQwの増加または減少は、風車装]
dの安定性が正(+)であれば風向に対して尾翼1を左
、または右に娠って迎角α全自動的に;JAI整し、帛
究1の揚力りの増減によりモーメントMsを増減させて
各モーメントMw、QR,Msの和が0になった点で釣
り合い、角度Iは迎角αが自動的に調整された角度だけ
0°よりずれて風車10は作動を続ける。An increase or decrease in the wind turbine rotation torque Qw due to a change in the blade pinch of the wind turbine 10 or a change in load conditions, etc.
If the stability of d is positive (+), the tail 1 is tilted to the left or right with respect to the wind direction, and the angle of attack α is fully automatically adjusted; JAI is adjusted, and the moment Ms is is increased or decreased, and equilibrium is reached at the point where the sum of the moments Mw, QR, and Ms becomes 0, and the angle I deviates from 0° by the angle by which the angle of attack α is automatically adjusted, and the wind turbine 10 continues to operate.
1だ風速が変化しても負荷が必要とするトルクに変化が
ない場合、風車装置の安定性が正(+)であれば風速の
変化による尾翼1の揚力りの増減は、尾翼1の迎角αが
自動的に調整されて揚力りの増減を押きえるように働き
、各モーメントQR。1. If the torque required by the load does not change even if the wind speed changes, and the stability of the wind turbine is positive (+), the increase or decrease in the lift of the tail 1 due to the change in wind speed will be due to the change in the tail 1 The angle α is automatically adjusted to suppress the increase or decrease in lift force, and each moment QR.
Ms、Mwの和が0になった点で釣り合い、角度βは迎
角αが自動的に調整きれた角度だけ0°よりずれて風車
10は作@を続ける。この結果は、前記の風車回転トル
クQwの増加または減少による尾翼1の作動と同じ状態
である。角度βの僅かな増減は、風車10の性能に殆ん
ど影響が無く実用上の支障はないので、角度βの増減は
大きくならぬようモーメントMSの増加率を検討すれば
よい。Balance is reached at the point where the sum of Ms and Mw becomes 0, and the angle β deviates from 0° by the angle by which the angle of attack α has been automatically adjusted, and the wind turbine 10 continues to operate. This result is the same as the operation of the tail 1 due to an increase or decrease in the wind turbine rotational torque Qw. A slight increase or decrease in the angle β has almost no effect on the performance of the wind turbine 10 and poses no practical problem, so the rate of increase in the moment MS should be considered so that the increase or decrease in the angle β does not become large.
風向、風速の一時的な変化による風車回転トルクQwの
増減により一時的に角度βが0°からずれても、安定性
が正(+)である限り風向が定まり風速が元に戻れば角
度βはOoに戻り、風車10は正常な作動を続けるので
支障はない。Even if the angle β temporarily deviates from 0° due to an increase or decrease in the wind turbine rotation torque Qw due to a temporary change in wind direction or wind speed, as long as the stability is positive (+), the wind direction is fixed and the wind speed returns to the original angle β. returns to Oo and the wind turbine 10 continues to operate normally, so there is no problem.
また風向急変の際に起る風車ジャイロ効果による風車装
置の破壊を防止するための、従来公知の □対
策を本発明に組み込むことは容易である。Furthermore, it is easy to incorporate into the present invention the conventionally known measures for preventing destruction of the wind turbine device due to the wind turbine gyro effect that occurs when the wind direction suddenly changes.
本発明では、風車10の形式をアップ・ウィンド°プロ
ペラ型を例に説明をしたが、ダウン・ウィンド・プロペ
ラ型や方位制御を必要とする他の形式の水平軸型風車に
も応用することができる。In the present invention, the type of wind turbine 10 has been explained using an up-wind propeller type as an example, but it can also be applied to a down-wind propeller type and other types of horizontal axis wind turbines that require azimuth control. can.
本発明の尾gla、Ib、lc、Id等を使用すること
により、風車装置が必要とする揚力りを効率良く発生略
せて安定性を得るだめのモーノ/)Msを有効に生じを
せ、縦・INl 15を持つ水平ill型風車に使用さ
れる従来の方位11jll l111装置よりりと気折
抗の少ない、構造簡単な、安定性の良い方位制御装置を
提供することができる。By using the tail gla, Ib, lc, Id, etc. of the present invention, it is possible to efficiently generate the lift force required by the wind turbine device, and effectively generate the mono/) Ms needed to obtain stability. - It is possible to provide an azimuth control device with a simple structure and good stability, which has less deflection drag than the conventional azimuth 11jll l111 device used for a horizontal ill-type wind turbine with INl 15.
また第1実施例の尾萱1aに比較して第2実施列の尾翼
1bでは小型化することができ、第3実施例の尾シタl
c、Idでは史に小型化することができる。寸だ胴体1
1を短縮しての、方位制御装置の小型化も可能である。Furthermore, compared to the tail fin 1a of the first embodiment, the tail fin 1b of the second row can be made smaller, and the tail fin 1b of the third embodiment can be made smaller.
c, Id can be significantly downsized. size body 1
It is also possible to reduce the size of the azimuth control device by shortening 1.
また尾gla、Ib、lc、Id等を使用した方位側(
財)装置を利用すること(・こより、縦軸15を持つ水
平+l(1+型風東を・rIjH力源とした「凪車金動
力源としてスクリューにより進行する風1V船J等の航
行式風力装置を運航する際に、従来の方位制御装置を使
用した場合に比較して、空気抵抗が少ないため、特に風
に向って進行する場合の性能を良くすることができる。Also, the azimuth side using tail gla, Ib, lc, Id, etc.
The use of a horizontal + l (1+ type wind east) with a vertical axis 15 and rIjH power source is a navigation type wind power system such as a wind 1V ship J that advances by a screw as a power source. When operating the device, there is less air resistance than when using a conventional azimuth control device, so performance can be improved, especially when traveling against the wind.
第1図は、この発明の第1実施例を示す尾翼の図で、図
(5)は 側面図、図(I3)は図(んのW−W線断面
拡大図、第2図は、この発明の第2実施例を示す尾翼の
図で、図八)は側面図、図(13)は国人)のX−X線
断面拡大図、第3図は、この発明の第3実施列のうち溝
状隙間が−か所の例を示す尾翼の図で、図(AIは側面
図、図(13+は国人)のY−Y線断面拡大図、第4図
は、この発明の第3実施例のうち溝状隙間が二か所の例
を示す尾翼の図で、図(Atは側面図、図(Blは図(
AIのZ−X線断面拡大図、第5図は、この発明の作動
原理を説明するための一部切断側面図、第6図は、この
発明の作動原理を説明するだめの平面図、第7図は、こ
の発明の各実施例の尾すZ断面および参考異型の一般的
な揚力係数/迎角曲線図、第8図は、この発明の尾9に
を使用した風型装置の一般的な方位復元安定曲線図であ
る。Fig. 1 is a view of the tail plane showing the first embodiment of the present invention, Fig. (5) is a side view, Fig. (I3) is an enlarged cross-sectional view taken along line W-W of Fig. Figure 8) is a side view, Figure (13) is an enlarged cross-sectional view taken along the line X-X of the second embodiment of the invention, and Figure 3 is a view of the third embodiment of the invention. FIG. 4 is a diagram of a tail plane showing an example of a groove-like gap in - places, and FIG. 4 is a side view, FIG. Figure (At is a side view, Figure (Bl is a figure (
FIG. 5 is an enlarged Z-X cross-sectional view of AI, and FIG. 5 is a partially cutaway side view for explaining the operating principle of this invention. FIG. 6 is a plan view for explaining the operating principle of this invention. Fig. 7 shows a general lift coefficient/angle of attack curve diagram of the tail Z cross section of each embodiment of the present invention and a reference variant, and Fig. 8 shows a general diagram of a wind type device using the tail 9 of the present invention. FIG.
Claims (1)
とを特徴とする水平軸型風車の方位制御用尾翼。 2、水平方向の断面は、キヤンバー付翼型またはキヤン
バー付翼型に類似した断面より成ることを特徴とする特
許請求の範囲第1項記載の水平軸型風車の方位制御用尾
翼。 3、水平方向の断面は、キヤンバー付翼型またはキヤン
バー付翼型に類似した断面に、単数または複数の溝状隙
間(Slot)を設けたことを特徴とする特許請求の範
囲第2項記載の水平軸型風車の方位制御用尾翼。[Scope of Claims] 1. An azimuth control tail blade for a horizontal axis type wind turbine, characterized in that the horizontal cross section consists of a cambered plate cross section. 2. The azimuth control tail blade for a horizontal axis wind turbine according to claim 1, wherein the horizontal cross section is formed of a cambered airfoil or a cross section similar to a cambered airfoil. 3. The horizontal cross section is characterized in that a cambered airfoil or a cross section similar to a cambered airfoil is provided with one or more slots. A tail blade for controlling the direction of a horizontal axis wind turbine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59221782A JPS61101684A (en) | 1984-10-22 | 1984-10-22 | Azimuth controlling tail for horizontal shaft type windmill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59221782A JPS61101684A (en) | 1984-10-22 | 1984-10-22 | Azimuth controlling tail for horizontal shaft type windmill |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61101684A true JPS61101684A (en) | 1986-05-20 |
Family
ID=16772115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59221782A Pending JPS61101684A (en) | 1984-10-22 | 1984-10-22 | Azimuth controlling tail for horizontal shaft type windmill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61101684A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100338359C (en) * | 2004-03-02 | 2007-09-19 | 金东龙 | Wind driven power generating system |
KR101295260B1 (en) * | 2008-10-14 | 2013-08-09 | 현대중공업 주식회사 | Aerogenerator that establish aileron |
WO2019074019A1 (en) * | 2017-10-11 | 2019-04-18 | 株式会社ベルシオン | Horizontal-axis wind turbine |
-
1984
- 1984-10-22 JP JP59221782A patent/JPS61101684A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100338359C (en) * | 2004-03-02 | 2007-09-19 | 金东龙 | Wind driven power generating system |
KR101295260B1 (en) * | 2008-10-14 | 2013-08-09 | 현대중공업 주식회사 | Aerogenerator that establish aileron |
WO2019074019A1 (en) * | 2017-10-11 | 2019-04-18 | 株式会社ベルシオン | Horizontal-axis wind turbine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4105363A (en) | Overspeed control arrangement for vertical axis wind turbines | |
US5503525A (en) | Pitch-regulated vertical access wind turbine | |
ES2536324T3 (en) | Tempest control for horizontal axis wind turbine | |
US4415312A (en) | Transverse axis fluid turbine | |
JP4563406B2 (en) | Rotor blade for wind turbine | |
US4334823A (en) | Wind or fluid current turbine | |
Lazauskas | Three pitch control systems for vertical axis wind turbines compared | |
US6441507B1 (en) | Rotor pitch control method and apparatus for parking wind turbine | |
US7258527B2 (en) | Vertical axis wind engine | |
US6688842B2 (en) | Vertical axis wind engine | |
JP6228914B2 (en) | System for minimizing yaw torque required to control power output in a two-bladed swing hinge wind turbine controlling power output by yawing | |
EP2003335A2 (en) | Horizontal axis wind turbine | |
US4353681A (en) | Wind turbine with yaw trimming | |
US4439105A (en) | Offset-axis windmill having inclined power shaft | |
US6602045B2 (en) | Wingtip windmill and method of use | |
Miller | The aerodynamic and dynamic analysis of horizontal axis wind turbines | |
JPS61215464A (en) | Shape changeable vertical shaft wind wheel | |
JPS61101684A (en) | Azimuth controlling tail for horizontal shaft type windmill | |
JP6544702B1 (en) | Wing angle autonomous amplitude control type wind turbine | |
DE69023146T2 (en) | WIND TURBINE. | |
EP2957768A1 (en) | Improved vertical axis wind turbine | |
JP2002242816A (en) | Wind power generator | |
US5575233A (en) | Monoplane and low thrust wingsail arrangements | |
Bottrell | Passive cyclic pitch control for horizontal axis wind turbines | |
Hohenemser et al. | Wind turbine speed control by automatic yawing |