JPS61101518A - Production of vinyl ester resin having air dryability - Google Patents
Production of vinyl ester resin having air dryabilityInfo
- Publication number
- JPS61101518A JPS61101518A JP22115584A JP22115584A JPS61101518A JP S61101518 A JPS61101518 A JP S61101518A JP 22115584 A JP22115584 A JP 22115584A JP 22115584 A JP22115584 A JP 22115584A JP S61101518 A JPS61101518 A JP S61101518A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- ether
- epoxy
- resin
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Epoxy Resins (AREA)
- Paints Or Removers (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は空気乾燥性を有するビニルエステル樹脂の製造
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an air-drying vinyl ester resin.
[従来技術]
エポキシ樹脂と(メタ)グリル酸との反応物で代表され
るエポキシメタアクリレート樹脂は放射線硬化特性が秀
れた樹脂であることから、紫外線硬化型樹脂の一つとし
てコーテング材料分野等に広く使用されると同時に、ス
チレンモノマーで代表されるような反応性稀釈剤を溶解
し、ビニルエステル樹脂と呼称され、不飽和ポリエステ
ル樹脂の分野にも広く使用されている。その硬化物は靭
性に富み硬く接着性に秀れ、且つ耐薬品性、耐水性の秀
れた材料となる為に、特に耐食や防食を目的とするFR
P、FRPライニング、フレークガラスと必要に応じて
顔料などを配合してライニング、塗料、接着剤プライマ
ーとして又樹脂モルタル用として近年広く普及してきた
。[Prior art] Epoxy methacrylate resin, which is represented by a reaction product of epoxy resin and (meth)grilled acid, has excellent radiation curing properties, so it is used in the field of coating materials as one of the ultraviolet curable resins. At the same time, it dissolves reactive diluents such as styrene monomers, and is called vinyl ester resin, and is also widely used in the field of unsaturated polyester resins. The cured product is highly tough, hard, and has excellent adhesive properties, as well as excellent chemical and water resistance, so it is especially suitable for use as FR for corrosion resistance and anti-corrosion purposes.
In recent years, it has been widely used as a lining, paint, adhesive primer, and resin mortar by blending P, FRP lining, flake glass, and pigments as necessary.
この樹脂の硬化性や作業性は不飽和ポリエステル樹脂と
同等の扱いやすさがある反面、硬化手段がラジカル反応
機構に依存する為に、空気に接する樹脂表層面は不飽和
ポリエステル樹脂と同じように充分に硬化することは難
しく、場合によっては表層面のみ粘着を帯びることもあ
る。The curing properties and workability of this resin are comparable to those of unsaturated polyester resin, but since the curing method relies on a radical reaction mechanism, the surface layer of the resin that comes into contact with air is similar to unsaturated polyester resin. It is difficult to cure sufficiently, and in some cases, only the surface layer may become sticky.
この欠点を防ぐ為に通常樹脂中にパラフィンワックス類
を配合し、硬化過程において積極的にワックス類を析出
させ空気を遮断し硬化させることが常識になっている。In order to prevent this drawback, it is common knowledge to mix paraffin wax into the resin and actively precipitate the wax during the curing process to block air and harden.
しかし、パラフィンワックス類の析出はパラフィンワッ
クス化合物の樹脂への溶解性、融点によって左右され、
それは又使用環境温度1反応性稀釈モノマーの環境雰囲
気濃度、湿度、硬化の時間や硬化剤の量といった多くの
要因にも支配され複雑である。However, the precipitation of paraffin waxes depends on the solubility and melting point of the paraffin wax compound in the resin.
It is also complex and is governed by many factors such as the ambient temperature of use, the ambient atmospheric concentration of the reactive diluent monomer, the humidity, the time of curing and the amount of curing agent.
耐食防食といった用途に多用されるビニルエステル樹脂
の場合、屋外施工現場での使用も多く、それだけ充分な
管理を行なわない場合には、所望とする目的に至らない
ことがある。又パラフィンワックスの配合は、その硬化
時ワックスの析出によって表面が不透明感、非光沢とな
りそれを好まない用途、例えば美観をも合せて重視する
塗装や床ライニング等ではその外観の改良が望まれてい
た。In the case of vinyl ester resins, which are often used for purposes such as corrosion resistance, they are often used at outdoor construction sites, and if they are not properly managed, the desired purpose may not be achieved. Furthermore, when blending paraffin wax, the surface becomes opaque and non-glossy due to wax precipitation during curing, and improvements in appearance are desired in applications where this is not desirable, such as painting and floor lining, where aesthetics are also important. Ta.
ノンワックス樹脂のうち不飽和ポリエステル樹脂は古く
から種々の発明がなされ、特に木工用ポリエステル塗料
への応用は広く知られているが、耐食や防食を主たる目
的とする分野、特にその目的にかなうビニルエステル樹
脂は見掛は上非粘着乾燥性になっても、化学的にノンワ
ックス型であるものは、今日まで成功していなかった。Among non-wax resins, unsaturated polyester resins have been invented for a long time, and their application to polyester paints for wood is widely known. Although ester resins appear to be non-tacky and dry, chemically non-wax types have not been successful to date.
その理由はビニルエステル樹脂が不飽和ポリエステル樹
脂以上に嫌気的性質が強いこと、又製造中不飽和ポリエ
ステル樹脂に比ベゲル化しやすく製造が困難である事に
よる。The reason for this is that vinyl ester resins have stronger anaerobic properties than unsaturated polyester resins, and are more prone to gelation during production than unsaturated polyester resins and are difficult to produce.
本発明は、ビニルエステル樹脂の主要な耐食や防食用途
に適用させて著しく遜色を示すことがなく、上記パラフ
ィンワックス配合樹脂における如く管理上の煩わしさも
なく、光沢に秀れるビニルエステル樹脂を提供するもの
である。The present invention provides a vinyl ester resin that is not significantly inferior when applied to the main corrosion-resistant and anti-corrosion uses of vinyl ester resins, does not require the troublesome management of the above-mentioned paraffin wax-containing resins, and has excellent gloss. It is something.
本発明者らは製造可能であり且つ効果的な乾燥性が得ら
れるビニルエステル樹脂の合成に関して鋭意研究を重ね
た結果、多価アリルエーテルモノアルコール相当をエス
テル基を介してエポキシアクリレート樹脂に平均してエ
ポキシ(メタ)アクリル分子1分子割合当リアリルエー
テル基を1個より多く、好ましくは1.5個以上導入す
ることによって問題点を解決した。The present inventors have conducted extensive research into the synthesis of vinyl ester resins that can be produced and have effective drying properties.As a result, we have synthesized a polyvalent allyl ether monoalcohol equivalent to an epoxy acrylate resin via an ester group. The problem was solved by introducing more than 1, preferably 1.5 or more realyl ether groups per molecule of epoxy (meth)acrylic molecule.
すなわち、本発明はエポキシ樹脂のエポキシ基に対して
不飽和一塩基酸と、不飽和一塩基酸の一部に換えて多価
アルルエーテルモノアルコールと二塩基無水物との反応
による半エステルカルボン酸とを加え、重合禁止剤及び
エステル化触媒の存在下で反応させてなる生成化合物、
又はさらに前記生成化合物中の水酸基に二塩基酸無水物
を付加半エステルカルボン酸化後、アリルグリシジルエ
ーテル又はグリシジル(メタ)クリレートを反応させて
なる生成化合物中のエポキシ(メタ)グリル上分子割合
当りのアリ・ルエーテル基を1個より多く4入すること
を特徴とする空気乾燥性を有するビニルエステル樹脂の
製造方法である。That is, the present invention provides a half-ester carboxylic acid by reacting an epoxy group of an epoxy resin with an unsaturated monobasic acid, and a polyhydric allyl ether monoalcohol and a dibasic anhydride in place of a part of the unsaturated monobasic acid. A product compound obtained by adding and reacting in the presence of a polymerization inhibitor and an esterification catalyst,
Or furthermore, after adding a dibasic acid anhydride to the hydroxyl group in the product compound and oxidizing the half ester carboxylic acid, allyl glycidyl ether or glycidyl (meth)acrylate is reacted. This is a method for producing an air-drying vinyl ester resin characterized by containing more than one aryl ether group and four aryl ether groups.
即ち、エポキシ(メタ)グリル分子1個当すアリルエー
テル基が1個以下の割合の場合には、所望までの乾燥に
至らず、1より大なる割合のアリルエーテル基を導入す
る手段として、カルボン酸をペンダントとしたエポキシ
(メタ)グリレートを作りアリルグリシシールエーテル
を反応させることを試みたが、樹脂製造が極めて不安定
であり。That is, when the ratio of allyl ether groups per epoxy (meth)grill molecule is less than one, the desired drying cannot be achieved, and as a means of introducing allyl ether groups in a ratio greater than one, carbon An attempt was made to make epoxy (meth)glylate with an acid pendant and react it with allylglycyl ether, but the resin production was extremely unstable.
この方法の場合はせいぜいアリルエーテル基は1個まで
の割合が限度で、所望する乾燥のためには本発明の方法
が極めて有効であった。In this method, the ratio of allyl ether groups was limited to one at most, and the method of the present invention was extremely effective in achieving the desired drying.
製造が可能で、アリルエーテル基を1個より多く好まし
くは1.5以上をエポキシ(メタ)アクリルに導入する
最も代表的な方法は通常工業的に入手し得るトリメチロ
ールプロパンジアリルエーテルの如き多価アリルエーテ
ルモノアルコール相当にフタル酸無水物を反応せしめ、
その半エステル化物を作る。この化合物をエポキシ樹脂
と(メタ)グリル酸との反応の際の(メタ)グリル酸の
一部分に置換しで反応する方法である。The most typical method for introducing more than 1 allyl ether group, preferably 1.5 or more allyl ether groups into epoxy (meth)acrylic, which can be produced, is to use a polyvalent ether group such as trimethylolpropane diallyl ether, which is usually commercially available. Allyl ether monoalcohol equivalent is reacted with phthalic anhydride,
Make its half-esterified product. This is a method in which this compound is substituted for a portion of the (meth)grilic acid in the reaction between the epoxy resin and (meth)grilic acid.
上記反応について、同一分子中にエポキシ基を3個以上
有する化合物、例えばノボラックエポキシ樹脂の場合に
は、次の略図(1)に示す通りである。Regarding the above reaction, in the case of a compound having three or more epoxy groups in the same molecule, such as a novolak epoxy resin, the reaction is as shown in the following schematic diagram (1).
次に汎用エポキシ樹脂であるビスフェノール型エポキシ
樹脂を使用して、上記の如く該エポキシ樹脂のエポキシ
基に対して不飽和一塩基酸と、不飽和一塩基酸の一部に
換えて多価アリルエーテルモノアルコールと二塩基酸無
水物との反応による半エステルカルボン酸を加えて反応
せしめ、この反応生成物のエポキシアクリル化合物の水
酸基に対して酸無水物を付加し、半エステルカルボン酸
化を計り、アリルグリシジルエーテルを反応することに
よってアリルエーテル基を補うことが出来る。Next, using a bisphenol type epoxy resin, which is a general-purpose epoxy resin, as described above, an unsaturated monobasic acid is added to the epoxy group of the epoxy resin, and a polyvalent allyl ether is added to the epoxy group of the epoxy resin, and a part of the unsaturated monobasic acid is replaced with polyvalent allyl ether. A half ester carboxylic acid produced by the reaction between a monoalcohol and a dibasic acid anhydride is added and reacted, an acid anhydride is added to the hydroxyl group of the epoxy acrylic compound of this reaction product, half ester carboxylic oxidation is measured, and allyl Allyl ether groups can be supplemented by reacting with glycidyl ether.
例えば、グリシシールメタクリレートで補った場合は略
図IIG−1に示す通りである。For example, when supplemented with glycysyl methacrylate, it is as shown in Schematic IIG-1.
又、アリルグリシジルエーテルで補った場合、例えばエ
ポキシ基2当量、不飽和一塩基酸1.5当量、トリメチ
ロールプロパンジアリルエーテル酸ペンダント0.5当
量、二塩基酸0.5モル、アリルグリシジルエーテル0
.5当量の化学的反応割合をもって仕込み反応すると、
略図(■)−(1)〜(4)の混合物組成となると予想
されるが、これら混合物であっても、その割合において
上記条件を充していれば、目的を達成出来る。When supplemented with allyl glycidyl ether, for example, 2 equivalents of epoxy group, 1.5 equivalents of unsaturated monobasic acid, 0.5 equivalents of trimethylolpropane diallyl ether acid pendant, 0.5 mol of dibasic acid, 0 allyl glycidyl ether.
.. When reacting with a chemical reaction ratio of 5 equivalents,
It is expected that the mixture compositions shown in diagram (■)-(1) to (4) will be obtained, but even with these mixtures, if the above conditions are satisfied in the proportions, the purpose can be achieved.
Q 0 以下、製造法について説明する。Q 0 The manufacturing method will be explained below.
エステル基を介しての前記の場合多価アリルエーテルを
含むモノアルコールと二塩基rIR無水物との光化学反
応割合にて、開環付加反応を行なう。In the above case via an ester group, a ring-opening addition reaction is carried out at a photochemical reaction rate between a monoalcohol containing a polyvalent allyl ether and a dibasic rIR anhydride.
反応の終了は赤外線分光分析による波数1760.18
20cm−1と酸価の挙動で追跡し確認出来る。The end of the reaction was determined by infrared spectroscopy at a wave number of 1760.18.
It can be traced and confirmed by the behavior of 20cm-1 and acid value.
反応後この化合物をエポキシ樹脂のエポキシ基に対しく
メタ)クリル酸に消費されるエポキシ基をのぞいたエポ
キシ基に対して化学当量で反応させる。After the reaction, this compound is reacted with the epoxy groups of the epoxy resin in a chemical equivalent amount to the epoxy groups excluding the epoxy groups consumed by meth)acrylic acid.
反応に当っては、製造時反応生成物100重量部に対し
てゲル化防止の為に、ハイドロキノン、ベンゾキノン、
メチルハイドロキノン等フェノール性の重合禁止剤その
他公知の重合禁止剤を0.001〜0.1重量%、そし
て反応を円滑に行なう為にエステル化触媒として、トリ
エチルアミン5ジメチルベンジルアミン、ジメチルアニ
リン等のアミン類やベンジルトリメチルアンモニウムク
ロライド等の第四級アンモニウム塩等を0.005〜3
重景%を加えて反応させる。又反応温度は80℃〜15
0℃、より好ましくは90℃〜130℃で空気の存在下
で反応するが1円滑な攪拌化の為に反応性稀釈上ツマ−
であるスチレン類を混ぜて反応しても良く、その反応の
完了は、酸価の測定によって決定出来る。During the reaction, hydroquinone, benzoquinone,
0.001 to 0.1% by weight of a phenolic polymerization inhibitor such as methylhydroquinone and other known polymerization inhibitors, and amines such as triethylamine, dimethylbenzylamine, dimethylaniline, etc. as an esterification catalyst to facilitate the reaction. 0.005 to 3
Add the weighted view% and make it react. The reaction temperature is 80℃~15℃.
The reaction is carried out in the presence of air at 0°C, more preferably from 90°C to 130°C.
The reaction may be carried out by mixing styrenes, and the completion of the reaction can be determined by measuring the acid value.
本製造に使用するエポキシ樹脂はビスフェノールA、ビ
スフェノールFで代表されるビスフェノール化合物とエ
ピクロルヒドリン、メチルエピクロルヒドリンとの反応
によって得られるジグリシジールエーテル、フェノール
ノボラック、グレゾールノボラック、ブロム化ノボラッ
ク、ブロム化タレゾールノボラックで代表される多核フ
ェノール樹脂とエピクロルヒドリンとの反応によって得
られるポリグリシジルエーテル、ハイドロキノン。The epoxy resins used in this production are diglycidyl ether, phenol novolac, gresol novolac, brominated novolac, and brominated talesol novolak obtained by reacting bisphenol compounds represented by bisphenol A and bisphenol F with epichlorohydrin and methylepichlorohydrin. Hydroquinone is a polyglycidyl ether obtained by the reaction of epichlorohydrin with a polynuclear phenolic resin represented by .
レゾルシンで代表されるポリフェノールとエピクロルヒ
ドリンとの反応によって得られるポリグリシジルエーテ
ル、安息香酸とエピクロルヒドリンから反応して得られ
るグリシジルエステルエーテル、ダイマー酸、フタル酸
、トリメリット酸、テトラヒドロフタル酸、ヘキサヒド
ロフタル酸等で代表される有機多塩基酸とエピクロルヒ
ドリンとの反応によって得られるポリグリシジルエーテ
ルス、ビスフェノールAのエチレンオキサイド又プロピ
レンオキサイド付加グリコール、並びに又は水添ビスフ
ェノールAとエピクロルヒドリンとの反応によって得ら
れるグリシジルエーテル等であり、これらの単独又は併
用して使用する。Polyglycidyl ethers obtained by reacting polyphenols represented by resorcin with epichlorohydrin, glycidyl ester ethers obtained by reacting benzoic acid with epichlorohydrin, dimer acid, phthalic acid, trimellitic acid, tetrahydrophthalic acid, hexahydrophthalic acid Polyglycidyl ethers obtained by the reaction of organic polybasic acids such as exemplified by E.g. and epichlorohydrin, glycols obtained by adding ethylene oxide or propylene oxide to bisphenol A, or glycidyl ethers obtained by the reaction of hydrogenated bisphenol A and epichlorohydrin, etc. These can be used alone or in combination.
本発明に使用する不飽和一塩基酸としてはアクリル酸、
メタクリル酸、クロトン酸、けい皮酸等が知られている
が、実用的にはメタクリル酸、アクリル酸で充分である
。又必要に応じて半エステルカルボン酸化エポキシアク
リルの為のカルボン酸無水物並びに多価アリルエーテル
モノアルコールと反応させる二塩基酸酸無水物としては
、フタル酸、マレイン酸、コハク酸、テトラヒドロフタ
ル酸、メチルテトラヒドロフタル酸、ヘキサヒドロフタ
ル酸等の酸無水物又はトリメリット酸無水物を使用する
ことが出来る。そして半エステルカルボン酸と反応する
アリルエーテル化合物はアリルグリシジルエーテルであ
る。又(メタ)グリル化合物としてはグリシシール(メ
タ)クリレートである。又使用する多価アリルエーテル
モノアルコール源としてはグリセリンジアリルエーテル
、トリメチロールプロパンジアリルエーテル、トリメチ
ロールエタンジアリルエーテル、ペンタエリスリットト
リアリルエーテル等を言うが、供給安定性からしてトリ
メチロールプロパンジアリルエーテルで充分である。The unsaturated monobasic acids used in the present invention include acrylic acid,
Methacrylic acid, crotonic acid, cinnamic acid, etc. are known, but methacrylic acid and acrylic acid are practically sufficient. Further, if necessary, dibasic acid anhydrides to be reacted with the carboxylic acid anhydride for half ester carboxylated epoxy acrylic and polyvalent allyl ether monoalcohol include phthalic acid, maleic acid, succinic acid, tetrahydrophthalic acid, Acid anhydrides such as methyltetrahydrophthalic acid and hexahydrophthalic acid or trimellitic anhydride can be used. The allyl ether compound that reacts with the half-ester carboxylic acid is allyl glycidyl ether. The (meth)grill compound is glycysyl (meth)acrylate. In addition, the polyvalent allyl ether monoalcohol source used includes glycerin diallyl ether, trimethylolpropane diallyl ether, trimethylolethane diallyl ether, pentaerythritol triallyl ether, etc. However, from the viewpoint of supply stability, trimethylolpropane diallyl ether is used. is sufficient.
得られた樹脂は通常作業性を考慮して、反応性稀釈モノ
マーであるスチレン、ビニルトルエン。The resulting resin is usually made of reactive diluent monomers such as styrene and vinyltoluene in consideration of workability.
クロルスチレン、パラメチルスチレン、ターシャリブチ
ルスチレン等で稀釈して使用される。It is used after being diluted with chlorstyrene, paramethylstyrene, tert-butylstyrene, etc.
硬化に当っては有機過酸化物であるメチルエチルケトン
パーオキサイド、アセト酢酸エステルパーオキサイド、
アセチルアセトンパーオキサイド。For curing, organic peroxides such as methyl ethyl ketone peroxide, acetoacetate peroxide,
Acetylacetone peroxide.
ターシャリブチルハイドロパーオキサイド、ベンゾイル
パーオキサイド、シクロヘキサノンパーオキサイド、キ
ュメンハイドロパーオキサイド等であり、硬化促進剤と
しては、ナフテン酸又はオクトエ酸のコバルト、マンガ
ン、鉄、バナジューム等通常使用される硬化システムを
採用すればよい。Tertiary butyl hydroperoxide, benzoyl peroxide, cyclohexanone peroxide, cumene hydroperoxide, etc., and the curing accelerators include naphthenic acid or octoic acid, cobalt, manganese, iron, vanadium, etc., and commonly used curing systems. Just adopt it.
以下に実施例をもってより具体的にその製造法を記すが
、実施例をもってその発明が制限を受けるものではない
。The manufacturing method will be described in more detail with examples below, but the invention is not limited by the examples.
実施例1
トリメチロールプロパンジアリルエーテル:214g(
1モル)、フタル酸無水物:148g(1モル)を仕込
み、加熱して窒素ガス雰囲気下100〜130℃で2.
5時間反応させ酸価155の半エステルカルボン酸を得
た。反応の終点は酸価の他赤外分光分析による波数17
60cm−1及び1820cm””の酸無水物の吸収が
消失する事で確認した。この合成物を化合物(A)とす
る。Example 1 Trimethylolpropane diallyl ether: 214g (
1 mol) and 148 g (1 mol) of phthalic anhydride were charged and heated at 100 to 130°C under a nitrogen gas atmosphere for 2.
The reaction was carried out for 5 hours to obtain a half ester carboxylic acid having an acid value of 155. In addition to the acid value, the end point of the reaction is determined by infrared spectroscopy at a wave number of 17.
This was confirmed by the disappearance of acid anhydride absorption at 60 cm-1 and 1820 cm''. This composite is referred to as compound (A).
別に米国ダウケミカル社製ノボラックタイプエポキシ樹
脂、商品名DEN−438: 179g(1当量)、メ
タクリル酸:60g(0,7当量)、化合物(A):1
09g (0,3当量)、ハイドロキノン:0.2g、
ベンジルメチルアミン:1.7g、スチレンモノマー=
58gの化合物を空気を吹°き込みながら110〜12
0℃で3時間反応させると酸価10以下となり反応を終
了する。終了後更にスチレンモノマー:l 74 gを
添加し、粘度3.5ポアズ/25°Cの樹脂を得た。こ
の場合ダウケミカル DEN−438は、約3官能のエ
ポキシであり、エポキシ(メタ)グリル 1分子割合当
りジアリルエーテル化合物が0.9個即ちアリルエーテ
ルとして約1.8個を含んでいる。Separately, novolac type epoxy resin manufactured by Dow Chemical Company, USA, trade name DEN-438: 179 g (1 equivalent), methacrylic acid: 60 g (0.7 equivalent), compound (A): 1
09g (0.3 equivalent), hydroquinone: 0.2g,
Benzylmethylamine: 1.7g, styrene monomer =
58g of the compound was heated to 110~12° while blowing air.
When the reaction is carried out at 0°C for 3 hours, the acid value becomes 10 or less and the reaction is completed. After the completion of the reaction, 74 g of styrene monomer was further added to obtain a resin having a viscosity of 3.5 poise/25°C. In this case, Dow Chemical DEN-438 is an approximately trifunctional epoxy containing 0.9 diallyl ether compounds, that is, approximately 1.8 allyl ethers per molecule of epoxy (meth)gril.
この樹脂100部にMEKPO(メチルエチルケトンパ
ーオキサイド)1.5部、ナフテン酸コバルト 0.5
部を加えたものをガラス板上にL20tLm厚に塗布す
ると25℃で約15分でゲル化し、2時間で指触乾燥硬
化した。塗膜はゲル化後、3〜4時間たつと、アセトン
溶剤によるラビングテストでもベタツキは全くなく、空
気乾燥性に優れていた。100 parts of this resin, 1.5 parts of MEKPO (methyl ethyl ketone peroxide), and 0.5 parts of cobalt naphthenate.
When the mixture was coated on a glass plate to a thickness of L20tLm, it gelatinized in about 15 minutes at 25°C and was dry to the touch and hardened in 2 hours. After 3 to 4 hours after gelation, the coating film showed no stickiness at all even in a rubbing test using an acetone solvent, and had excellent air drying properties.
実施例2
トリメチロールプロパンジアリルエーテル:214g
(1モル)、テl−ラヒドロフタル酸無水物:152g
(1モル)を仕込み、窒素ガス雰囲気下100〜13
0’c 2,5時Vr 反応サセrsl 1lff1
51の半エステルカルボン酸を得た。この合成物を化合
物(B)とする。Example 2 Trimethylolpropane diallyl ether: 214g
(1 mol), terahydrophthalic anhydride: 152g
(1 mol) and under nitrogen gas atmosphere 100~13
0'c 2,5 o'clock Vr reaction sasser rsl 1lff1
51 half-ester carboxylic acids were obtained. This composite is designated as compound (B).
別に日本チバガイギー製グレゾールノボラック型エポキ
シ樹脂、商品名アラルダイト ECN−1299: 2
10g (1当量)、メタクリル酸:60g(0゜7当
量)、化合物(B) : 110部g(0,3g当量
)、メチルハイドロキノン二0.2g、トリエチルアミ
ン:1,9g、スチレンモノマー=63gを仕込み、空
気を吹き込みながら100〜120℃ 3時間反応させ
ると酸価8となった。反応終了後スチレンモノマー:
190gを加え、粘度7ポアズ/25℃の樹脂を得た。Separately, Gresol novolac type epoxy resin manufactured by Ciba Geigy Japan, trade name Araldite ECN-1299: 2
10g (1 equivalent), methacrylic acid: 60g (0°7 equivalent), compound (B): 110 parts g (0.3g equivalent), methylhydroquinone 20.2g, triethylamine: 1.9g, styrene monomer = 63g. After charging and reacting at 100 to 120°C for 3 hours while blowing air, the acid value became 8. Styrene monomer after reaction:
190 g was added to obtain a resin with a viscosity of 7 poise/25°C.
この場合、チバ社アラルダイト ECN−1299は平
均3官能以上のエポキシでありエポキシ(メタ)グリル
1分子割合当りジアリルエーテル化合物が、0.9個
以上即ちアリルエーテルとして約1.8以上個を含んで
いる。In this case, Ciba's Araldite ECN-1299 is an epoxy with an average trifunctionality or more, and contains 0.9 or more diallyl ether compounds per molecule of epoxy (meth)grill, that is, about 1.8 or more allyl ethers. There is.
この樹脂100部に対してMEKPO1,5部、ナフテ
ン酸コバルト 0.5部を混合し、ガラス仮に塗布した
。25℃で2時間位で指触乾燥し、3時間たつとアセ1
〜ン溶剤によるラビングテストでもベト付きは見られな
かった。1.5 parts of MEKPO and 0.5 parts of cobalt naphthenate were mixed with 100 parts of this resin, and the mixture was temporarily coated on glass. It is dry to the touch in about 2 hours at 25℃, and after 3 hours it becomes acetic acid.
No stickiness was observed in the rubbing test with solvent.
実施例3
米国シェル社製エポキシ樹脂商品名エピコート−828
: 185g (1当量)、メ51’)UルrIl!:
60 g (0,7当量)、実施例2の中の化合物(B
): Llog (0,3当量)、トリエチルアミンX
1.8g、ハイドロキノン:0.2gを仕込み空気を吹
き込みながら120〜130℃で3〜4時間反応させる
と酸価2となった。Example 3 Epoxy resin manufactured by U.S. Shell Company, trade name Epicote-828
: 185g (1 equivalent), 51') UrrIl! :
60 g (0.7 eq.) of the compound in Example 2 (B
): Llog (0,3 equivalent), triethylamine X
1.8 g of hydroquinone and 0.2 g of hydroquinone were charged and reacted at 120 to 130° C. for 3 to 4 hours while blowing air, resulting in an acid value of 2.
さらにテトラヒドロフタル酸=23gを仕込み110〜
120℃で2時間反応させると酸価24となった。反応
の終点は酸価の他赤外分光分祈で酸無水物の吸収が消失
することを確認した。Furthermore, add 23g of tetrahydrophthalic acid from 110~
After reacting at 120°C for 2 hours, the acid value became 24. In addition to the acid value, it was confirmed by infrared spectroscopy that the end point of the reaction was the disappearance of absorption of the acid anhydride.
その後さらにアリルグリシジルエーテル=17gを加え
5120〜130℃で2時間反応させると酸価3となっ
た。反応終了後スチレンモノマー:263gを加え粘度
7ボアズ/25°Cの樹脂を得た。この場合、シェル社
エピコート−828は平均2官能のエポキシであり、エ
ポキシ(メタ)クリル 1分子割合当りジアリルエーテ
ル化合物が0.6、即ちアリルエーテルとして1.2個
、アリルグリシジルエーテルからの導入によるアリルエ
ーテル0.13個 計1.3以上を含んでいた。この樹
脂100部に対してキュメンハイドロパーオキサイド
2部、ナフテン酸コバルト 0.5部を混合し、ガラス
板上に120μm厚に塗布すると25℃で塗膜は40分
でゲル化し、4〜5時間でアセトン溶剤によるラビング
テストでベト付きは見られなかった。Thereafter, 17 g of allyl glycidyl ether was further added and reacted at 5120 to 130°C for 2 hours, resulting in an acid value of 3. After the reaction was completed, 263 g of styrene monomer was added to obtain a resin with a viscosity of 7 boads/25°C. In this case, Shell's Epicote-828 is an epoxy with an average difunctionality, and the number of diallyl ether compounds per 1 molecule of epoxy (meth)acrylic is 0.6, that is, 1.2 as allyl ether, which is due to introduction from allyl glycidyl ether. Contained 0.13 allyl ethers, 1.3 or more in total. cumene hydroperoxide per 100 parts of this resin.
When 2 parts of cobalt naphthenate and 0.5 parts of cobalt naphthenate were mixed and applied to a thickness of 120 μm on a glass plate, the coating gelatinized in 40 minutes at 25°C, and no stickiness was observed in a rubbing test with an acetone solvent in 4 to 5 hours. I couldn't.
比較例1
米国ダウケミカル社製ノボラック型エポキシ樹脂、商品
名 DEN−438: 358g (2当景)、メタク
リル酸:155g(1,8当社)、実施例1の化合物(
A): 72.4 g (0,’2当量)、ハイドロキ
ノン:0.2g、トリスジメチルアミノフェノール:2
.9g、スチレンモノマm:90gを仕込み空気を吹き
込みながら110〜120℃で3時間反応させると酸価
8となった。Comparative Example 1 Novolac type epoxy resin manufactured by Dow Chemical Co., USA, trade name DEN-438: 358 g (2000), methacrylic acid: 155 g (1,8 our company), the compound of Example 1 (
A): 72.4 g (0,'2 equivalent), hydroquinone: 0.2 g, trisdimethylaminophenol: 2
.. When 9 g of styrene monomer m and 90 g of styrene monomer m were charged and reacted at 110 to 120° C. for 3 hours while blowing air, the acid value became 8.
その後スチレンモノマー: 225gを加え、粘度3.
4ポアズ/25℃の樹脂を得た。この場合、ダウケミカ
ル社製 DEN−438(実施例1)、このエポキシ(
メタ)クリル 1分子割合当りジアリルエーテル化合物
が0.3個、即ちアリルエーテルとして約0.6を含ん
でいた。Then 225g of styrene monomer was added and the viscosity was 3.
A resin of 4 poise/25°C was obtained. In this case, DEN-438 manufactured by Dow Chemical Company (Example 1), this epoxy (
It contained 0.3 diallyl ether compounds per meth)acrylic molecule, that is, about 0.6 as allyl ether.
この樹脂100gにMEKPO:1.5g、ナフテン酸
コバルト:0.5gを混合し、ガラス板上に120μm
厚塗布すると25℃で約20分で塗膜はゲル化した。そ
の後数時間の経過とともにアセトン溶剤によるラビング
テストを行なったがベト付きが残り空気乾燥性は不に分
であった。100 g of this resin was mixed with 1.5 g of MEKPO and 0.5 g of cobalt naphthenate, and the mixture was placed on a glass plate with a thickness of 120 μm.
When applied thickly, the coating gelatinized in about 20 minutes at 25°C. After several hours passed, a rubbing test with an acetone solvent was carried out, but stickiness remained and air dryability was insufficient.
比較例2
実施例3と同様のエピコート−828: 370g (
2当it) 、メタクリル酸: 146g (1,7当
量)、実施例2の中の化合物(B):110g(0,3
当量)、ハイドロキノン: 0.38 g、トリスジメ
チルアミノフェノール: 3.1 gを仕込み空気を吹
き込みながら120〜130℃3時間反応させると酸価
がほぼ零となった。さらにテトラヒドロフタル酸無水物
:46gを加え、100〜120℃で2時間反応させる
と酸価1.25となった。Comparative Example 2 Epicote-828 similar to Example 3: 370 g (
2 equivalents), methacrylic acid: 146 g (1,7 equivalents), compound (B) in Example 2: 110 g (0,3
When 0.38 g of hydroquinone and 3.1 g of trisdimethylaminophenol were charged and reacted at 120 to 130°C for 3 hours while blowing air, the acid value became almost zero. Further, 46 g of tetrahydrophthalic anhydride was added and reacted at 100 to 120°C for 2 hours, resulting in an acid value of 1.25.
この終点は実施例3と同様酸価及び赤外分光分析で確認
した。さらにアリルグリシジルエーテル:34gを仕込
み120〜130℃で1.5〜2.0時間反応させると
酸価4となり反応を終了した。This end point was confirmed by acid value and infrared spectroscopic analysis as in Example 3. Further, 34 g of allyl glycidyl ether was charged and reacted at 120 to 130°C for 1.5 to 2.0 hours, resulting in an acid value of 4 and the reaction was completed.
終了後スチレンモノマー:470gを加え、25℃粘度
5ポアズ/25℃の樹脂を得た。この場合。After the completion of the reaction, 470 g of styrene monomer was added to obtain a resin having a 25°C viscosity of 5 poise/25°C. in this case.
シェル社エピコート−828は平均2官能のエポキシで
あり、エポキシ(メタ)グリル 1分子割合当りジアリ
ルエーテル化合物が0.3個、即ちアリルエーテルとし
て約0.6、更にアリルグリシジルエーテルから導入の
アリルエーテル約0.3 計約0.9個を含んでいた。Shell's Epicote-828 is an epoxy with an average bifunctionality, and contains 0.3 diallyl ether compounds per 1 molecule of epoxy (meth)gril, that is, about 0.6 as allyl ether, and further allyl ether introduced from allyl glycidyl ether. It contained about 0.3 and about 0.9 in total.
この樹脂100部に対しMEKPO1,5部、ナフチル
酸コバルト 0.5部を混合し、ガラス板上に塗布した
もので比較例1と同様アセトン溶剤によるラビングテス
トを行なったがベト付きが残り空気乾燥性が不充分であ
った。1.5 parts of MEKPO and 0.5 parts of cobalt naphthylate were mixed with 100 parts of this resin, and the mixture was coated on a glass plate and subjected to a rubbing test using an acetone solvent as in Comparative Example 1, but sticky residue remained and the mixture was air-dried. The gender was insufficient.
得られた樹脂は秀れた耐食性、物性、光沢が得られるこ
とから、FRP、FRPライニング等の素材、又は表面
仕上げ材料としてタルク等の体質顔料やガラスフレーク
顔料等を配合して塗装材料、ゲルコート、流し塗り床仕
上げや樹脂モルタル用の材料、接着剤、プライマー、電
気フェスとして広く利用出来る。The resulting resin has excellent corrosion resistance, physical properties, and gloss, so it can be used as a material for FRP, FRP lining, etc., or as a surface finishing material by adding extender pigments such as talc, glass flake pigments, etc. as a coating material, gel coat. It can be widely used as a material for floor coating, resin mortar, adhesives, primers, and electric panels.
Claims (1)
不飽和一塩基酸の一部に換えて多価アリルエーテルモノ
アルコールと二塩基酸無水物との反応による半エステル
カルボン酸とを加え、重合禁止剤及びエステル化触媒の
存在下で反応させた生成化合物、又はさらに上記生成化
合物中の水酸基に二塩基酸無水物を付加半エステルカル
ボン酸化後、アリルグリシジルエーテル又はグリシジル
(メタ)クリレートを反応させた生成化合物中のエポキ
シ(メタ)アクリル1分子割合当りアリルエーテル基を
1個より多く導入することを特徴とする空気乾燥性を有
するビニルエステル樹脂の製造方法。An unsaturated monobasic acid to the epoxy group of the epoxy resin,
A product obtained by adding a half-ester carboxylic acid produced by the reaction of a polyvalent allyl ether monoalcohol and a dibasic acid anhydride in place of a part of the unsaturated monobasic acid, and reacting the mixture in the presence of a polymerization inhibitor and an esterification catalyst. per 1 molecule ratio of epoxy (meth)acrylic in the compound, or the product compound obtained by adding dibasic acid anhydride to the hydroxyl group in the above-mentioned product compound and reacting with allyl glycidyl ether or glycidyl (meth)acrylate after half-ester carboxylic oxidation. A method for producing an air-drying vinyl ester resin, which comprises introducing more than one allyl ether group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22115584A JPS61101518A (en) | 1984-10-23 | 1984-10-23 | Production of vinyl ester resin having air dryability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22115584A JPS61101518A (en) | 1984-10-23 | 1984-10-23 | Production of vinyl ester resin having air dryability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61101518A true JPS61101518A (en) | 1986-05-20 |
JPH0151487B2 JPH0151487B2 (en) | 1989-11-02 |
Family
ID=16762334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22115584A Granted JPS61101518A (en) | 1984-10-23 | 1984-10-23 | Production of vinyl ester resin having air dryability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61101518A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0806441A2 (en) * | 1996-05-09 | 1997-11-12 | Scott Bader Company Limited | Crosslinkable allyl vinyl ester resin compositions |
JP2007197598A (en) * | 2006-01-27 | 2007-08-09 | Dainippon Ink & Chem Inc | Radically curable resin composition |
WO2018088206A1 (en) * | 2016-11-09 | 2018-05-17 | 株式会社クラレ | Oxygen absorbing agent |
WO2019107252A1 (en) | 2017-11-30 | 2019-06-06 | 株式会社クラレ | Compound containing unsaturated double bond, oxygen absorber comprising same, and resin composition |
WO2019203131A1 (en) | 2018-04-19 | 2019-10-24 | 株式会社クラレ | Compound containing unsaturated double bond, oxygen absorbent using same and resin composition |
WO2019208259A1 (en) | 2018-04-23 | 2019-10-31 | 株式会社クラレ | Polymer, and oxygen absorbent and resin composition using same |
WO2021149738A1 (en) | 2020-01-21 | 2021-07-29 | 株式会社クラレ | Curable composition, cured article using same, and method for producing cured article |
KR20210154969A (en) | 2019-04-11 | 2021-12-21 | 주식회사 쿠라레 | Polymer, oxygen absorbent using same, and curable composition |
KR20220107065A (en) | 2020-07-20 | 2022-08-01 | 주식회사 쿠라레 | Metal particle composition, method for producing metal particle composition, and paste |
-
1984
- 1984-10-23 JP JP22115584A patent/JPS61101518A/en active Granted
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0806441A2 (en) * | 1996-05-09 | 1997-11-12 | Scott Bader Company Limited | Crosslinkable allyl vinyl ester resin compositions |
GB2312898A (en) * | 1996-05-09 | 1997-11-12 | Scott Bader Co | Crosslinkable allyl vinyl ester resin compositions |
EP0806441A3 (en) * | 1996-05-09 | 1999-04-14 | Scott Bader Company Limited | Crosslinkable allyl vinyl ester resin compositions |
GB2312898B (en) * | 1996-05-09 | 2000-02-23 | Scott Bader Co | Crosslinkable allyl vinyl ester resin compositions and resins present in such compositions |
AU717696B2 (en) * | 1996-05-09 | 2000-03-30 | Scott Bader Company Limited | Crosslinkable allyl vinyl ester resin compositions |
JP2007197598A (en) * | 2006-01-27 | 2007-08-09 | Dainippon Ink & Chem Inc | Radically curable resin composition |
US11174368B2 (en) | 2016-11-09 | 2021-11-16 | Kuraray Co., Ltd. | Oxygen absorbing agent |
WO2018088206A1 (en) * | 2016-11-09 | 2018-05-17 | 株式会社クラレ | Oxygen absorbing agent |
KR20190079614A (en) | 2016-11-09 | 2019-07-05 | 주식회사 쿠라레 | Oxygen absorber |
JPWO2018088206A1 (en) * | 2016-11-09 | 2019-09-26 | 株式会社クラレ | Oxygen absorber |
WO2019107252A1 (en) | 2017-11-30 | 2019-06-06 | 株式会社クラレ | Compound containing unsaturated double bond, oxygen absorber comprising same, and resin composition |
KR20200091857A (en) | 2017-11-30 | 2020-07-31 | 주식회사 쿠라레 | Unsaturated double bond-containing compound, oxygen absorbent using the same, and resin composition |
US11760816B2 (en) | 2017-11-30 | 2023-09-19 | Kuraray Co., Ltd. | Compound containing unsaturated double bond, oxygen absorber comprising same, and resin composition |
WO2019203131A1 (en) | 2018-04-19 | 2019-10-24 | 株式会社クラレ | Compound containing unsaturated double bond, oxygen absorbent using same and resin composition |
US11396486B2 (en) | 2018-04-19 | 2022-07-26 | Kuraray Co., Ltd. | Compound containing unsaturated double bond, oxygen absorbent using same and resin composition |
KR20210004990A (en) | 2018-04-19 | 2021-01-13 | 주식회사 쿠라레 | Unsaturated double bond-containing compound, oxygen absorber using same, and resin composition |
WO2019208259A1 (en) | 2018-04-23 | 2019-10-31 | 株式会社クラレ | Polymer, and oxygen absorbent and resin composition using same |
JPWO2019208259A1 (en) * | 2018-04-23 | 2021-04-22 | 株式会社クラレ | Polymer and oxygen absorber and resin composition using it |
KR20210005005A (en) | 2018-04-23 | 2021-01-13 | 주식회사 쿠라레 | Polymer and oxygen absorber and resin composition using the same |
CN112004837A (en) * | 2018-04-23 | 2020-11-27 | 株式会社可乐丽 | Polymer, and oxygen absorber and resin composition using the same |
US11866528B2 (en) | 2018-04-23 | 2024-01-09 | Kuraray Co., Ltd. | Polymer, and oxygen absorbent and resin composition using same |
KR20210154969A (en) | 2019-04-11 | 2021-12-21 | 주식회사 쿠라레 | Polymer, oxygen absorbent using same, and curable composition |
WO2021149738A1 (en) | 2020-01-21 | 2021-07-29 | 株式会社クラレ | Curable composition, cured article using same, and method for producing cured article |
KR20220131244A (en) | 2020-01-21 | 2022-09-27 | 주식회사 쿠라레 | Curable composition, cured product using same, and manufacturing method of cured product |
KR20220107065A (en) | 2020-07-20 | 2022-08-01 | 주식회사 쿠라레 | Metal particle composition, method for producing metal particle composition, and paste |
Also Published As
Publication number | Publication date |
---|---|
JPH0151487B2 (en) | 1989-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0845008B1 (en) | Functionalized polybutadiene resins, method for making same and their uses | |
JPS6049206B2 (en) | Polymerizable prepolymer with excellent adhesion | |
KR20100071993A (en) | Low voc thermosetting composition of polyester acrylic resin for gel coat | |
JPS61101518A (en) | Production of vinyl ester resin having air dryability | |
JPS6019941B2 (en) | Compositions useful for in-mold coatings | |
JPS592283B2 (en) | Method for producing sulfur-containing unsaturated resin | |
US3971834A (en) | Modified acrylate resin | |
US4411955A (en) | Reactive hardenable binder mixture, process for preparing hardened products and use of the mixture for the preparation of coatings | |
JPH02676A (en) | Reactive coating | |
US3968181A (en) | Modified acrylate resin | |
JPH06172445A (en) | Epoxy resin with acrylic or methacrylic radical | |
JPS6335609A (en) | Production of curable resin composition having ethylenically unsaturated group | |
JPH0569816B2 (en) | ||
JPH02245012A (en) | Low temperature curable composition based on poly aromatic aldehyde group- containing compound and ketiminized polyminco compound | |
JPS63305177A (en) | Curable resin composition | |
JPH0421579A (en) | Concrete protecting material, surface treatment of concrete and concrete subjected to surface treatment | |
JPS63118310A (en) | Curable resin composition | |
JPS6146482B2 (en) | ||
JPS6368627A (en) | Photocurable resin composition | |
JPH10502953A (en) | Durable coating composition | |
JPS6143109B2 (en) | ||
JP2000063448A (en) | Corrosionproof coating composition for steel product and corrosionproof coated steel structure | |
JPS58111868A (en) | Thermosetting resin composition | |
DE2158611C3 (en) | Process for the production of unsaturated polyester resins | |
JPH03203975A (en) | Thermosetting coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |