JPS61101237A - Apparatus for heating fine particles by gas - Google Patents

Apparatus for heating fine particles by gas

Info

Publication number
JPS61101237A
JPS61101237A JP22292984A JP22292984A JPS61101237A JP S61101237 A JPS61101237 A JP S61101237A JP 22292984 A JP22292984 A JP 22292984A JP 22292984 A JP22292984 A JP 22292984A JP S61101237 A JPS61101237 A JP S61101237A
Authority
JP
Japan
Prior art keywords
gas
heat exchange
coarse
particles
exchange apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22292984A
Other languages
Japanese (ja)
Inventor
Atsushi Sasaki
惇 佐々木
Hiromi Yamada
博巳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP22292984A priority Critical patent/JPS61101237A/en
Publication of JPS61101237A publication Critical patent/JPS61101237A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To improve the separation of gas and duct, by providing a horizontal fluidized bed type heat exchange apparatus for contacting coarse particles heated by a tower type solid-gas heat exchange apparatus with separate fine particles countercurrently and a transport line for recirculating coarse particles between both apparatuses. CONSTITUTION:Coase particles are contained with the gas rising from the lower part of a tower type solid-gas heat exchange apparatus 120 and fallen while receives heat exchange to be supplied to a horizontal fluidized bed type heat exchange apparatus 101 through a coarse particle discharge port 117, a chute 112 and a coarse particle supply pipe 104. A coarse particle bed 111 is formed above the dispersing plate 102 in the horizontal heat exchange apparatus 10 and moved toward an outlet side while fluidized and crosses over a weir B to be discharged to a coarse particle discharge port 107. Then, said coarse particles pass through an air screening pipe 8, a rotary valve 109 and a recirculation line 113 to be returned to the top part 119 of the tower type solid-gas heat exchange apparatus 120.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガスによる微粒子加熱装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a gas-based particle heating device.

(従来の技術) 公知の従来技術として、例えばセメント、アルミナ等の
焼成プラントでは、第3図に示すように、サイクロン4
.5.6.7を多段に積重ね配置シタ、サスペンション
ブレヒータ及び仮焼炉2、ロータリキルン1、クーラ3
を主機として構成されている。即ち1はキルンで右端か
ら石炭(又は重油)が供給され、クーラ5から送られて
くる高温空気と混合し、燃焼する。燃焼によシ発生した
高温ガスはロータリキルン1の左端からサイクロン4.
5.6.7を径で、ファン9によって系外に導かれる。
(Prior art) As a known prior art, for example, in a cement, alumina, etc. calcination plant, as shown in Fig. 3, a cyclone 4
.. 5.6.7 stacked in multiple stages, suspension brake heater, calciner 2, rotary kiln 1, cooler 3
It is mainly composed of That is, 1 is a kiln, and coal (or heavy oil) is supplied from the right end, mixes with high-temperature air sent from a cooler 5, and burns it. High-temperature gas generated by combustion flows from the left end of rotary kiln 1 to cyclone 4.
5.6.7, and is guided out of the system by the fan 9.

一方粉状のセメント原料は、原料シュート8から供給さ
れ、下方から上昇してくる高温ガス中に分散し、同ガス
と熱交換しながら、同ガスに運ばれて、最上段サイクロ
ン7へ入る。同サイクロン7でガスと原料が分離され、
ガスはサイクロン7上部から77ン9によって系外へ導
かれ、原料は下降し、前述の原料供給シュート8からサ
イクロン7までと同じ挙動を繰返して、サイクロン6.
5を径て仮焼炉2へ送られる。同似焼炉2はクーラ3か
ら抽気した空気と、供給される石炭(又は重油)とファ
ンにより底部から吹込まれる空気とが混合し、石炭(又
は重油)が燃焼する。この燃焼によυ、サイクロン5か
ら入って来た原料は仮焼され、仮焼炉2からの排ガスに
同伴されて、サイクロン4へ送られる。同サイクロン4
によリ、ガスと仮焼された原料が分離され、ガスは上方
のサイクロン5へ入り、前述の挙動を繰返し、一方原料
はサイクロン4下部から排出され、ロータリキルン1の
左端に供給される。供給された仮焼原料はロータリキル
ン1の回転により、流動しながら右側へ移動する間に1
高温の炎やガスと向流接触し、加熱、焼成され、クリン
カとなり、クーラ3へ排出される。同クリンカはクーラ
3下部からプロアによって吹き上げられる冷却空気によ
って冷却され、クーラ3右端から図示省略の仕上粉砕工
程へ導かれる。尚クーラ3後方より排気ダクトにより、
排気は集塵装置10を経て誘引通風機11によシ、大気
に放出される。
On the other hand, the powdered cement raw material is supplied from the raw material chute 8, dispersed in the high-temperature gas rising from below, and is carried by the gas while exchanging heat with the gas, and enters the uppermost cyclone 7. Gas and raw materials are separated in cyclone 7,
The gas is guided out of the system from the upper part of the cyclone 7 by the tube 9, the raw material descends, and the same behavior as from the raw material supply chute 8 to the cyclone 7 described above is repeated, and the raw material is transferred to the cyclone 6.
5 and sent to the calcining furnace 2. In the similar kiln 2, air extracted from the cooler 3, supplied coal (or heavy oil), and air blown from the bottom by a fan are mixed, and the coal (or heavy oil) is combusted. By this combustion, the raw material coming in from the cyclone 5 is calcined, and is sent to the cyclone 4 along with the exhaust gas from the calciner 2. Cyclone 4
As a result, the gas and the calcined raw material are separated and the gas enters the upper cyclone 5 and repeats the behavior described above, while the raw material is discharged from the lower part of the cyclone 4 and fed to the left end of the rotary kiln 1. The supplied calcined raw material moves to the right side while flowing due to the rotation of rotary kiln 1.
It comes into countercurrent contact with a high-temperature flame or gas, is heated and fired, becomes clinker, and is discharged to the cooler 3. The clinker is cooled by cooling air blown up from the lower part of the cooler 3 by a prower, and is guided from the right end of the cooler 3 to a final crushing step (not shown). Furthermore, an exhaust duct is installed from the rear of cooler 3.
The exhaust gas passes through the dust collector 10 and is discharged into the atmosphere by the induced draft fan 11.

以上が従来型暇焼炉付サスペンションプレヒータ焼成プ
ラントの構成である。
The above is the configuration of a conventional suspension preheater firing plant with a firing furnace.

この種の従来装置は現在世界的に広く普及しており有用
な装置として評価も高いが、なお燃料消費、電力消費、
建設費の一層の低減が求められている。それぞれまった
く低減の可能性はないとは言い難いが、いずれか1つの
低減は他の1つあるいは2つの増加につながり、総合的
にメリットある改善については限界に近いところまで来
ている。
Although this type of conventional equipment is currently widely used worldwide and is highly regarded as a useful device, it still suffers from high fuel consumption, power consumption,
Further reductions in construction costs are required. Although it is hard to say that there is no possibility of reduction in each, a reduction in any one will lead to an increase in one or two of the others, and we are approaching the limit for overall beneficial improvements.

(発明が解決しようとする問題点) 従来の装置の改善余地がほとんどないことの原因は微粉
をサスペンションプレヒータで扱うことに存在する。す
なわちサスペンションブレヒータを構成するものは、サ
イクロンとガスダクトと言ってよい。そのうち熱交換が
主として行なわれる部分は、ガスダクトであ)、サイク
ロンはガスと微粉とを分離し、それぞれ前者は上段のガ
スダクト、サイクロンへ、後者は下段のガスダクトへ送
るために不可欠の分離装置である。この分離効率が低い
ことは折角ガスと熱交換して昇温した微粉の一部を再び
上流側のガスダクト、サイクロンへもどすことになシ、
熱効率とさげるととKなる。この分離装置としてのサイ
クロンを小さくシ、圧損失をさげることができれば、要
求をかなえられることはできるが、セメント原料として
微粉を扱っているため、総合的にさらにメリットを出す
ことは困難である。
(Problems to be Solved by the Invention) The reason why there is almost no room for improvement in conventional devices is that fine powder is handled by a suspension preheater. In other words, the components of the suspension brake heater can be said to be a cyclone and a gas duct. The part where heat exchange is mainly performed is the gas duct), and the cyclone is an essential separation device that separates the gas and fine powder, sending the former to the upper gas duct and cyclone, and the latter to the lower gas duct. . This low separation efficiency means that part of the fine powder, which has heated up through heat exchange with the gas, must be returned to the upstream gas duct or cyclone.
When the thermal efficiency is reduced, it becomes K. If the cyclone used as the separation device could be made smaller and the pressure loss could be reduced, this requirement could be met, but since fine powder is used as the raw material for cement, it is difficult to achieve further overall benefits.

このことから微粉のかわりに粗粒子を熱媒としてロータ
リキルン、仮焼炉排ガスと熱交換させ、得られた高温の
粗粒子と微粉とを接触させることが、上記要求をかなえ
る上に効果があることを見出した。
For this reason, it is effective to meet the above requirements by using coarse particles instead of fine powder as a heating medium to exchange heat with rotary kiln or calciner exhaust gas, and by bringing the resulting high-temperature coarse particles into contact with the fine powder. I discovered that.

そうすることにより、粗粒子とガスとの熱交換装置にお
いては分離の問題が大幅に解消され、しかも圧損失の大
きいサイクロンを不要とするようになった。
By doing so, the problem of separation in the heat exchange device for coarse particles and gas has been largely resolved, and furthermore, a cyclone with large pressure loss has become unnecessary.

また、粗粒子と微粉とは、本出願と同日付の出願によっ
て提案した粗粒子・微粒子熱交換装置の適用が可能なる
ことを見出した。
Furthermore, it has been found that the coarse particle/fine particle heat exchange device proposed in the application filed on the same date as the present application can be applied to coarse particles and fine powder.

(問題点を解決するだめの手段) 上記知見に基づき、本発明は、次の装置より構成される
(Means for Solving the Problems) Based on the above knowledge, the present invention is comprised of the following device.

1)粗粒子とガスとが向流になるよう接触する直立の格
式熱交換装置 2)粗粒子、微粉とが下層、上層を形成し、互に反対向
きに流れながら接触し、熱交換する横形流動層式熱交換
装置 3)上記1)、2)の間に粗粒循環装置を設ける。
1) An upright type heat exchange device in which coarse particles and gas contact each other in a countercurrent flow. 2) A horizontal type in which coarse particles and fine powder form a lower layer and an upper layer, and contact each other while flowing in opposite directions to exchange heat. Fluidized bed heat exchange device 3) A coarse particle circulation device is provided between 1) and 2) above.

すなわち、本発明は粗粒子とガスとを向流接触させる格
式固気熱交換装置と同装置で加熱された粗粒子と別の微
粒子とを向流接触させる横形流動層式粗粒子・微粒子熱
交換装置と、粗粒子を両装置間に循環させる輸送ライン
とからなることを特徴とする微粒子のガスによる加熱装
置である。
That is, the present invention provides a formal solid-air heat exchange device that brings coarse particles into countercurrent contact with a gas, and a horizontal fluidized bed type coarse particle/fine particle heat exchange device that brings coarse particles heated in the same device into countercurrent contact with other fine particles. This device is characterized by comprising a device and a transport line that circulates coarse particles between both devices.

以下、本発明の一実施態様を、第1図に従って詳述する
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG.

(1)格式固気熱交換装置 断面積の広い部分と細い部分(喉部)とが交互に重なる
格式固気熱交換装置120の頂部119はガス排出口と
粗粒子供給を兼ねている。底部121は側面にガス供給
口118下端に粗粒子集合排出口117が設けである。
(1) Formal solid-gas heat exchange device The top portion 119 of the formal solid-gas heat exchange device 120, in which portions with a wide cross-sectional area and narrow portions (throat) overlap alternately, serves as a gas outlet and a coarse particle supply. The bottom part 121 is provided with a gas supply port 118 on the side surface and a coarse particle collection discharge port 117 at the lower end thereof.

塔式固気熱交換装置120頂部119はすイクロン12
2を径でファン123につながる。
Tower-type solid-gas heat exchanger 120 top 119 is Suicron 12
2 is connected to the fan 123 with a diameter.

また塔弐同気熱交換装置120へのガスはロータリキル
ン126、仮焼炉124よりサイクロン125を径で供
給されるよう配管されている。
Further, gas to the tower isotropic heat exchange device 120 is piped so as to be supplied from a rotary kiln 126 and a calcination furnace 124 to a cyclone 125 .

(2)粗粒子・微粒子との横形流動層式熱交換装置 横形の流動層ケーシング101、分散板または複数のノ
ズル(往復稼動グレートも可)102、プロワ103、
粗粒子供給管104、仕切板(壁)あるいは絞り105
.105’、微粒子排出口106、風篩管108、粗粒
子排出口107、ロータリバルブ109、微粒子層11
G、粗粒子層111、微粒子供給菅114、流動空気排
出管115より成立っている。
(2) Horizontal fluidized bed heat exchange device with coarse particles and fine particles Horizontal fluidized bed casing 101, dispersion plate or multiple nozzles (reciprocating operation grade is also possible) 102, blower 103,
Coarse particle supply pipe 104, partition plate (wall) or aperture 105
.. 105', fine particle discharge port 106, air sieve tube 108, coarse particle discharge port 107, rotary valve 109, fine particle layer 11
G, consists of a coarse particle layer 111, a fine particle supply pipe 114, and a fluidized air discharge pipe 115.

流動層ケーシング101は第1図のX−X断面図である
第2図に示すように、分散板またはノズル102の設置
された底部は福が小さく、上部に移るにしたがって幅が
大きくなることが望ましい。
As shown in FIG. 2, which is a sectional view of the fluidized bed casing 101 taken along line XX in FIG. desirable.

流動層ケーシング101の微粒子排出口106側は微粒
子層110の高さを一定に保ち、そこから溢流するよう
壁あるいは堰のを設ける。また粗粒子出口107側は粗
粒子層111の高さを一定に保ち、そこから粗粒子が浴
出可能なように一定高さの壁あるいは堰■が設けである
On the particulate discharge port 106 side of the fluidized bed casing 101, a wall or weir is provided so that the height of the particulate layer 110 is kept constant and overflow occurs therefrom. Further, on the coarse particle outlet 107 side, a wall or weir of a constant height is provided so that the height of the coarse particle layer 111 can be kept constant and the coarse particles can be washed out from there.

分散板あるいはノズル101については公知のものを使
用することが可能であり、説明は省略する。
As the dispersion plate or the nozzle 101, a known one can be used, and a description thereof will be omitted.

仕切板(壁)あるいは絞り105.10ダは一例として
図のように設けられているが、粒子の移動方向(横方向
)の混合を抑えるためのものであシ、これに限定される
ものではない。
The partition plate (wall) or the aperture 105.10 da is provided as an example as shown in the figure, but it is intended to suppress mixing in the movement direction (lateral direction) of particles, and is not limited to this. do not have.

粗粒子排出口107下には風篩管108が設けてあり、
粗粒子と微粒子とを分け、粗粒子のみ下方へ抜出すよう
になっている。
A wind sieve pipe 108 is provided below the coarse particle outlet 107.
Coarse particles and fine particles are separated, and only the coarse particles are extracted downward.

(3)その他 粗粒子を横形流動層式熱交換装置101から基或固気熱
交換装置120の頂部に戻すための輸送ライン113o
’ サイクロン122で捕集した微粒子を横形流動層式熱交
換装置101へもどすライン129、横形流動層式熱交
換装置101排気中の微粉捕集用サイクロン116、固
サイクロン排気を塔式固気熱交換装置120上部へも導
くライン128、捕集粉を横形流動層式熱交換装置10
1へ導くシュート129、基或固気熱交換装置底部12
1、粗粒子集合排出口117よりの粗粒を横形流動層式
熱交換装置101へ導くシュート112゜ がそれぞれ設けである。
(3) A transport line 113o for returning other coarse particles from the horizontal fluidized bed heat exchanger 101 to the top of the base or solid-gas heat exchanger 120
' A line 129 that returns the fine particles collected by the cyclone 122 to the horizontal fluidized bed heat exchanger 101, a cyclone 116 for collecting fine particles in the exhaust from the horizontal fluidized bed heat exchanger 101, and a column type solid gas heat exchanger for the solid cyclone exhaust gas. A line 128 also leads to the upper part of the device 120, and a line 128 leads the collected powder to the horizontal fluidized bed heat exchange device 10.
1, a chute 129 leading to the bottom part 12 of the solid-gas heat exchanger
1. A chute 112° is provided for guiding the coarse particles from the coarse particle collection outlet 117 to the horizontal fluidized bed heat exchanger 101.

(作用) (1)  ロータリキルン126排ガス、仮焼炉124
排ガスの流れ ロータリキルン126、仮焼炉124の排ガスはそれぞ
れサイクロン125を径て、塔式固気熱交換装置120
の底部121のガス供給口118より入り、同装置12
0内を上昇し、粗粒子と向流熱交換し、頂部119より
排出される。このガスの誘引はファン123により行な
われ、ダストはサイクロン122で捕集される。
(Function) (1) Rotary kiln 126 exhaust gas, calcining furnace 124
Flow of Exhaust Gas Exhaust gas from the rotary kiln 126 and the calciner 124 passes through a cyclone 125 and is then transferred to a column-type solid-gas heat exchanger 120.
Enter through the gas supply port 118 at the bottom 121 of the device 12.
0, exchanges countercurrent heat with the coarse particles, and is discharged from the top 119. This gas is induced by a fan 123, and the dust is collected by a cyclone 122.

(2)粗粒子(熱媒)の流れ 粗粒子(熱媒)は塔式固気熱交換装置120の下から上
へ上昇するガスと接触し、熱交換しながら落下し、粗粒
子排出口117、シュート112、粗粒供給管104を
径で、横形流動層式熱交換装置101に供給される。
(2) Flow of coarse particles (heating medium) The coarse particles (heating medium) come into contact with the gas rising from the bottom to the top of the column-type solid-gas heat exchanger 120, and fall while exchanging heat. , chute 112, and coarse grain supply pipe 104, and are supplied to the horizontal fluidized bed heat exchanger 101.

横形流動層式熱交換装置101内では分散板102上、
下部に粗粒子層111が形成され1.流動化されつつ、
出口側に向かって移動し、堰■を越えて、粗粒子排出口
107に排出され、風篩管108、ロータパルプ109
、循環ライン113を通って塔式固気熱交換装置120
の頂部119に戻される。この間粗粒子層111の上方
に形成され、粗粒子層111とは反対方向に移動する微
粒子層110と接触し、冷却される。この粗粒子層11
1と微粒子層110との接触を促進するものは、横形流
動層熱交換装置101の底部の分散板102より噴出す
る空気である。横形流動層式熱交換装置101は第3図
に示すような断面になっているため、粗粒子は一分散板
102の直上は上昇し、微粒子層110内に跳び込むが
、ガス流速が低下するため失速し、両側に分れ、壁面近
くを下降すると言う対流現象を示す。これが粗粒子層1
11と微粒子層110との接触、熱交換を促す。
In the horizontal fluidized bed heat exchanger 101, on the distribution plate 102,
A coarse particle layer 111 is formed at the bottom.1. While being fluidized,
It moves toward the exit side, crosses the weir (■), is discharged to the coarse particle discharge port 107, and is passed through the wind sieve tube 108 and the rotor pulp 109.
, through the circulation line 113 to the column-type solid-gas heat exchanger 120
is returned to the top 119 of. During this time, it contacts the fine particle layer 110 that is formed above the coarse particle layer 111 and moves in the opposite direction to the coarse particle layer 111, and is cooled. This coarse particle layer 11
1 and the fine particle layer 110 is the air jetted out from the dispersion plate 102 at the bottom of the horizontal fluidized bed heat exchanger 101. Since the horizontal fluidized bed heat exchanger 101 has a cross section as shown in FIG. 3, the coarse particles rise directly above the dispersion plate 102 and jump into the fine particle layer 110, but the gas flow rate decreases. This shows a convection phenomenon in which it stalls, splits into both sides, and descends near the wall. This is coarse particle layer 1
11 and the fine particle layer 110 to promote contact and heat exchange.

(3)微粒子の流れ 微粒子はその供給管114により、横形流動層式熱交換
装置101の粗粒子供給側の反対側に供給される。粗粒
子は微粒子に比べ上昇ガス流に対する抵抗が大きいので
、粗粒子は下方に沈み、微粒子はその上方に浮び、それ
ぞれ粗粒子層111、微粒子層110の二層が形成され
る。各層の高さは堰の、■によってきめられる。
(3) Flow of Fine Particles Fine particles are supplied through the supply pipe 114 to the opposite side of the horizontal fluidized bed heat exchanger 101 from the coarse particle supply side. Since coarse particles have greater resistance to the upward gas flow than fine particles, the coarse particles sink downward and the fine particles float above, forming two layers, a coarse particle layer 111 and a fine particle layer 110, respectively. The height of each layer is determined by ■ of the weir.

反対側に移動した微粒子は粗粒子によって加熱され、堰
のを越え、微粒子排出口106を径て仮焼炉124に送
られる。仮焼炉124では燃料・空気が供給され、燃料
が燃焼し、その熱によって原料は仮焼される。原料はガ
スに同伴され、さらにロータリキルン126排ガスと合
体、す・fクロン125へ導かれる。
The fine particles that have moved to the opposite side are heated by the coarse particles, cross over the weir, and are sent to the calciner 124 through the fine particle outlet 106. In the calcining furnace 124, fuel and air are supplied, the fuel is combusted, and the raw material is calcined by the heat. The raw material is entrained in the gas, further combined with the exhaust gas from the rotary kiln 126, and guided to the S/F clone 125.

と\で固気分離され、微粒子はロータリキルン126へ
供給される。
Solid-gas separation is performed at and \, and the fine particles are supplied to a rotary kiln 126.

(4)その他 横形流動層式熱交換装置101の下部ヘプロワ103に
よって供給された空気は、粗粒子層111、微粒子層1
10を流動化させたあと流動空気排出管115を径で、
サイクロン116に入り、ダストを分離し塔式固形熱交
換装置120上部へ送られる。
(4) In addition, the air supplied by the lower blower 103 of the horizontal fluidized bed heat exchanger 101 is divided into the coarse particle layer 111 and the fine particle layer 1.
After fluidizing 10, the diameter of the fluidized air discharge pipe 115 is,
The dust enters the cyclone 116, separates the dust, and sends it to the upper part of the column-type solid heat exchanger 120.

(効果) (1)粗粒子とロータリキルン126、仮焼炉124排
ガスとを向流接触させ、高熱効率で熱交換させるのに、
簡単で、圧損失の低い塔式固気熱交換装置120を採用
し、 (2)さらに粗粒子の得た熱を微粒子に効率的に与える
のに簡単で、動力消費の少い横形流動層式熱交換装置1
01を採用することKより従来のサスペンションプレヒ
ータニ比シ、■ 熱効率が高く、微粉の温度が上昇、排
ガス温度が低下する等結果として全体の燃料消費量が低
減する。
(Effects) (1) To bring the coarse particles into countercurrent contact with the rotary kiln 126 and calciner 124 exhaust gas and exchange heat with high thermal efficiency,
A simple, low-pressure-loss column-type solid-gas heat exchanger 120 is adopted, and (2) a horizontal fluidized bed type is adopted, which is simple and consumes less power to efficiently impart heat obtained from coarse particles to fine particles. Heat exchange device 1
Compared to the conventional suspension preheater, adopting 01 has higher thermal efficiency, increases the temperature of fine powder, and lowers the exhaust gas temperature, resulting in a reduction in overall fuel consumption.

■ サイクロンの使用段数も減り、塔式固気熱交換装置
120ラインの圧損失が低下し、横形流動層式熱交換装
置101ラインの動力も小さく、全体として動力消費が
低下する。
(2) The number of cyclone stages used is reduced, the pressure loss in the column-type solid-gas heat exchanger 120 line is reduced, and the power of the horizontal fluidized bed heat exchanger 101 line is also small, resulting in a reduction in power consumption as a whole.

@ 全体として装置全体が小さくなり、架構も簡単にな
るため、建設費が低減する。
@ Overall, the entire device is smaller and the frame is simpler, reducing construction costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様の説明図、第2図は第1図
のX−X線断面図、第3図は従来の加熱方式の説明図で
ある。
FIG. 1 is an explanatory diagram of one embodiment of the present invention, FIG. 2 is a sectional view taken along the line X--X of FIG. 1, and FIG. 3 is an explanatory diagram of a conventional heating method.

Claims (1)

【特許請求の範囲】[Claims] 粗粒子とガスとを向流接触させる塔式固気熱交換装置と
同装置で加熱された粗粒子と別の微粒子とを向流接触さ
せる横形流動層式粗粒子・微粒子熱交換装置と、粗粒子
を両装置間に循環させる輸送ラインとからなることを特
徴とする微粒子のガスによる加熱装置。
A column-type solid-gas heat exchange device that brings coarse particles into countercurrent contact with gas, a horizontal fluidized bed type coarse particle/fine particle heat exchange device that brings coarse particles heated in the same device into countercurrent contact with other fine particles, and A device for heating fine particles using gas, characterized by comprising a transport line that circulates particles between both devices.
JP22292984A 1984-10-25 1984-10-25 Apparatus for heating fine particles by gas Pending JPS61101237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22292984A JPS61101237A (en) 1984-10-25 1984-10-25 Apparatus for heating fine particles by gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22292984A JPS61101237A (en) 1984-10-25 1984-10-25 Apparatus for heating fine particles by gas

Publications (1)

Publication Number Publication Date
JPS61101237A true JPS61101237A (en) 1986-05-20

Family

ID=16790073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22292984A Pending JPS61101237A (en) 1984-10-25 1984-10-25 Apparatus for heating fine particles by gas

Country Status (1)

Country Link
JP (1) JPS61101237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152899A1 (en) * 2011-05-12 2012-11-15 Lafarge Decarbonation process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012152899A1 (en) * 2011-05-12 2012-11-15 Lafarge Decarbonation process
FR2975094A1 (en) * 2011-05-12 2012-11-16 Lafarge Sa DECARBONATION PROCESS
US9321683B2 (en) 2011-05-12 2016-04-26 Lafarge Decarbonation process

Similar Documents

Publication Publication Date Title
CN100372600C (en) Method and apparatus for heat treatment in a fluidised bed
CN102502744A (en) Slagging-free type and multilevel differential temperature fluidized roasting system for crystallized aluminum salt and method thereof
JPS6352933B2 (en)
US2668041A (en) Heat treatment of finely divided solids
JP3042850B2 (en) Method and apparatus for producing cement clinker from raw meal
CN202369408U (en) Clinkering-free multistage differential temperature fluidized roasting system for crystal aluminum salt
JPS61101237A (en) Apparatus for heating fine particles by gas
US2970828A (en) Apparatus for cooling refractory particles
WO2002064526A1 (en) Method of producing cement clinker and electricity
JPS624879Y2 (en)
JPH0133986Y2 (en)
JPS6156177B2 (en)
JPS63156044A (en) Method and apparatus for cooling clinker
JPS6014496Y2 (en) Heat exchange unit between powder and gas
JPH0127880Y2 (en)
JPS6130156Y2 (en)
JPS5932175B2 (en) Fluid roasting equipment
JPS6020672B2 (en) Powder raw material calcination equipment
JPH0341760B2 (en)
JPS6365878B2 (en)
JPS6283031A (en) Method and apparatus for baking stock powder
JPH0431520Y2 (en)
JPH11294970A (en) Preheating device
JPS61136948A (en) Cement clinker burning equipments
JPS6123015B2 (en)