JPS61100697A - Method of fixing radioactive iodine - Google Patents

Method of fixing radioactive iodine

Info

Publication number
JPS61100697A
JPS61100697A JP59223279A JP22327984A JPS61100697A JP S61100697 A JPS61100697 A JP S61100697A JP 59223279 A JP59223279 A JP 59223279A JP 22327984 A JP22327984 A JP 22327984A JP S61100697 A JPS61100697 A JP S61100697A
Authority
JP
Japan
Prior art keywords
adsorbent
radioactive iodine
iodine
reaction
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59223279A
Other languages
Japanese (ja)
Inventor
田沼 宏之
仲道 山崎
雄 久保田
星野 吉廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59223279A priority Critical patent/JPS61100697A/en
Priority to US06/764,686 priority patent/US4661291A/en
Priority to GB8521297A priority patent/GB2165828B/en
Priority to DE19853531607 priority patent/DE3531607A1/en
Priority to FR8514124A priority patent/FR2570865A1/en
Publication of JPS61100697A publication Critical patent/JPS61100697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は放射性ヨウ素の固定化方法に係り、特に銀を担
持した珪酸塩系吸着剤を用いる放射性ヨウ素の固定化方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for immobilizing radioactive iodine, and particularly to a method for immobilizing radioactive iodine using a silicate-based adsorbent carrying silver.

〔従来の技$1 使用済核燃料の再処理工場や、原子力発電所等から発生
する揮発性の放射性ヨウ素は、一般に溶液の状態や、活
性炭或は銀担持ゼオライト等の吸着剤に吸着されて捕捉
されている。ところが、溶液や或は吸着剤に吸着された
まま!は物理的性質(例えば機械的強度や耐熱性等)に
も化学的性質(例えば耐水性や耐酸性、耐アルカリ性等
)のいずれにおいても非常に不安定で、長期的な貯蔵に
は不向きであるので、その固定化方法が近年大いに研究
されており、放射性ヨウ素を吸着したIR相持吸!F剤
をセメントで固化する方法等が提案されている。(例え
ば東京大学工学部付am子カニ学研究施設レポートIJ
TNL−RO134(1982)、Bu rge r 
、5chee l e、PNL−4689(1983)
)。
[Conventional technique $1 Volatile radioactive iodine generated from spent nuclear fuel reprocessing plants, nuclear power plants, etc. is generally captured in the form of a solution or adsorbed by an adsorbent such as activated carbon or silver-supported zeolite. has been done. However, it remains adsorbed to the solution or adsorbent! is extremely unstable in both physical properties (e.g. mechanical strength, heat resistance, etc.) and chemical properties (e.g. water resistance, acid resistance, alkali resistance, etc.) and is unsuitable for long-term storage. Therefore, the immobilization method has been extensively researched in recent years, and IR-compatible adsorption method that adsorbs radioactive iodine has been studied extensively in recent years. A method of solidifying the F agent with cement has been proposed. (For example, the University of Tokyo Faculty of Engineering Research Facility Report IJ)
TNL-RO134 (1982), Burger
, 5chee le, PNL-4689 (1983)
).

[発明が解決しようとする問題点] 前述のように、吸着剤に吸着されたヨウ素は不安室であ
るので、何らかの固化処理を施す必要がある。セメント
による固化方法は1手軽であるので実用性が高いものと
期待されているが、セメント固化体は緻密なものが得難
く、ヨウ素の溶出の恐れがある。(特にヨウ素129の
半減期は極めて長い(1600万年)ので、緻密でしか
も高強度の固化体中に封塞する必要がある。)また、吸
着剤を硬化させるに要するセメントの量が多いの型、得
られる固化体の体積が大さくなる。そのため、保管スペ
ースを広くとらざるを得す、この点も実用上の隘路とな
っている。
[Problems to be Solved by the Invention] As mentioned above, since iodine adsorbed by the adsorbent is an unstable chamber, it is necessary to perform some kind of solidification treatment. The solidification method using cement is simple and is expected to be highly practical, but it is difficult to obtain a dense cement solidified product, and there is a risk of iodine elution. (In particular, the half-life of iodine-129 is extremely long (16 million years), so it needs to be sealed in a dense and high-strength solidified material.) Also, the amount of cement required to harden the adsorbent is large. mold, the volume of the resulting solidified body becomes larger. Therefore, it is necessary to take up a large storage space, which is also a practical bottleneck.

なお、DOE/ET/41900−9 (ESC−DO
E−13354)NUCLEARWASTE  MAN
AGEMENT  UC−70には、放射性ヨウ素を含
むアルカリ性廃液に珪酸化合物を混ぜてソーダライトと
し、これを1000℃で焼結する方法が記載されている
が、捕捉したヨウ素の揮散を防ぎながら高温で十分に焼
結せねばならないので、装置が複雑化する等実用化する
には技術的に種々の問題がある。
In addition, DOE/ET/41900-9 (ESC-DO
E-13354) NUCLEAR WASTE MAN
AGEMENT UC-70 describes a method of mixing a silicic acid compound with an alkaline waste liquid containing radioactive iodine to form sodalite, and sintering this at 1000℃, but it is sufficient to use high temperature while preventing the volatilization of captured iodine. Since the method must be sintered, there are various technical problems in putting it into practical use, such as complicating the equipment.

このように従来の固定化方法は、ヨウ素の封じ込めが充
分でなかったり、実用化し難い等の問題があった・ [問題点を解決するための手段] と記問題点を解決するために、本発明は、銀を担持した
珪酸塩系吸着剤に放射性ヨウ素を吸着させ、この吸着剤
に水酸化ナトリウム等のアルカリ又はアルカリ土類金属
の水酸化物を混合し水熱反応させることにより固化体と
するようにしたものである。
As described above, conventional immobilization methods have problems such as insufficient iodine containment and difficulty in practical application. In the invention, radioactive iodine is adsorbed onto a silicate-based adsorbent carrying silver, and an alkali or alkaline earth metal hydroxide such as sodium hydroxide is mixed with the adsorbent and a hydrothermal reaction is performed to form a solidified material. It was designed to do so.

以下本発明について更に詳細に説明する。The present invention will be explained in more detail below.

第1図は本発明方法を説明する系統図である。FIG. 1 is a system diagram illustrating the method of the present invention.

第1図に示す如く、本発明はまず放射性ヨウ素を、jl
を担持した吸着剤と接触させ、放射性ヨウ素を吸着させ
る。
As shown in FIG. 1, the present invention first introduces radioactive iodine into
to adsorb radioactive iodine.

放射性ヨウ素は、核燃料再処理工場や原子力発電所等で
発生するものであるが1本発明方法は放射性ヨウ素の発
生源を問わず、一般的に適用し得る。
Although radioactive iodine is generated in nuclear fuel reprocessing plants, nuclear power plants, etc., the method of the present invention can be generally applied regardless of the source of radioactive iodine.

本発明において使用される吸着剤は、銀を担持した珪酸
塩系吸着剤であり、例えば銀但持ゼオライト、*m持モ
ルデナイト等が用いられる。銀の担持卆は特に限定され
るものではないが、20〜50重量%、とりわけ30〜
40重量%程度のものが好適に用いられる。
The adsorbent used in the present invention is a silicate-based adsorbent supporting silver, such as silver-supported zeolite, *m-supported mordenite, etc. The amount of silver supported is not particularly limited, but is 20 to 50% by weight, especially 30 to 50% by weight.
About 40% by weight is preferably used.

このような銀を相持して吸着剤と放射性ヨウ素とを接触
させるには、一般の吸R装置を用いれば良く、例えば金
属製ケーシング中に吸着剤を充填し、このケーシング内
に放射性ヨウ素を含む流体を導入し通過させれば良い、
IRを相持した珪酸塩系吸着剤に放射性ヨウ素を接触さ
せると、放射性ヨウ素はこの吸着剤に吸着され、その一
部はAglとなり、他の一部は単体の状態或はAgと不
安定な結合をして存在する。
In order to bring such silver into contact with the adsorbent and radioactive iodine, a general R absorption device may be used. For example, the adsorbent is filled in a metal casing, and the casing contains the radioactive iodine. All you have to do is introduce the fluid and let it pass.
When radioactive iodine is brought into contact with a silicate-based adsorbent containing IR, the radioactive iodine is adsorbed by this adsorbent, and some of it becomes Agl, while the other part is in a simple state or in an unstable bond with Ag. To exist.

本発明においては、次にこの吸着剤に水酸化ナトリウム
、水酸化カリウム及び水酸化バリウムの1M!又は2種
以上を加える。このようなアルカリないしはアルカリ土
類金属の水酸化物を加えることにより、吸着剤に物理的
に吸着されているヨウ素は1例えば次の如き反応式に従
って、安定なA g I JtfAg I Oコにす6
゜3I* +f30H−+6Ag” :’ A t  I  03 + 5 A gI  +
 3 Hp  O本発明においては1次に述べる−よう
にヨウ素を吸着した吸着剤とアルカリないしはアルカリ
土類金属の水酸化物との混合物を水熱反応させるので1
反応に必要な水を添加するのが好ましい、なお水酸化バ
リウムには1通常、多量の結晶水が含まれているので、
水を添加しなくとも良い、即ち水酸化バリウムに含まれ
る結晶水により水熱反応が進行し得る。
In the present invention, next, this adsorbent contains 1 M! of sodium hydroxide, potassium hydroxide, and barium hydroxide! Or add two or more types. By adding such an alkali or alkaline earth metal hydroxide, the iodine physically adsorbed on the adsorbent can be converted into stable A g I JtfAg I O according to the following reaction formula. 6
゜3I* +f30H-+6Ag":' A t I 03 + 5 A gI +
3 Hp O In the present invention, a mixture of an adsorbent adsorbing iodine and an alkali or alkaline earth metal hydroxide is subjected to a hydrothermal reaction as described below.
It is preferable to add the water necessary for the reaction, since barium hydroxide usually contains a large amount of water of crystallization.
It is not necessary to add water; that is, the hydrothermal reaction can proceed due to the water of crystallization contained in barium hydroxide.

水を添加する場合には、水を単独で添加しても良いので
あるが、水酸化ナトリウム、水酸化カリウム、水酸化バ
リウムを水に溶かし、水溶液として添加するようにして
も良い。
When adding water, water may be added alone, but sodium hydroxide, potassium hydroxide, or barium hydroxide may be dissolved in water and added as an aqueous solution.

このように水(又は結晶水)を含む、放射性ヨウ素を吸
着した珪酸塩系吸着剤とアルカリないしはアルカリ土類
金属の水酸化物との混合物(以下、単に混合物というこ
とがある。)を、圧カフ0K g/ crn’以上、温
度150℃以上の加熱加圧状態に保持して水熱反応を行
なわせ、混合物の固化を行なわせる。
In this way, a mixture (hereinafter sometimes simply referred to as a mixture) of a silicate-based adsorbent adsorbing radioactive iodine containing water (or water of crystallization) and an alkali or alkaline earth metal hydroxide is heated under pressure. The cuff is maintained under heating and pressure at a temperature of 0 kg/crn' or more and a temperature of 150° C. or more to cause a hydrothermal reaction and solidify the mixture.

この水熱合成反応により、少なくとも部分的に水和した
含フルカリアルミノシリケートの3次元骨格構造(ネッ
トワーク)が形成され、これにより珪酸塩系吸着剤を主
体とする混合物は緻密で高強度の固体になると共に、吸
着剤に吸着されたヨウ素は、このネットワーク中に封じ
込められる。
This hydrothermal synthesis reaction forms a three-dimensional skeletal structure (network) of at least partially hydrated flucarial aluminosilicate, which makes the silicate-based adsorbent mixture a dense, high-strength solid. The iodine adsorbed on the adsorbent becomes trapped within this network.

水酸化ナトリウム、水酸化カリウム或は水酸化バリウム
は、水熱反応中に、吸着剤を構成する5tO2やA J
l 20 sと反応し、アルミノシリケートのネットワ
ーク形成反応や水和反応を促進Tる。このようなアルカ
リ或はアルカリ土類金属の水酸化物の添加量が1%より
も少ないと、この反応併進が不充分となり、逆に30%
よりも多いとアルミノシリケートのネットワークが切れ
、固化体の強度J低下すると共に、ネットワークのヨウ
素封鎖機能が低下する。
During the hydrothermal reaction, sodium hydroxide, potassium hydroxide, or barium hydroxide absorbs 5tO2 and AJ, which constitute the adsorbent.
It reacts with l 20 s and promotes the network formation reaction and hydration reaction of aluminosilicate. If the amount of the alkali or alkaline earth metal hydroxide added is less than 1%, the parallel progress of this reaction will be insufficient;
If the amount exceeds , the aluminosilicate network is broken, the strength J of the solidified body is reduced, and the iodine sequestration function of the network is reduced.

上記混合物中に含まれるべき水の量は、上記混合物10
0重量部に対して2〜20重量部の範囲とするのが好ま
しい、水の含有量が2重量部よりも少ないと水熱反応が
充分には進行せず、逆に20重綾部を超える場合には、
固化体の気孔が多量化しかつ大径化し、その強度が低下
すると共に、固化体からのヨウ素の溶出が多くなる恐れ
がある。
The amount of water to be included in the mixture is 10
The water content is preferably in the range of 2 to 20 parts by weight relative to 0 parts by weight. If the water content is less than 2 parts by weight, the hydrothermal reaction will not proceed sufficiently, and on the contrary, if it exceeds 20 parts by weight. for,
The number of pores in the solidified body increases and its diameter increases, and the strength thereof decreases, and there is a possibility that more iodine will be leached from the solidified body.

本発明において、水熱反応の圧力は70Kg/crn’
以上である。圧力の上限は、実用的には500 K g
/ em″程度である。なお圧力は、@然ながらその反
応温度における水の蒸気圧よりも高い圧力とし、水熱状
態になるようにする。
In the present invention, the pressure of the hydrothermal reaction is 70Kg/crn'
That's all. The upper limit of pressure is practically 500 Kg
The pressure is, however, higher than the vapor pressure of water at the reaction temperature, so that it is in a hydrothermal state.

水熱反応の温度は、150℃、よりも低いと、固化反応
が進行せず、極めて強度の低い固化体しか得られない、
特に好ましい温度は200〜350℃以上である1 水熱反応時間は、5分から1時間程度で充分である。水
熱反応の圧力、温度が低い場合にはこの反応時間は長目
になり、逆に圧力、温度を高くすれば反応時間は短くて
足りる。なお本発明者等の研究よれば、上記圧力及び温
度の範囲において。
If the temperature of the hydrothermal reaction is lower than 150°C, the solidification reaction will not proceed and only a solidified product with extremely low strength will be obtained.
A particularly preferable temperature is 200 to 350°C or higher.1 The hydrothermal reaction time is approximately 5 minutes to 1 hour. If the pressure and temperature of the hydrothermal reaction are low, the reaction time will be long; on the other hand, if the pressure and temperature are high, the reaction time will be short. According to research by the present inventors, within the above pressure and temperature ranges.

なるべく低い圧力及び温度の条件下に長い時間保持する
方が、得られる固化体の強度が高いことが認められた。
It has been found that the strength of the solidified product obtained is higher when it is held for a longer time under the lowest possible pressure and temperature conditions.

本発明の方法において、水熱反応を行なわせるには、筒
体の一端又は両端に圧縮ピストンを嵌装させて筒体中央
に反応充填室を形成した装置を用いるのが便利である。
In the method of the present invention, in order to carry out the hydrothermal reaction, it is convenient to use an apparatus in which a compression piston is fitted to one or both ends of a cylindrical body and a reaction filling chamber is formed in the center of the cylindrical body.

即ち、水を添加して混練した混合物をこの反応充填室に
充填し、圧縮ピストンで充填物を圧縮しながら加熱して
水熱反応を行なわせるのである。
That is, a mixture obtained by adding water and kneading is filled into this reaction filling chamber, and the filling is heated while being compressed by a compression piston to cause a hydrothermal reaction to occur.

所定時間経過後1反応装置の温度を下げ固化体を取り出
す。
After a predetermined period of time has elapsed, the temperature of the first reactor is lowered and the solidified material is taken out.

而して1本発明の方法においては、固化反応を行なって
いるときに、被処理混合物が加熱加圧状態にあれば良く
、所定め反応圧力への昇圧と、所定の反応温度への昇温
は、これらのいずれかを先行させても良く、これらを同
時に行なっても良い。
Therefore, in the method of the present invention, it is sufficient that the mixture to be treated is in a heated and pressurized state during the solidification reaction, and the mixture is heated to a predetermined reaction pressure and heated to a predetermined reaction temperature. Either of these may be performed first, or they may be performed simultaneously.

なお、第1図のプロセスは本発明方法の一例を示すもの
であるから、*発明方法はこの第1図のプロセスに限定
されるものではない。
Note that, since the process shown in FIG. 1 shows an example of the method of the present invention, the *invention method is not limited to the process shown in FIG. 1.

[作用] 放射性ヨウ素を吸着剤に吸着させた後、この吸着剤にア
ルカリないしはアルカリ土類金属の水酸化物を添加し、
更に必要に応じ水を加えた後、これを水#ff応させる
ことにより、少なくとも部分的に水和した含フルカリア
ルミノシリケートの3次元ネット9−りを有する固化体
が得られる。吸着剤に吸着された放射性ヨウ素は、Ag
I或はA g I O*のような極めて安定な化合物と
してこの固化体中に保持される。しかして、この固化体
は極めて高強度であり、かつ極めて緻密であるので、ヨ
ウ素の溶出は著しく少なく、シかも固化体の体蹟も極め
て小さくなる。
[Function] After radioactive iodine is adsorbed on an adsorbent, an alkali or alkaline earth metal hydroxide is added to the adsorbent,
Further, after adding water as necessary, this is reacted with water to obtain a solidified body having a three-dimensional net of at least partially hydrated flucarium aluminosilicate. The radioactive iodine adsorbed by the adsorbent is Ag
It is retained in this solidified body as a very stable compound such as I or A g I O*. Since this solidified material has extremely high strength and is extremely dense, the elution of iodine is extremely small and the size of the solidified material is also extremely small.

[実施例] 以下本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例1 銀担持ゼオライト(ラサ工業株式会社製、商品名銀ゼオ
ライ)Ty p em)l OKgを筒状容器に充填し
、100fi/minの速さで0.13%のヨウ素を含
む気体を12時間流した0次いで、この筒状容器から吸
着剤を取り出し、吸着剤1Kgに対して6Nの水酸化ナ
トリウム溶液200ccを添加し300Kg/crn’
(7)圧力を加え、200℃の温度に30分間保持し、
水熱反応させ固化体とした。この固化体の強度を測定し
た結果を第2表に示す、また得られた固化体す70℃の
蒸留水中に24時間浸漬した場合の浸出率を測定した。
Example 1 A cylindrical container was filled with silver-supported zeolite (manufactured by Rasa Kogyo Co., Ltd., trade name: Silver Zeolite) (Type 1) OKg, and a gas containing 0.13% iodine was heated at a rate of 100 fi/min for 12 minutes. Then, the adsorbent was taken out from the cylindrical container, and 200 cc of 6N sodium hydroxide solution was added to 1 kg of the adsorbent to achieve a rate of 300 kg/crn.
(7) Apply pressure and hold at a temperature of 200°C for 30 minutes,
A hydrothermal reaction was performed to form a solidified product. The strength of this solidified product was measured and the results are shown in Table 2. The leaching rate was also measured when the obtained solidified product was immersed in distilled water at 70°C for 24 hours.

その結果を第2表に併せて示す、実施例2〜4 水酸化ナトリウム水溶液の濃度及び添加琶、ならびに反
応圧力、温度1時間を第1表に示す如くし、¥流側1と
同様にして固化体を得た。この固化体の強度及び浸出率
を実施例1と同様にして測定した。結果を第2表に示す
The results are also shown in Table 2. Examples 2 to 4 The concentration and addition time of the sodium hydroxide aqueous solution, the reaction pressure, and the temperature for 1 hour were as shown in Table 1, and in the same manner as in the flow side 1. A solidified product was obtained. The strength and leaching rate of this solidified body were measured in the same manner as in Example 1. The results are shown in Table 2.

実施例5.6 水酸化ナトリウムの代わりに水酸化カリウム(実施例5
)、水酸化バリウム(実施例6)を用い、w41表に示
す反応条件とし実施例1と同様にして固化体を得た。固
化体の強度及び浸出率の測定結果を第2表に併せて示す
Example 5.6 Potassium hydroxide instead of sodium hydroxide (Example 5
) and barium hydroxide (Example 6), a solidified body was obtained in the same manner as in Example 1 under the reaction conditions shown in Table w41. The measurement results of the strength and leaching rate of the solidified body are also shown in Table 2.

第1表 反応条件 第2表 測定結果 第2表より1本発明方法によれば極めて高強度でしかも
浸出率が極めて小さい固化体を得ることができる。
Table 1 Reaction conditions Table 2 Measurement results From Table 2 1 According to the method of the present invention, it is possible to obtain a solidified material with extremely high strength and an extremely low leaching rate.

C効果】 以上詳述した通り1本発明の放射性ヨウ素の固定化方法
は、銀を担持した珪酸塩系吸着剤に放射性ヨウ素を吸着
させ1次いでこの吸着剤にアルカリないしはアルカリ土
類金属の水酸化物を添加し水熱反応させるようにしたも
のであり、極めて高強度で緻密な固化体を得ることがで
きる。この固化体からのヨウ素の溶出は極めて少なく、
長期間に渡って安定して貯蔵することができる。また固
化体の体積も極めて小さなものとなると共に、水熱反応
に用いる装置としては通常の水熱反応91で良い0以上
のことから1本発明の方法は実施が容易であり、しかも
実用性に優れる。
Effect C] As detailed above, 1. The method of immobilizing radioactive iodine of the present invention involves adsorbing radioactive iodine onto a silver-supported silicate adsorbent, and then applying hydroxylation of alkali or alkaline earth metal to this adsorbent. It is made by adding substances and causing a hydrothermal reaction, and it is possible to obtain a dense solidified product with extremely high strength. The elution of iodine from this solidified material is extremely small.
It can be stored stably for a long period of time. In addition, the volume of the solidified material is extremely small, and the method of the present invention is easy to carry out, and is practical because it can be carried out using an ordinary hydrothermal reaction apparatus91. Excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を説明する系統図である。 代理人  弁理士  屯 野  剛 第1図 FIG. 1 is a system diagram illustrating the method of the present invention. Agent: Patent attorney Tsuyoshi Tunno Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)銀を担持した珪酸塩系吸着剤に放射性ヨウ素を吸
着させ、次いでこの吸着剤に水酸化ナトリウム、水酸化
カリウム及び水酸化バリウムの少なくとも1種を1〜3
0重量%混合し、水の存在下で、圧力70Kg/cm^
2以上、温度150℃以上の加熱加圧状態に保持し水熱
反応を行なわせることにより、前記吸着剤を固化体とす
ることを特徴とする放射性ヨウ素の固定化方法。
(1) Radioactive iodine is adsorbed onto a silicate-based adsorbent carrying silver, and then at least one of sodium hydroxide, potassium hydroxide, and barium hydroxide is added to this adsorbent in amounts of 1 to 3
0% by weight mixed, in the presence of water, pressure 70Kg/cm^
A method for immobilizing radioactive iodine, characterized in that the adsorbent is solidified by holding the adsorbent in a heated and pressurized state at a temperature of 150° C. or higher to carry out a hydrothermal reaction.
(2)珪酸塩系吸着剤は、ゼオライト及び/又はモルデ
ナイトであることを特徴とする特許請求の範囲第1項に
記載の固定化方法。
(2) The immobilization method according to claim 1, wherein the silicate-based adsorbent is zeolite and/or mordenite.
JP59223279A 1984-09-25 1984-10-24 Method of fixing radioactive iodine Pending JPS61100697A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59223279A JPS61100697A (en) 1984-10-24 1984-10-24 Method of fixing radioactive iodine
US06/764,686 US4661291A (en) 1984-09-25 1985-08-09 Method for fixation of incinerator ash or iodine sorbent
GB8521297A GB2165828B (en) 1984-09-25 1985-08-27 Method for fixation of waste comprising incinerator ash or iodine
DE19853531607 DE3531607A1 (en) 1984-09-25 1985-09-04 METHOD FOR FIXING THE INCINERATOR ASH OR IODINE
FR8514124A FR2570865A1 (en) 1984-09-25 1985-09-24 METHOD FOR FIXING A SORBENT FOR AN INCIDENTER OR RADIOACTIVE IODE BY HYDROTHERMAL REACTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223279A JPS61100697A (en) 1984-10-24 1984-10-24 Method of fixing radioactive iodine

Publications (1)

Publication Number Publication Date
JPS61100697A true JPS61100697A (en) 1986-05-19

Family

ID=16795633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223279A Pending JPS61100697A (en) 1984-09-25 1984-10-24 Method of fixing radioactive iodine

Country Status (1)

Country Link
JP (1) JPS61100697A (en)

Similar Documents

Publication Publication Date Title
US4333847A (en) Fixation by anion exchange of toxic materials in a glass matrix
US4469628A (en) Fixation by ion exchange of toxic materials in a glass matrix
US4659512A (en) Fixation of dissolved metal species with a complexing agent
US4448711A (en) Process for producing zeolite adsorbent and process for treating radioactive liquid waste with the zeolite adsorbent
US7855313B2 (en) Low-temperature solidification of radioactive and hazardous wastes
US4544499A (en) Fixation by anion exchange of toxic materials in a glass matrix
US4659477A (en) Fixation of anionic materials with a complexing agent
US5075084A (en) Process for the removal of iodine and iodine compounds from hydrogen-containing gases and vapors
JP7146738B2 (en) Solid state nanocomposites based on alkali metal hexacyanometallates or octacyanometallates, methods for their preparation, and methods for extracting metal cations
US4528011A (en) Immobilization of radwastes in glass containers and products formed thereby
JP6240382B2 (en) Radioactive cesium adsorbent and method for recovering radioactive cesium using the same
JPS61100697A (en) Method of fixing radioactive iodine
US1961890A (en) Refrigeration process
JPS5886499A (en) Method of fastening foreign material in water
Dyer et al. The use of zeolites for the treatment of radioactive waste
CN107008233B (en) Organic/inorganic compound adsorbent and preparation method thereof for separating radioactive cesium element
Moon et al. Preparation of PAN-zeolite 4A composite ion exchanger and its uptake behavior for Sr and Cs ions in acid solution
JPS58184598A (en) Method of solidifying radioactive liquid waste
Jubin Advances in Off-Gas Treatment for Used Nuclear Fuel Processing
JPS6159177B2 (en)
EP0456382B1 (en) A method for the removal of radioisotope cations from an aqueous environment using modified clinoptilolite
JPH07328432A (en) Gaseous iodine adsorbent
WO1999041755A1 (en) Method for making iodine-125 loaded substrates for use in radioactive sources
JP5992252B2 (en) Decontamination method for concrete waste contaminated with radioactive cesium
JPS63281100A (en) Preparation of solidified body for iodine adsorbent