JPS61100537A - Production of methanol having low water content - Google Patents

Production of methanol having low water content

Info

Publication number
JPS61100537A
JPS61100537A JP21968584A JP21968584A JPS61100537A JP S61100537 A JPS61100537 A JP S61100537A JP 21968584 A JP21968584 A JP 21968584A JP 21968584 A JP21968584 A JP 21968584A JP S61100537 A JPS61100537 A JP S61100537A
Authority
JP
Japan
Prior art keywords
methanol
water content
mercuric chloride
karl fischer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21968584A
Other languages
Japanese (ja)
Other versions
JPS6312852B2 (en
Inventor
Yoshinobu Nagamatsu
永松 義信
Mitsuo Miyazaki
宮崎 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP21968584A priority Critical patent/JPS61100537A/en
Publication of JPS61100537A publication Critical patent/JPS61100537A/en
Publication of JPS6312852B2 publication Critical patent/JPS6312852B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce methanol having low water content and suitable especially for the use in the quantitative analysis of water by Karl Fischer process, easily, by adding metallic magnesium powder and mercuric chloride to methanol, and distilling the mixture. CONSTITUTION:Methanol having low water content can be produced economically by adding metallic magnesium powder and mercuric chloride to methanol, and distilling the mixture by conventional method. The amount of the metallic magnesium is 0.1-0.7wt% based on methanol, and that of the mercuric chloride is 1/5-2/5pt.wt. per 1pt of the magnesium. The process can be carried out easily in a laboratory scale. Since the water content of methanol can be reduced remarkably, the consumption of Karl Fischer reagent can be decreased considerably by the use of the methanol in the quantitative analysis of water by Karl Fischer process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低水分メタノールの製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing low moisture methanol.

特にカールフィッシャー法礪:よる水分の定量分析に使
用するC二好適なメタノールの製造方法に関する。
In particular, the present invention relates to a method for producing methanol suitable for use in quantitative water content analysis using the Karl Fischer method.

(従来技術及びその問題点) カールフィッシャー法(二よる水分の定量法は、7ラヌ
コ(カールフィッシャーフラスコ)に一定量のメタノー
ルを入れ撹拌し乍ら、これにカールフィッシャー試薬を
滴下させてメタノール中の水分を消去した後、水分含有
被検体(サンプル)を加え、サンプル中の水分をメタノ
ール中(二移行させた後、再びカールフィッシャー液を
滴下させ。
(Prior art and its problems) Karl Fischer method (2-based moisture determination method is to add a certain amount of methanol to a 7-Ranuco (Karl Fischer flask), stir, and add Karl Fischer reagent dropwise to the methanol solution. After removing the water, add the water-containing test object (sample), and after transferring the water in the sample into methanol (secondary), drop the Karl Fischer solution again.

メタノール中の水分を消去する方法でサンプル中の水分
含有量な定量している。
The water content in the sample is determined by eliminating the water in methanol.

而してメタノールは品負的(=は必ずしも試薬でなくて
も良く工業用で十分であるが、何れにしても水分含有量
が多いと上記水分消去にカールフィッシャー試薬が多く
必要であり、また分析時間も長くかかるので、メタノー
ル中の水分はなるべく少ない程好ましい。
Therefore, methanol is of poor quality (= does not necessarily have to be a reagent and is sufficient for industrial use, but in any case, if the water content is high, a large amount of Karl Fischer reagent is required to eliminate the water content, and Since the analysis time is also long, it is preferable that the water content in methanol be as low as possible.

然し、メタノール中には水分が工業用で0.05〜0.
1重量%(以下重量%は単にチと表記する。)試薬で0
.05〜0.08%程反含有しているので、これでは高
価なカールフィッシャー試薬の消費量が多く問題である
However, the water content in methanol is 0.05 to 0.0 for industrial use.
1% by weight (Hereinafter, weight% is simply written as "chi") 0 in reagent
.. Since the content is approximately 0.05 to 0.08%, this poses a problem as it consumes a large amount of expensive Karl Fischer reagent.

そこで従来はメタノールを回分法で蒸藺し、その中溜分
を使用していたが、この中溜分でもOD30.05%の
水分が残留しており大した効果を挙げ得なかった・ (間組を解決するための手段) 本発明者号は低水分のメタノールを得る方法(二ついて
種々検討を厘ねた結果、メタノールを小量の金用マグネ
シウム粉末及び塩化第2水銀でh11処即した後黒画丁
れば、メタノール中の水分含有量が大幅に低下すること
を見出し本発明を完成した。
Conventionally, methanol was distilled in batches and the middle distillate was used, but even this middle distillate still contained water with an OD of 30.05%, so it was not very effective. The present inventor has developed a method for obtaining low-moisture methanol (after conducting various studies, after subjecting methanol to a small amount of gold-grade magnesium powder and mercuric chloride). The present invention was completed by discovering that the water content in methanol can be significantly reduced by using black paper.

即ち本発明は、メタノール(=金属マグネシウム粉末及
び塩化第2水銀を添加した後、照溜−rることを特似と
する低水分官有メタノールの装造方法である。
That is, the present invention is a method for preparing low-water organic methanol, which is characterized by adding methanol (metallic magnesium powder and mercuric chloride) and then distilling the mixture.

不発明の詳細な説明する。Detailed explanation of non-invention.

メタノールに金属マグネシウム粉末を入れ攪拌し乍らこ
れに塩化第2水銀を加えると、水系カスを発生し庫しく
反応する。
When mercuric chloride is added to methanol while stirring metal magnesium powder, water-based scum is generated and the reaction occurs smoothly.

反応は次式によるものと推定される。The reaction is estimated to be based on the following equation.

2 Hz”F M t  →M t (OH)t+■。2 Hz”F Mt → Mt (OH)t+■.

反応は発熱反応であるので冷却し乍ら行なう必要がある
が、容器を常温の水で冷却する程度で良い。
Since the reaction is exothermic, it is necessary to carry out the reaction while cooling, but it is sufficient to cool the container with water at room temperature.

反応は305+程度で終結する一反応終結は水素ガスの
発生ストップによって確認することが出来るO 金属マグネシウム粉末での処理に際し、塩化第2水銀の
添加を省くと水素ガスの発生や発熱が認められず、上記
反応が起きないものと考えられろ。
The reaction ends at about 305+. The end of the reaction can be confirmed by the stoppage of hydrogen gas generation. When treating with metallic magnesium powder, if the addition of mercuric chloride is omitted, no hydrogen gas generation or heat generation is observed. , it is assumed that the above reaction does not occur.

金属マグネシウム粉末の添加量はメタノールC;対し0
.2〜0.5%が好ましく、また塩化第2水銀の添加量
は金属マグネシウム粉末のl/′5〜2/75重量が適
当である。
The amount of metal magnesium powder added is 0 for methanol C;
.. The amount of mercuric chloride added is preferably 2 to 0.5%, and the appropriate amount of mercuric chloride is 1/'5 to 2/75 of the weight of the metal magnesium powder.

かくして金属マグネシウム粉末と塩化第2水銀で処理さ
れたメタノールを従来と同様な方法で回分黒画すれば本
発明の低水分メタノールを得ることが出来る。
The low water content methanol of the present invention can be obtained by subjecting the methanol treated with magnesium metal powder and mercuric chloride to a batch black fraction in the same manner as in the prior art.

即ち例えば第1図に示す様な黒画装置を使用し。That is, for example, a black drawing device as shown in FIG. 1 is used.

金属マグネシウム粉末および塩化第2水銀で処理された
メタノールを、フラスコl内に入れ加熱する。蒸発した
メタノールは冷却器5で冷却液化し受器に溜められるか
、蒸発温度64.5℃未満の初溜分は受器B12(ユカ
ットし、蒸発温度が65℃(二なりた時点で受器All
に切替える。
Metallic magnesium powder and methanol treated with mercuric chloride are placed in a flask 1 and heated. The evaporated methanol is cooled and liquefied in the cooler 5 and stored in the receiver, or the first fraction with an evaporation temperature of less than 64.5°C is transferred to the receiver B12 (Yukat), and when the evaporation temperature reaches 65°C (2), it is stored in the receiver. All
Switch to.

メタノールの蒸発が進みフラスコ1内の残量が少なくな
ると、蒸発温度はメタノールの沸点65℃より上昇し始
めるが、蒸発温度が67℃になった時点で蒸溜をストッ
プする。
As the evaporation of methanol progresses and the amount remaining in the flask 1 decreases, the evaporation temperature begins to rise above the boiling point of methanol, 65°C, but the distillation is stopped when the evaporation temperature reaches 67°C.

フラスコl内に残ったメタノールは所謂蒸発残渣であり
、焼却叫により処分する場合は、水銀化合物を含有して
いるのでこのままでは処分できないが1次の様な方法で
金属水銀として簡単に回収すれば処分することが出来る
The methanol remaining in the flask is a so-called evaporation residue, and if it is to be disposed of by incineration, it cannot be disposed of as it is because it contains mercury compounds, but it can be easily recovered as metallic mercury using the following method. It can be disposed of.

即ち蒸発残渣100重量部に、水200〜300重量部
及び濃度35M量チの塩酸50〜7ON量部を加え、8
0℃程度に加熱すれば、塩化第2水銀は容易に金属水銀
となり、P紙等でP別すれば、金属水銀として簡単に回
収することが出来る。
That is, to 100 parts by weight of the evaporation residue, 200 to 300 parts by weight of water and 50 to 7 parts of hydrochloric acid at a concentration of 35 M were added, and 8 parts by weight of the evaporation residue were added.
When heated to about 0° C., mercuric chloride easily turns into metallic mercury, and by separating it with P paper or the like, it can be easily recovered as metallic mercury.

(本発明の効果) 本発明は上記の様に°、メタノールを金属マグネシウム
粉末及び塩化第2水銀で処理した後、蒸溜すると云う方
法であり、この方法で低水分のメタノールを簡単に得る
ことが出来、このメタノールをカールフィッシャー法に
よる水分定量に使用すれば、カールフィッシャー試薬の
使用量を大巾に節約することが出来る。またこの方法は
実験室的規模で簡単に実施することが出来ろ。
(Effects of the present invention) As described above, the present invention is a method in which methanol is treated with metal magnesium powder and mercuric chloride and then distilled, and low-moisture methanol can be easily obtained by this method. If this methanol is used for water determination using the Karl Fischer method, the amount of Karl Fischer reagent used can be greatly reduced. This method can also be easily implemented on a laboratory scale.

(実施例及び比較例) 以下実施例及び比較例により本発明を更に詳細に説明す
るが、不発明はその要旨:;変更かない限りこれに駆足
されるものではない。
(Examples and Comparative Examples) The present invention will be explained in more detail with reference to Examples and Comparative Examples below, but the gist of the invention is not to be construed as being derivable from these unless modified.

実施例1 2tのフラスコに水分含有JI0.09%のメタノール
1tを入れ、ヌターラーで撹拌しながらこれに金属マグ
ネシウム粉末を511次いで塩化第2水銀の結晶1.5
tを加えた。この時フラスコは水で冷却した・ 反応による水素ガスの発生は約20分間で終了したが念
のため30分間攪拌した。
Example 1 1 ton of methanol with a moisture content of JI 0.09% is placed in a 2-ton flask, and while stirring with Nutala, 511% of metallic magnesium powder is added, followed by 1.5% of mercuric chloride crystals.
Added t. At this time, the flask was cooled with water. The generation of hydrogen gas by the reaction was completed in about 20 minutes, but the mixture was stirred for 30 minutes just to be sure.

かくして得た。金属マグネシウム粉末と塩化第2水銀で
処理されたメタノールを、第・1図に示す装置で蒸溜し
た。即ちこのメタノールをフラスコlに仕込み、ヒータ
ー14によりオイルバヌ13を介してフラスコ1を加熱
した。
Thus obtained. Methanol treated with metallic magnesium powder and mercuric chloride was distilled using the apparatus shown in Figure 1. That is, this methanol was charged into flask 1, and flask 1 was heated by heater 14 via oil vane 13.

蒸発したメタノールは黒画塔2.アダプター4を辿り冷
却器5で再び液化した後受器B12に入れた・ メタノールの沸騰点は最初63℃位であるか、黒面が迎
むにつれて次第に上昇する。沸騰温度か64.5℃にな
った時点で切替コック9.IOを操作し受器Allへ受
液した。
The evaporated methanol is transferred to Kurogato 2. It follows the adapter 4, liquefies it again in the cooler 5, and then puts it into the receiver B12.The boiling point of methanol is about 63°C at first, and gradually rises as the black surface approaches. When the boiling temperature reaches 64.5℃, turn off the switch cock9. The IO was operated and the liquid was received into the receiver All.

更に黒面が進み沸1オ温度が67℃になった時点で黒面
をストップし、受器ムll内の中省分は密封容器に保管
した。
When the black surface further progressed and the boiling point temperature reached 67° C., the black surface was stopped, and the middle portion in the receiver was stored in a sealed container.

受器Allに受液した中禰分中の水分含有量は0.00
6%であった。
The water content in the liquid received in the receiver All is 0.00
It was 6%.

実施例2 金属マグネシウム粉末及び塩化第2水銀の添加量を、夫
々3 t 、 0.9 tI:震央した以外は、実施例
1と全く同一の操作を行なった。得られた中宿分中の水
分含有量は0.009%であった。
Example 2 The same operation as in Example 1 was performed except that the amounts of magnesium metal powder and mercuric chloride added were 3 t and 0.9 tI: epicenter, respectively. The water content in the obtained Nakabukuro was 0.009%.

比較例1 金、−マグネシウム粉末及び塩化第2水銀の添加による
メタノールの前処理を省略して、第1図の装置で寅施例
1と同一条件でメタノールを黒面した。得られた中溜分
の水分含七量は0.06%であった0
Comparative Example 1 Methanol was blackened using the apparatus shown in FIG. 1 under the same conditions as in Example 1, omitting the pretreatment of methanol by adding gold, magnesium powder, and mercuric chloride. The water content of the obtained middle distillate was 0.06%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用するメタノールの黒画装置の1例
を示す。 図中 1・・・7ラヌコ、2・・・黒画塔、3・・・温度計、
4・・・アダプター、5・・・冷却器、6.・・・冷却
水入口、7・・・確動水出口、8・・・二叉アダプター
、9 、10・・・切替コック、11・・・受器A、1
2・・・受器B、13・・・オイルバス、14・・・ヒ
ーター
FIG. 1 shows an example of a methanol black drawing device used in the present invention. In the figure 1... 7 Ranuko, 2... Kurogato, 3... Thermometer,
4...Adapter, 5...Cooler, 6. ... Cooling water inlet, 7... Positive water outlet, 8... Two-prong adapter, 9, 10... Switching cock, 11... Receiver A, 1
2... Receiver B, 13... Oil bath, 14... Heater

Claims (2)

【特許請求の範囲】[Claims] (1)メタノールに金属マグネシウム粉末及び塩化第2
水銀を添加した後、蒸溜することを特徴とする低水分メ
タノールの製造方法。
(1) Metallic magnesium powder and second chloride in methanol
A method for producing low-moisture methanol, which comprises adding mercury and then distilling it.
(2)金属マグネシウム粉末の添加量がメタノールに対
し0.1〜0.7重量%、塩化第2水銀の添加量が金属
マグネシウム粉末の1/5〜2/5重量である特許請求
の範囲第1項記載の製造方法。
(2) The amount of magnesium metal powder added is 0.1 to 0.7% by weight based on methanol, and the amount of mercuric chloride added is 1/5 to 2/5 of the weight of the magnesium metal powder. The manufacturing method according to item 1.
JP21968584A 1984-10-19 1984-10-19 Production of methanol having low water content Granted JPS61100537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21968584A JPS61100537A (en) 1984-10-19 1984-10-19 Production of methanol having low water content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21968584A JPS61100537A (en) 1984-10-19 1984-10-19 Production of methanol having low water content

Publications (2)

Publication Number Publication Date
JPS61100537A true JPS61100537A (en) 1986-05-19
JPS6312852B2 JPS6312852B2 (en) 1988-03-23

Family

ID=16739362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21968584A Granted JPS61100537A (en) 1984-10-19 1984-10-19 Production of methanol having low water content

Country Status (1)

Country Link
JP (1) JPS61100537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524569A (en) * 2022-03-04 2022-05-24 贵州正业龙腾新材料开发有限公司 Waste water treatment device and process for production of polysiloxane microspheres

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114524569A (en) * 2022-03-04 2022-05-24 贵州正业龙腾新材料开发有限公司 Waste water treatment device and process for production of polysiloxane microspheres
CN114524569B (en) * 2022-03-04 2023-12-22 贵州正业龙腾新材料开发有限公司 Wastewater treatment device and process for polyorganosiloxane microsphere production

Also Published As

Publication number Publication date
JPS6312852B2 (en) 1988-03-23

Similar Documents

Publication Publication Date Title
US4032621A (en) Preparation of hydrogen fluoride with low levels of arsenic, iron and sulfite
KR102312153B1 (en) Method for producing hexafluoro-1,3-butadiene
Isbell et al. Manufacture of calcium gluconate by electrolytic oxidation of dextrose
US2443253A (en) Process for producing zirconium chloride
Wang et al. Simulation prediction and experimental study of phase equilibria of Bi–Sb and Bi–Sb–Cd alloys in vacuum distillation
JPS61100537A (en) Production of methanol having low water content
US3442621A (en) Phosphorus production
Meng et al. A novel process for directional impurity removal and preparation of front-end high-purity antimony from crude antimony
US2643935A (en) Process for making aluminum oxide
Chen et al. Behavior and Mechanism of Indium Extraction from Waste Liquid-Crystal Display Panels by Microwave-Assisted Chlorination Metallurgy
US3663381A (en) Electrochemical conversion of phenol to hydroquinone
WO2000029329A1 (en) Method of producing zinc bromide
JP4544984B2 (en) Hydrogen generation method
KR101204177B1 (en) Method for preparing potassium nitrate using a potassium hydroxide waste solution containing silicon compound and a waste solution containing nitric acid
US2710798A (en) Method of producing sodium from sodium ferrite
Banks et al. Formula and Pressure–Temperature Relationships of the Hydrate of Dichlorofluoromethane
Dunstan et al. Determination of Boron and Carbon in Alkyldecaboranes and Related Compounds
US2805934A (en) Process of solidifying and remelting zinc
US2227783A (en) Process for dissolving metallic copper and reprecipitating the same from the resulting solution in metallic form
US2576754A (en) Method of producing vanillin
US1308760A (en) Bubkitt s
US3014060A (en) Preparation of dialkoxyboranes
CN110603227A (en) Process for producing aqueous zinc halide solution
US4990325A (en) Process for synthesis of beryllium chloride dietherate
SU496239A1 (en) Method for extracting platinum from spent alumina-platinum catalyst