JPS609999B2 - smokeless composite propellant - Google Patents

smokeless composite propellant

Info

Publication number
JPS609999B2
JPS609999B2 JP10377582A JP10377582A JPS609999B2 JP S609999 B2 JPS609999 B2 JP S609999B2 JP 10377582 A JP10377582 A JP 10377582A JP 10377582 A JP10377582 A JP 10377582A JP S609999 B2 JPS609999 B2 JP S609999B2
Authority
JP
Japan
Prior art keywords
propellant
rdx
ammonium nitrate
hmx
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10377582A
Other languages
Japanese (ja)
Other versions
JPS58223687A (en
Inventor
信男 辻角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOEICHO GIJUTSU KENKYU HONBUCHO
Original Assignee
BOEICHO GIJUTSU KENKYU HONBUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOEICHO GIJUTSU KENKYU HONBUCHO filed Critical BOEICHO GIJUTSU KENKYU HONBUCHO
Priority to JP10377582A priority Critical patent/JPS609999B2/en
Publication of JPS58223687A publication Critical patent/JPS58223687A/en
Publication of JPS609999B2 publication Critical patent/JPS609999B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Earth Drilling (AREA)
  • Air Bags (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】 本発明は広範囲の圧力下に比較的低い燃焼速度で安定に
燃焼を持続し、しかも、煙、固体粒子、腐蝕性ガス等が
袷んど発生しない無煙性コンポジット推進薬に関する。
Detailed Description of the Invention The present invention is a smokeless composite propellant that sustains stable combustion at a relatively low combustion rate under a wide range of pressures, and does not generate excessive smoke, solid particles, corrosive gases, etc. Regarding.

従来から使用される無煙性コンポジツト推進薬は、酸化
剤として、本発明に係るコンポジツト推進薬にも一部使
用されている硝酸アンモニウム又はシク。テトラメチレ
ンテトラニトラミン(通称オクトーゲン又はHMX。以
下HMXという。)を夫夫単独に、又は両者の混合物を
用いていた。しかし、硝酸アンモニウムは種々の過程を
経るものの最終的には、岬N。
Smokeless composite propellants conventionally used include ammonium nitrate or nitrate, which is also used in part in the composite propellant according to the present invention, as an oxidizing agent. Tetramethylenetetranitramine (commonly known as octogen or HMX; hereinafter referred to as HMX) was used alone or as a mixture of the two. However, although ammonium nitrate undergoes various processes, it is ultimately converted into Cape N.

3一汎20十N2十ざ2 仰く分解して上知示すヂ2を生じ柵、燃焼反応の酸化剤
として活用されるのは全体量の約20%程度であり、し
かも、この分解は吸熱的に行われるので、従って酸化剤
として硝酸アンモニウムを使用する場合には推進薬の燃
焼の安定性が十分でなく、また、燃焼速度、燃焼ガス温
度等も低い等の欠点があった。
Approximately 20% of the total amount is used as an oxidizing agent in the combustion reaction, and this decomposition is endothermic. Therefore, when ammonium nitrate is used as an oxidizing agent, the combustion stability of the propellant is insufficient, and the combustion rate and combustion gas temperature are also low.

これを補うため硝酸アンモニウムの分解を促進し、燃焼
反応を活発にするべく多量の触媒を添加する方法があり
、その触媒として重クロム酸アンモニウムが現在最も一
般的に使用されているが、該重クロム酸アンモニウムは
その燃焼生成物中に酸化クロム等の固体粒子を発生する
ため推進薬の無煙性が阻害される欠点があった。
To compensate for this, there is a method of adding a large amount of catalyst to accelerate the decomposition of ammonium nitrate and activate the combustion reaction, and ammonium dichromate is currently the most commonly used catalyst. Ammonium acid produces solid particles such as chromium oxide in its combustion products, which has the disadvantage of impeding the smokeless properties of the propellant.

また、前述のHMXにあっては、種々の過程は0経るも
のの最終的には、(CH2・N・N02)4→4CO+
4日20十4N2の如く分解する。
In addition, in the above-mentioned HMX, although various processes go through 0, the final change is (CH2・N・N02)4→4CO+
It decomposes like 2014N2 on the 4th.

即ち、HMXはそれ自身の分解に必要な最小限の酸素を
含むだけで他の物質を酸タ化するほどの酸素は含んでな
く、従って本来の意味での酸化剤ではないがそれでも燃
料兼結合剤に用いられている合成ゴム等と比較すれば酸
素含有量が大であり酸化剤に近い性質を有するものであ
る。しかして、このHMXの分解は発熱的に行わ0れる
ので、発生するエネルギーが大で推進薬の性能向上に著
しく寄与する利点がある。しかし、分解に伴う発熱によ
り合成ゴム又は合成樹脂等の燃料兼結合剤を分解しその
際多量のススが発生し無塵性が損われる欠点があった。
タ 本発明は、これら従来の酸化剤と異なり、硝酸アン
モニウムとシクロトリメチレントリニトラミン(通称へ
キソーゲン、シクロナィト又はRDX。
In other words, HMX only contains the minimum amount of oxygen necessary for its own decomposition, but does not contain enough oxygen to oxidize other substances, so although it is not an oxidizer in the true sense of the word, it is still a fuel and binder. Compared to synthetic rubbers used in agents, it has a high oxygen content and has properties similar to those of oxidizing agents. Since the decomposition of HMX is carried out exothermically, a large amount of energy is generated, which has the advantage of significantly contributing to improving the performance of the propellant. However, there is a drawback that the fuel/binder such as synthetic rubber or synthetic resin is decomposed due to the heat generated by the decomposition, and a large amount of soot is generated at that time, impairing the dust-free property.
Unlike these conventional oxidizing agents, the present invention uses ammonium nitrate and cyclotrimethylene trinitramine (commonly known as hexogen, cyclonite or RDX).

以下RDXと略称する。)との混合物を使用するもので
ある。RDXは、下記の分子式の如くHMXとほぼ同様
の化学構造を有するもので、本来共に高性能爆薬として
使用されていた。
Hereinafter, it will be abbreviated as RDX. ) is used. RDX has almost the same chemical structure as HMX, as shown in the molecular formula below, and both were originally used as high-performance explosives.

また、分解により大なるエネルギーが発生しこれにより
推進薬の性能を向上しうる点も両者酷似するのである。
They are also similar in that decomposition generates a large amount of energy, which can improve the performance of the propellant.

ところがHMXは約360qoに加熱されると発熱的に
分解を開始し、まず酸化窒素とアルデヒド類を発生し、
さらに発熱を伴って最終生成物に至るのに対し、RDX
もほぼ同様の反応が起るがその分解が約24000で開
始されHMXに比較して著しく低い点が相異している。
ここで重要な点は、RDXが発熱的に分解する温度(約
240℃)が、本発明においてRDXと混合して使用さ
れる硝酸アンモニウムが吸熱的に分解を開始し酸素を発
生する温度とほぼ同じで、従ってこの混合物を酸化剤と
する推進薬において、硝酸アンモニウムの吸熱的分解反
応がほぼ同じ温度で行われるRDXの発熱的分解反応に
より熱的に補償されるため系全体が安定に維持され、そ
の結果燃焼反応が硝酸アンモニウムRDXを単独に使用
する場合に比し著しく安定化されることである。本発明
は、かかる硝酸アンモニウムとRDXとがほぼ同温度で
、前者が吸熱的に、また、後者が発熱的に分解反応をす
る点に着目して研究した結果完成されたものである。
However, when HMX is heated to about 360 qo, it begins to decompose exothermically, first generating nitrogen oxide and aldehydes.
While RDX leads to the final product with further heat generation,
Almost the same reaction occurs with HMX, but the difference is that the decomposition starts at about 24,000 ℃, which is significantly lower than that of HMX.
The important point here is that the temperature at which RDX decomposes exothermically (approximately 240°C) is approximately the same as the temperature at which ammonium nitrate, which is used in combination with RDX in the present invention, begins to decompose endothermically and generates oxygen. Therefore, in a propellant that uses this mixture as an oxidizing agent, the endothermic decomposition reaction of ammonium nitrate is thermally compensated by the exothermic decomposition reaction of RDX, which takes place at approximately the same temperature, so the entire system is maintained stably. The result is that the combustion reaction is significantly stabilized compared to when ammonium nitrate RDX is used alone. The present invention was completed as a result of research focusing on the fact that ammonium nitrate and RDX undergo an endothermic decomposition reaction and the latter exothermically decompose at approximately the same temperature.

この際、RDXのかわり1こ従来から酸化剤として使用
されているHMKは、その化学構造、分解反応の過程等
酷似しているにも拘らず分解開始温度に大きな差がある
ため、硝酸アンモニウム及びHMXの分解が別々の温度
で独立に行なわれることとなり、本発明に見られる如き
熱的な補償がなく、この結果燃焼の安定化への寄与は認
められない。以下、実施例に基づいて、本発明及び本発
明によって達成される効果について具体的に説明する。
At this time, HMK, which has traditionally been used as an oxidizing agent in place of RDX, has a large difference in decomposition initiation temperature even though its chemical structure and decomposition reaction process are very similar, so ammonium nitrate and HMX decomposition occurs independently at different temperatures, and there is no thermal compensation as seen in the present invention, and as a result, no contribution to stabilizing combustion is recognized. Hereinafter, the present invention and the effects achieved by the present invention will be specifically explained based on Examples.

実施例 硝酸アンモニウムは常温附近から分解を開始するまでに
数回にわたり体積変化を伴う結晶変態があり、実用の推
進薬に適用するためには、燃料兼結合剤として優れたゴ
ム弾性を示す合成ゴムを選択する必要がある。
Example Ammonium nitrate undergoes crystal transformation accompanied by volume changes several times from around room temperature until it starts to decompose. In order to apply it to a practical propellant, synthetic rubber, which exhibits excellent rubber elasticity, must be used as a fuel and binder. You need to choose.

本実施例では、ポljウレタン又はポリブタジヱン合成
ゴムを燃料兼結合剤に選び、第1表に示す組成の推進薬
を得た。組成番号1、2は本発明に係る推進薬、3、4
、5は比較例である。第1表 上記に関し、RDXは従来からHMXに比べて安定性、
安全性の点で問題があるといわれていたが、組成番号1
、2の推進薬と同3の推進薬との間には、落槌感度試験
値について有意差は認められず、いずれも充分安全であ
ることが明らかになつた。
In this example, polyj-urethane or polybutadiene synthetic rubber was selected as the fuel and binder, and propellants having the compositions shown in Table 1 were obtained. Composition numbers 1 and 2 are propellants according to the present invention, 3 and 4
, 5 are comparative examples. Regarding the above in Table 1, RDX has traditionally been more stable than HMX.
Although it was said that there was a problem in terms of safety, composition number 1
No significant difference was observed in the drop hammer sensitivity test values between propellants No. 2 and No. 3, and it became clear that both were sufficiently safe.

次に推進薬の性能は第2表に示す通りである。Next, the performance of the propellant is shown in Table 2.

第2表上表に示す如く、RDXを20重量%含む本発明
に係る推進薬は、いずれも0.1MPa以下で安定に燃
焼を継続するのに対し、HMXを含む番号3の推進薬で
は0.別仲a以下で、また、番号4、5の推進薬の如く
RDX、HMXのいずれも含まないものでは安定燃焼圧
力がIMPa以下で燃焼は不安定であり屡々立ち消えを
起した。
As shown in the upper table of Table 2, the propellants according to the present invention containing 20% by weight of RDX all continue to burn stably at 0.1 MPa or less, while the propellant No. 3 containing HMX continues to burn stably at 0.1 MPa or less. .. In the case of propellants below Betsu Naka A, and propellants containing neither RDX nor HMX, such as Nos. 4 and 5, the stable combustion pressure was below IMPa, and combustion was unstable and often caused extinction.

また、燃料速度は、RDXを含む本発明推進薬又はHM
Xを含む番号3の推進薬では7MPaで2.6〜2.7
柳/秒であるのに対し、これらを含まず硝酸アンモニウ
ムを酸化剤とする番号4、5の推進薬では同一条件で2
.0肋ノ砂以下であり両者の間には顕著な差異が認めら
れた。
In addition, the fuel velocity is determined by the propellant of the present invention containing RDX or HM
For propellant number 3 containing X, 2.6 to 2.7 at 7 MPa
willow per second, whereas propellants Nos. 4 and 5, which do not contain these and use ammonium nitrate as an oxidizing agent, have a rate of 2 per second under the same conditions.
.. The difference was less than 0, and a remarkable difference was observed between the two.

さらに、無煙性の点においても、硝酸アンモニウムだけ
の場合には燃焼を安定化するため重クロム酸アンモニウ
ム等の添加が必要となるが、このためわずかながら煙が
発生する。
Furthermore, in terms of smokelessness, if only ammonium nitrate is used, it is necessary to add ammonium dichromate or the like to stabilize combustion, but this will generate a small amount of smoke.

これに対し本発明品の場合は殆んど無煙であった。以上
の如く、本発明品はこの種の推進薬が具備すべき特性を
十分に確保するもので、酸化剤として硝酸アンモニウム
とRDXとの組合わせは極めて有用である。
In contrast, the product of the present invention was almost smokeless. As described above, the product of the present invention sufficiently ensures the characteristics that this type of propellant should have, and the combination of ammonium nitrate and RDX as oxidizing agents is extremely useful.

Claims (1)

【特許請求の範囲】[Claims] 1 合成ゴム又は合成樹脂等を燃料兼結合剤とするコン
ポジツト推進薬において、酸化剤として硝酸アンモニウ
ム及びシクロトリメチレントリニトラミンの混合物を含
有せしめることを特徴とする無煙性コンポジツト推進薬
1. A smokeless composite propellant that uses synthetic rubber or synthetic resin as a fuel and binder, and is characterized in that it contains a mixture of ammonium nitrate and cyclotrimethylene trinitramine as an oxidizing agent.
JP10377582A 1982-06-18 1982-06-18 smokeless composite propellant Expired JPS609999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10377582A JPS609999B2 (en) 1982-06-18 1982-06-18 smokeless composite propellant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10377582A JPS609999B2 (en) 1982-06-18 1982-06-18 smokeless composite propellant

Publications (2)

Publication Number Publication Date
JPS58223687A JPS58223687A (en) 1983-12-26
JPS609999B2 true JPS609999B2 (en) 1985-03-14

Family

ID=14362811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10377582A Expired JPS609999B2 (en) 1982-06-18 1982-06-18 smokeless composite propellant

Country Status (1)

Country Link
JP (1) JPS609999B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191089A (en) * 1984-10-08 1986-05-09 北林 貢 Manufacture of simple explosive
JP2000103691A (en) * 1998-09-28 2000-04-11 Daicel Chem Ind Ltd Gas generator composition
CN100334043C (en) * 2002-07-24 2007-08-29 日本化药株式会社 Waterproof granular explosive composition
CN105111033A (en) * 2015-08-20 2015-12-02 福建海峡科化股份有限公司 Porous granular ammonium nitrate fuel oil explosive and preparation method thereof

Also Published As

Publication number Publication date
JPS58223687A (en) 1983-12-26

Similar Documents

Publication Publication Date Title
JP4536262B2 (en) Dinitramide liquid monopropellant
Yang Solid propellant chemistry combustion and motor interior ballistics 1999
US3986908A (en) Composite propellants with a cellulose acetate binder
US20020121081A1 (en) Liquid/solid fuel hybrid propellant system for a rocket
EP0880485A2 (en) Nonazide gas generating compositions
US5589141A (en) Use of mixed gases in hybrid air bag inflators
Beckstead An overview of combustion mechanisms and flame structures for advanced solid propellants
NO171551B (en) PACKAGED EMULSION EXPLOSIVES AND PROCEDURES FOR PREPARING THEREOF
JPH02124790A (en) High-performance combined propellant for rocket engine
US4234363A (en) Solid propellant hydrogen generator
Sinditskii et al. High-nitrogen energetic materials of 1, 2, 4, 5-tetrazine family: thermal and combustion behaviors
US3953259A (en) Pressure exponent suppressants
JPS609999B2 (en) smokeless composite propellant
US3111439A (en) High explosive mixtures
US3172793A (en) Temperature xc
US2901886A (en) Method of increasing engine thrust
US6004410A (en) Apparatus comprising an inflatable vehicle occupant protection device and a gas generating composition therefor
Gadiot et al. New solid propellants based on energetic binders and HNF
US2951335A (en) Stable propellants
Oommen et al. Phase-stabilized ammonium nitrate-based propellants using binders with NN bonds
US2988437A (en) Cyanamide catalyst for ammonium nitrate gas generating composition
US3759765A (en) Gas producing compositions
US3167908A (en) Rocket propellant system
US3345821A (en) Storable liquid rocket propellants containing tetranitromethane with difluoramino compounds and method of use
US3696616A (en) Non-carbon forming monopropellant process using a lower alkylhydrazine and ammonia