JPS6099757A - Slip preventing device for vehicle - Google Patents

Slip preventing device for vehicle

Info

Publication number
JPS6099757A
JPS6099757A JP58208025A JP20802583A JPS6099757A JP S6099757 A JPS6099757 A JP S6099757A JP 58208025 A JP58208025 A JP 58208025A JP 20802583 A JP20802583 A JP 20802583A JP S6099757 A JPS6099757 A JP S6099757A
Authority
JP
Japan
Prior art keywords
wheel speed
road surface
driven wheel
slip
friction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58208025A
Other languages
Japanese (ja)
Other versions
JPH0438903B2 (en
Inventor
Hideo Wakata
若田 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58208025A priority Critical patent/JPS6099757A/en
Publication of JPS6099757A publication Critical patent/JPS6099757A/en
Publication of JPH0438903B2 publication Critical patent/JPH0438903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To aim at enhancing the running stability and accelerating capability of a vehicle, by controlling engine torque in accordance with a road-surface frictional coefficient which is estimated based upon the condition of trailing wheels, a tracting wheel speed and a trailing wheel speed. CONSTITUTION:A compare circuit 9 receives a tracting wheel speed signal from a tracting wheel speed sensor 1 and a trailing wheel speed signal from a trailing wheel speed sensor 2. Further, the trailing wheel speed signal is differentiated to compute the trailing wheel acceleration from which a road-surface discriminating circuit 8 estimates the road-surface frictional coefficient mu that is delivered to the comparator circuit 9. The comparator circuit 9 compares the tracting wheel speed with the trailing wheel speed to judge occurrence of a slip when the tracting wheel speed is predetermined number (k) times higher than the trailing wheel speed, and therefore torque control device 11 controls engine torque through a control signal generating circuit 10. Further, the value of K is set to be small as the estimated frictional coefficient mu is small, but is set to be large as the mu is large.

Description

【発明の詳細な説明】 [技術分野] 本発明は、車両用スリップ防止装置に関づ゛るものであ
り、特に発進時及び加速時に発生ずる過大なスリップを
抑えることにより、車両の安定走行が確保でき、しかも
加速性が向上できるようにした車両用スリップ防止装置
に関づる。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a slip prevention device for a vehicle, and in particular, prevents the vehicle from running stably by suppressing excessive slip that occurs when starting and accelerating. The present invention relates to a slip prevention device for a vehicle that can secure and improve acceleration performance.

Lt来技術] 従来、車両加速時又は発進時に駆動輪速度と従動輪速度
に基づいて車両のエンジン1〜ルクを抑制し、駆動輪の
スリップを抑える装置が種々提案されている。例えば駆
動輪速度と従動輪速度の差速を検出し、この差速か所定
額に達Jると、点火信号を本来の点火時期より所定時間
遅延させてエンジン1〜ルクを抑えるスリップ防止装置
、あるいは駆動輪速度と従動輪3!!i度の比が所定値
に達するとリンク機構を作動し、スロットルバルブを開
閉してエンジントルクを抑えるスリップ防止装置が挙げ
られる。
Prior Art] Conventionally, various devices have been proposed that suppress the engine torque of a vehicle based on the driving wheel speed and the driven wheel speed when the vehicle accelerates or starts, thereby suppressing the slip of the driving wheels. For example, a slip prevention device detects the speed difference between the driving wheel speed and the driven wheel speed, and when this speed difference reaches a predetermined amount, delays the ignition signal by a predetermined time from the original ignition timing to suppress the engine torque; Or driving wheel speed and driven wheel 3! ! An example of this is a slip prevention device that operates a link mechanism to open and close a throttle valve to suppress engine torque when the ratio of i degrees reaches a predetermined value.

しかしながら、車両の走行状態は多岐にわIこり、路面
自体の性質(ドライコンクリートに代表される高μ路、
ウエットアスファル1〜に代表される中間μ路、水路に
代表される低μ路)、タイヤの摩耗度、種類、天候にj
;る路面の状態等により路面とタイヤとの間の摩擦係数
μが様々であり、良好なスリップ制御を行なうことは甚
だ困難であった。
However, the driving conditions of vehicles vary widely, and the characteristics of the road surface itself (high μ roads such as dry concrete,
intermediate μ roads represented by wet asphal 1~, low μ roads represented by waterways), tire wear level, type, and weather conditions.
The coefficient of friction μ between the road surface and the tire varies depending on the condition of the road surface, etc., and it has been extremely difficult to perform good slip control.

つまり前記所定値は路面状態に依らず一定値のため、路
面摩擦係数μが低くスリップし易い路面で走行安定性を
損なったり、μが高くスリップしにくい路面で加速性あ
るいはドライバビリティを悪化させるという問題があっ
た。
In other words, since the predetermined value is a constant value regardless of the road surface condition, it may impair running stability on a road surface where the road surface friction coefficient μ is low and is prone to slipping, or deteriorate acceleration or drivability on a road surface where μ is high and difficult to slip. There was a problem.

[発明の目的] 本発明は、上記の点に鑑みなされたものであり、その目
的とするところは、路面摩擦係数μを推定し、μに応じ
てエンジン1〜ルクを制御することにより車両の走行安
定性と加速性の向上を図り得る車両用スリップ防止装置
を提供することにある。
[Object of the Invention] The present invention has been made in view of the above points, and its purpose is to estimate the road surface friction coefficient μ and control the engine torque in accordance with μ. An object of the present invention is to provide a slip prevention device for a vehicle that can improve running stability and acceleration.

[発明の構成1 かかる目的を達成するための本発明の構成は、駆動輪速
度を検出する駆動輪速度検出手段aと、従動輪速度を検
出する従動輪速度検出手段すと、上記従動輪速度に基づ
いて路面摩擦係数μを推定するμ推定手段Cと、 上記路面摩擦係数μと駆動輪速度と従動輪速度とに応じ
た制御信号を出力する制御手段dと、該制御手段dから
の制御信号に基づいて車両のエンジン1〜ルクを制御す
るトルク制御手段eとを備えることを特徴とする車両用
スリップ防止装置を要旨としている。
[Configuration 1 of the Invention The configuration of the present invention to achieve the above object includes a driving wheel speed detection means a for detecting the driving wheel speed, and a driven wheel speed detection means for detecting the driven wheel speed. μ estimating means C that estimates the road surface friction coefficient μ based on the road surface friction coefficient μ, a control means d that outputs a control signal according to the road surface friction coefficient μ, the driving wheel speed, and the driven wheel speed, and control from the control means d. The gist of the present invention is a slip prevention device for a vehicle characterized by comprising a torque control means e for controlling the torque of a vehicle engine 1 based on a signal.

[実施例] 以下に本発明を、実施例を挙げて図面と共に説明する。[Example] The present invention will be described below with reference to examples and drawings.

第2図はアナログ回路を用いる第1実施例のスリップ防
止装置の構成である。図において1は駆動輪速度を検出
する駆動輪速度センサ、2は従動輪速度を検出する従動
輪速度センサ、3.4は速度センサ1.2からの信号を
それぞれ矩形波に整形づる波形整形回路、5.6は波形
整形された矩形波の数に対応したディジタル信号をアナ
ログ信号に変換するD’/A変換回路、7はD/A変換
回路6にて検出された従動輪速度を微分して従動輪加速
度をめる加速度演算回路、8は後述の比較回路9にてス
リップ発生状態と判定された場合に従動輪加速度から路
面vi擦係数μを推定して路面状態を判別する路面判別
回路、9は駆動輪速度と従動輪速度を比較してスリップ
状態か否かを判定りる比較回路、10はスリップ判定時
、エンジントルクを抑制層るよう信号を出力する制御信
号発生回路、11は制御信号発生回路10からの信号に
基づいてスリップ発生時にエンジン1ヘルクを抑制する
1−ルク制す11装置である。
FIG. 2 shows the structure of the slip prevention device of the first embodiment using an analog circuit. In the figure, 1 is a driving wheel speed sensor that detects the driving wheel speed, 2 is a driven wheel speed sensor that detects the driven wheel speed, and 3.4 is a waveform shaping circuit that shapes each signal from the speed sensor 1.2 into a rectangular wave. , 5.6 is a D'/A conversion circuit that converts a digital signal corresponding to the number of waveform-shaped rectangular waves into an analog signal, and 7 is a D'/A conversion circuit that differentiates the driven wheel speed detected by the D/A conversion circuit 6. 8 is a road surface determination circuit that estimates a road surface vi friction coefficient μ from the driven wheel acceleration and determines the road surface condition when a comparison circuit 9 (to be described later) determines that a slip has occurred. , 9 is a comparison circuit that compares the driving wheel speed and the driven wheel speed to determine whether or not there is a slip state; 10 is a control signal generation circuit that outputs a signal to suppress engine torque when slip is determined; and 11 is a control signal generation circuit that outputs a signal to suppress engine torque. This is a 1-lux control 11 device that suppresses engine 1-herk when a slip occurs based on a signal from a control signal generation circuit 10.

尚、駆動輪速度センサ1は駆動輪速度検出手段aに、従
動輪速l![セン1J2は従動輪速度検出手段すに、加
速度演算回路7及び路面判別回路8はμ推定手段Cに、
波形整形回路3.4、D/A変換回路5.6、比較回路
9及び制御信号発生回路10は制御手段dに、トルク制
御装@11はトルク制御手段eにそれぞれ該当する。
Incidentally, the driving wheel speed sensor 1 detects the driven wheel speed l! as the driving wheel speed detecting means a. [The sensor 1J2 is connected to the driven wheel speed detection means, the acceleration calculation circuit 7 and the road surface discrimination circuit 8 are connected to the μ estimation means C,
The waveform shaping circuit 3.4, the D/A conversion circuit 5.6, the comparison circuit 9, and the control signal generation circuit 10 correspond to the control means d, and the torque control device @11 corresponds to the torque control means e.

次に、上述のアナログ回路の作動について詳細に説明す
る。まず駆動輪速度センサ1から出力される電圧波形は
、波形整形回路3によって矩形波に整形されD/A変挽
回路5に入ツノされ、D/A変換回路5からは駆動輪速
度に対応した電圧が出力され、スリップ判定を行なう比
較回路9に入力される。同様に、従動輪速度センサ2の
出力は波形整形回路4によって矩形波に整形され、D/
A変換回路6によって、従動輪速度に対応した電圧に変
換される。加速度演算回路7は、D/Δ変挽回路6から
得られる従動輪速度を微分して従動輪加速度を演算し、
路面判別回路8へ出力する。路面判別回路8は、比較回
路9がスリップ発生していると判定を開始したときに、
従動輪加速度から路面摩擦係数μを推定し路面状態を判
別し、比較回路9へ伝達する。比較回路9では、D/A
変操回路5.6から得られる駆動輪速度と従動輪速度を
比較し、駆動輪速度が従動輪速度の所定倍(K倍、K−
1,1〜2.0)以上のとき、スリップと判定し、制御
信号発生回路10を介して、トルク制御袋@11によっ
てエンジン1〜ルクを抑制さμる。
Next, the operation of the above-mentioned analog circuit will be explained in detail. First, the voltage waveform output from the driving wheel speed sensor 1 is shaped into a rectangular wave by the waveform shaping circuit 3 and input to the D/A conversion circuit 5, and from the D/A conversion circuit 5, the voltage waveform corresponding to the driving wheel speed is output. The voltage is output and input to a comparison circuit 9 that performs slip determination. Similarly, the output of the driven wheel speed sensor 2 is shaped into a rectangular wave by the waveform shaping circuit 4.
The A conversion circuit 6 converts the voltage into a voltage corresponding to the driven wheel speed. The acceleration calculation circuit 7 calculates the driven wheel acceleration by differentiating the driven wheel speed obtained from the D/Δ variable ground circuit 6.
It is output to the road surface discrimination circuit 8. When the comparison circuit 9 starts determining that a slip has occurred, the road surface discrimination circuit 8
The road surface friction coefficient μ is estimated from the driven wheel acceleration, the road surface condition is determined, and the result is transmitted to the comparison circuit 9. In the comparison circuit 9, the D/A
The driving wheel speed obtained from the variable circuit 5.6 is compared with the driven wheel speed, and the driving wheel speed is determined to be a predetermined times the driven wheel speed (K times, K-
1.1 to 2.0), it is determined that there is a slip, and the torque of the engine 1 is suppressed by the torque control bag @11 via the control signal generation circuit 10.

本実施例は、比較回路9におけるKの値を路面判別回路
8からの信号に基づいて切替えるものである。即ち、路
面摩擦係数μが小さいとき(例えばμ<Q、3)は安全
走行を優先してKの値を小さく(例えばに=1’、1)
設定してスリップ率を小さく抑え、μが大きいときく例
えばμ≧0.3)はKの値を大ぎく(例えばに=1.4
.)設定して、加速性、ドライバビリティを優先する。
In this embodiment, the value of K in the comparator circuit 9 is switched based on a signal from the road surface discrimination circuit 8. That is, when the road surface friction coefficient μ is small (for example, μ<Q, 3), prioritize safe driving and reduce the value of K (for example, = 1', 1).
When μ is large (for example, μ≧0.3), set the value of K to be large (for example, =1.4).
.. ) to prioritize acceleration and drivability.

第3図は路面摩擦係数μが大きい場合の制御1結果を示
す。図において実線は従動輪速度、点線はスリップ判定
レベル、実線波形は駆動輪速度を表す。定速走行時には
駆動輪速度と従動輪速度は等しい。時間taにおいて加
速が開始されると従動輪速度はほぼ直線的に増加する。
FIG. 3 shows the results of control 1 when the road surface friction coefficient μ is large. In the figure, the solid line represents the driven wheel speed, the dotted line represents the slip determination level, and the solid line waveform represents the driving wheel speed. When driving at a constant speed, the driving wheel speed and the driven wheel speed are equal. When acceleration begins at time ta, the driven wheel speed increases approximately linearly.

また駆動輪速度は従動輪速度より急激に増加し時間tb
にてスリップ判定レベルと等しくなり時間tbを過ぎる
と駆動輪速度はスリップ判定レベルより大きくなるがア
ナログ回路ににリエンジントルクが抑制されるため駆動
輪速度は減少する。そして時間tcにて、駆動輪速度は
スリップ判定レベルと等しくなり時間tcを過ぎると駆
動輪速度はスリップ判定レベルより小さくなるが車両が
加速中であることから駆動輪速度は増加し再びスリップ
判定レベルと等しくなる。以後同様な波形となり、駆動
輪速度はスリップ判定レベル近傍に保持されることとな
る。
Also, the driving wheel speed increases more rapidly than the driven wheel speed, and the time tb
After time tb reaches the slip judgment level, the drive wheel speed becomes greater than the slip judgment level, but the analog circuit suppresses the re-engine torque, so the drive wheel speed decreases. Then, at time tc, the driving wheel speed becomes equal to the slip judgment level, and after time tc, the driving wheel speed becomes smaller than the slip judgment level, but since the vehicle is accelerating, the driving wheel speed increases and returns to the slip judgment level. is equal to Thereafter, the waveform will be similar, and the driving wheel speed will be maintained near the slip determination level.

そして路面摩擦係数μが小さい場合の制御結果が第4図
に示される。第3図に比較して従動輪速度の勾配は路面
摩擦力が小さいため緩かとなり、またスリップ判定レベ
ルは低めに設定されるため駆動輪速度は、路面摩擦係数
μが大きい場合と比較して勾配が緩かな波形となる。
FIG. 4 shows the control results when the road surface friction coefficient μ is small. Compared to Fig. 3, the slope of the driven wheel speed is gentler because the road friction force is smaller, and the slip judgment level is set lower, so the driving wheel speed is lower than when the road friction coefficient μ is large. The waveform has a gentle slope.

以上詳述した如く本実施例が構成されていることにより
、車両が加速状態であり、かつ、路面摩擦係数μが大き
い場合にはKの値が大きく設定される、つまりスリップ
判定レベルは高めに設定されるため、路面摩擦力に対し
てエンジントルクは過制御されず加速性及びドライバビ
リティが充分確保される。また路面摩擦係数μが大きい
ため走行安定性も問題はない。
Due to the configuration of this embodiment as detailed above, when the vehicle is in an accelerating state and the road surface friction coefficient μ is large, the value of K is set large, that is, the slip judgment level is set high. Since the engine torque is set, the engine torque is not over-controlled with respect to the road friction force, and sufficient acceleration and drivability are ensured. Also, since the road surface friction coefficient μ is large, there is no problem with running stability.

一方、車両が加速状態であり、かつ、路面摩擦係数μが
小さい場合には上述し1=こととは逆に、Kの値は小さ
く設定される、つまりスリップ判定1、/ベルは低めに
設定されるため、エンジン1−ルクは充分抑制されスリ
ップが低く抑えられ走行安定性は良好である。
On the other hand, when the vehicle is in an accelerating state and the road surface friction coefficient μ is small, contrary to the above-mentioned 1=, the value of K is set small, that is, the slip judgment is 1, and /bell is set low. Therefore, the engine torque is sufficiently suppressed, slippage is kept low, and running stability is good.

次に路面摩擦係数μの演界方法について説明する。一般
に路面摩擦係数μは、路面状態およびスリップ率によ・
)で異なるが、通常スリップ率が10%〜20%程痕で
最大値あるいは最大値近傍の値となる。その時、路面に
伝えられる力はμ×Wr (Wrは駆動輪の荷重)であ
り、その力はころがり抵抗、空気抵抗などの定常走行抵
抗及び車両の加速抵抗の合n1と均り合う。
Next, a method for calculating the road surface friction coefficient μ will be explained. In general, the road surface friction coefficient μ depends on the road surface condition and slip rate.
), but normally the slip rate reaches the maximum value or a value close to the maximum value at about 10% to 20%. At that time, the force transmitted to the road surface is μ×Wr (Wr is the load of the driving wheels), and this force is balanced by the sum n1 of steady running resistance such as rolling resistance, air resistance, and acceleration resistance of the vehicle.

尚、加速時のスリップ率は次式の如く定義される。Incidentally, the slip rate during acceleration is defined as in the following equation.

S=(ωR−V)xl 00/ (ωR)(%)・・・
(1) ただし、■は車両の速度、ωはタイヤの角速度、Rはタ
イヤの半径である。
S=(ωR-V)xl 00/ (ωR)(%)...
(1) However, ■ is the speed of the vehicle, ω is the angular velocity of the tire, and R is the radius of the tire.

そして加速スリップ時には定常走行抵抗は比較的小さい
ため無視でき、μ×Wrが車両の加速に費されていると
考えられる。加速抵抗は、スリップ時にはW・α/g 
(Wは車両総重量、9は重力加速度、αは車両加速度)
であることから、路面摩擦係数μはW・α/Wr−0で
近似することができる。ここでW及びWrは搭載人員等
によって異なるが、μの値への影響は小さく一定と考え
てさしつかえない。従って、車両加速度αがまれば、路
面摩擦係数μがまるわけである。また、本実施例では、
従動輪速度を車両速度として用いているため、車両加速
度αは従動輪速度を微分した従動輪加速度を用いている
At the time of acceleration slip, the steady running resistance is relatively small and can be ignored, and it is considered that μ×Wr is consumed in accelerating the vehicle. Acceleration resistance is W・α/g when slipping
(W is the total vehicle weight, 9 is the gravitational acceleration, α is the vehicle acceleration)
Therefore, the road surface friction coefficient μ can be approximated by W·α/Wr−0. Here, W and Wr differ depending on the number of people on board, etc., but it can be considered that their influence on the value of μ is small and constant. Therefore, if the vehicle acceleration α is equalized, the road surface friction coefficient μ is equalized. Furthermore, in this example,
Since the driven wheel speed is used as the vehicle speed, the vehicle acceleration α uses the driven wheel acceleration obtained by differentiating the driven wheel speed.

尚、本実施例では、路面摩擦係数μの値に応じて、比較
回路9におけるKの値を2段階に切替えているが、制御
精度向上の為、3段階以上に切替えても良い。
In this embodiment, the value of K in the comparator circuit 9 is switched in two stages depending on the value of the road surface friction coefficient μ, but it may be switched in three or more stages to improve control accuracy.

次に第2実施例どして、マイクロコンピュータを用いて
路面摩擦係数μの値に応じて気筒の個数を切替えつつ燃
料カットを行なうスリップ防止装置について説明する。
Next, as a second embodiment, a slip prevention device will be described in which a microcomputer is used to cut fuel while switching the number of cylinders according to the value of the road surface friction coefficient μ.

第5図は第2実施例のスリップ防止装置の1m戒である
。図において、15は駆動輪速度を検出する駆動輪速度
センサ、20は従動輪速度を検出する従動輪速度センサ
、30は720°CA毎にパルスを出力する第1クラン
ク角センυ、40は第1クランク角センサ30の出力に
対し360’CA位相のずれたパルスを720’ CA
毎に出力する第2クランク角センザ、50はマイクロコ
ンピュータであり、スリップ発生時には燃料カッ1−を
行なうスリップ制御装置、60はエンジンの運転状態に
応じて適切な燃料を供給づる燃料供給装置である。更に
、スリップ制御装置50において51はスリップ判定等
の演算を行なう中央処即ユニット(以下、単にCPUと
呼ぶ、)、52Gよ速度センサ15.20のパルス幅を
計数するカウンタ、53は速度セン−リ−15,20及
びクランク角センサ30,40の信号を入力しCPIJ
51等に出カフる110ボート、54は演算結果等を一
時的に記憶するためのランダムアク井スメモリ(以下、
単にRAMと呼ぶ。)、55は演算プログラムや制御デ
ータを記憶しているリードオンリメモリ(以下、単にR
OMと呼ぶ。)、56は燃料供給装置6oへ制御信号を
出力するI10ボートである。
FIG. 5 shows the 1 m limit of the anti-slip device of the second embodiment. In the figure, 15 is a driving wheel speed sensor that detects the driving wheel speed, 20 is a driven wheel speed sensor that detects the driven wheel speed, 30 is a first crank angle sensor υ that outputs a pulse every 720° CA, and 40 is a first crank angle sensor υ that outputs a pulse every 720° CA. 1 A pulse with a phase shift of 360'CA relative to the output of the crank angle sensor 30 is generated at 720'CA.
50 is a microcomputer; 50 is a microcomputer; 60 is a slip control device that performs fuel cupping when slip occurs; and 60 is a fuel supply device that supplies appropriate fuel according to the operating state of the engine. . Furthermore, in the slip control device 50, 51 is a central processing unit (hereinafter simply referred to as CPU) that performs calculations such as slip determination, 52G is a counter that counts the pulse width of the speed sensor 15, 20, and 53 is a speed sensor. Input the signals of Lee 15, 20 and crank angle sensor 30, 40
51 is a random access memory (hereinafter referred to as
It is simply called RAM. ), 55 is a read-only memory (hereinafter simply R) that stores calculation programs and control data.
It's called OM. ), 56 is an I10 boat that outputs a control signal to the fuel supply device 6o.

尚、駆動輪速度センサ15は駆動輪速度検出手段aに、
従動輪速度センサ2oは従動輪速度検出手段すに、第1
クランク角センザ30.第2クランク角レンサ40.ス
リップ制御装置5oはμ推定手段Cと制御手段dに、燃
料供給装置6oはトルク制御手段eに該当する。
In addition, the driving wheel speed sensor 15 has a driving wheel speed detecting means a,
The driven wheel speed sensor 2o has a first driven wheel speed detection means.
Crank angle sensor 30. Second crank angle sensor 40. The slip control device 5o corresponds to μ estimation means C and control means d, and the fuel supply device 6o corresponds to torque control means e.

次に本実施例の動作について説明する。第5図において
、スリップ制御装置5oは速度センサ15及び20の信
号から駆動輪がスリップ状態であると判定し、路面摩擦
係数μを演算し、μが小さいときには通常の燃料カット
の如く金気筒の燃料カッ]〜を行なうため燃料供給装置
60に対して、燃料カッ1〜信号を出力する。逆に路面
摩擦係数μが大ぎいとぎにはクランク角センサ30及び
40の信号に基づき、例えば第1クランク角センサ30
のパルス発生から第2クランク角40のパルス発生まで
(01モードとする)は燃料カットを行ない、第2クラ
ンク角ヒンサ40のパルス発生から第1クランク角セン
サ30のパルス発生まで(G2モードとJる)は通常の
燃料噴射を行なって、全気筒中、半分の気筒のみ燃料カ
ットを行なうべく燃料供給装置60に対しC1断続的な
燃料カット信号を出力する。
Next, the operation of this embodiment will be explained. In FIG. 5, the slip control device 5o determines that the drive wheels are in a slip state based on the signals from the speed sensors 15 and 20, calculates the road surface friction coefficient μ, and when μ is small, the fuel cylinder is activated like a normal fuel cut. In order to perform the fuel injection, a fuel injection signal is output to the fuel supply device 60. On the other hand, when the road surface friction coefficient μ is large, the first crank angle sensor 30, for example,
Fuel is cut from the pulse generation of the second crank angle sensor 40 to the pulse generation of the second crank angle sensor 40 (01 mode), and from the pulse generation of the second crank angle sensor 40 to the pulse generation of the first crank angle sensor 30 (G2 mode and J ) performs normal fuel injection and outputs a C1 intermittent fuel cut signal to the fuel supply device 60 in order to cut fuel only in half of all cylinders.

そしてマイクロコンピュータを用いたスリップ制御装置
50の詳細な動作を第6図のフローチャートにより説明
Jる。まず、処理が開始されるとステップ100にで速
度センサ15の出力から駆動輪速度V Wを演算し、ス
テップ101にて速度センサ20の出力から従動輪速度
VVを演算し、更にステップ102にて従動輪速度VV
をK (Q(K=1.1〜2.0)L、スリップ判定レ
ベルv丁 とし、ステップ103にて駆動輪速度VWと
スリップ判定レベルVTを比較して駆動輪がスリップし
ているか否かを判定づる。VW≦V丁 と判定されたな
らばスリップ無しとされ、ステップ109にとび、燃料
カット信号をリセットし、I10ポート56を介して燃
料供給装置6oに対し通常の燃料供給を行なうよう指令
し、ステップ1゜Oに戻る。
The detailed operation of the slip control device 50 using a microcomputer will be explained with reference to the flowchart of FIG. First, when the process is started, the driving wheel speed VW is calculated from the output of the speed sensor 15 in step 100, the driven wheel speed VV is calculated from the output of the speed sensor 20 in step 101, and further, in step 102. Driven wheel speed VV
Let K (Q (K = 1.1 to 2.0)L) and slip judgment level v d, and in step 103, drive wheel speed VW and slip judgment level VT are compared to determine whether or not the drive wheels are slipping. If it is determined that VW≦V-T, it is determined that there is no slip, and the process advances to step 109, where the fuel cut signal is reset and normal fuel is supplied to the fuel supply device 6o via the I10 port 56. command and return to step 1°O.

一方、ステップ103にて、VW>VTが成立しスリッ
プ有と判定された場合には、ステップ104にて従動輪
速度Vvを微分し、車両加速度に相当する従動輪加速度
VVを演算し、ステップ105にて路面摩擦係数μをμ
−W−vv/wr・(] (Wは車両総重量、Wrは駆
動輪荷重、gは重力加速度)として演算し、ステップ1
06にて路面摩擦係数μの大小を、ある所定値μ0(例
えばμo−0,3>を基準に判定し、μ〈μ0にてμが
小ざいと判定された場合は、ステップ107にて燃料カ
ット信号をセラ1〜し、I10ポー1〜56を介して燃
料供給装置6oに対し、金気筒の燃料ノJットを行なう
よう指令し、ステップ100に戻る。
On the other hand, if it is determined in step 103 that VW>VT holds true and there is a slip, the driven wheel speed Vv is differentiated in step 104, and the driven wheel acceleration VV corresponding to the vehicle acceleration is calculated, and in step 105 The road friction coefficient μ is μ
-W-vv/wr・(] (W is the total vehicle weight, Wr is the driving wheel load, g is the gravitational acceleration), and Step 1
In step 06, the magnitude of the road surface friction coefficient μ is determined based on a certain predetermined value μ0 (for example, μo−0,3>), and if μ is determined to be small at μ<μ0, the fuel The cut signal is sent to the cell 1-56, and the fuel supply device 6o is instructed to perform a fuel cut to the metal cylinder via the I10 port 1-56, and the process returns to step 100.

一方、ステップ106にてμ≧μ0で路面摩擦係数μが
大ぎいと判定された場合は、ステップ108へとび、現
在先述のG1モードがG2モードかを調べ、G1モード
であればステップ107へとんで燃オ斗ノJツ1−を、
G1モードでなくG2モードであればステップ109に
て通常の燃料供給を、それぞれI10ボート56を介し
て燃料供給装置60に対し指令し、ステップ1ooに戻
る。その結果、G1モードとG2モードはエンジン1回
転毎に切替わるので、1回転おきの燃料カット、即ち、
半分の気筒の燃料カッ1−が実行される。
On the other hand, if it is determined in step 106 that μ≧μ0 and the road surface friction coefficient μ is large, the process advances to step 108 to check whether the aforementioned G1 mode is the G2 mode, and if it is the G1 mode, the process advances to step 107. So Mooto no Jtsu 1-,
If the mode is G2 mode instead of G1 mode, normal fuel supply is instructed to the fuel supply device 60 via the I10 boat 56 in step 109, and the process returns to step 1oo. As a result, the G1 mode and G2 mode are switched every engine revolution, so the fuel is cut every other revolution, i.e.
A half cylinder fuel cut is performed.

従来の方法では、燃料カット方法が路面にょらり゛同一
であった。イのため、金気筒の燃料カットを行なった場
合には、路面摩擦係数μの大きい路面では駆動輪速度の
落し込みが大きく、ドライバビリティ、加速性の悪化を
招き、一方、一部の気筒のみ燃料カットを行なった場合
には、路面摩擦係数μの小さい路面では充分にスリップ
を抑えることができなかった。しかし、前述した如く本
実施例が構成されることにより、第4図に示す如く、路
面摩擦係数μが小さい路面では金気筒の燃わ1カッ1−
によりエンジントルクは大きく抑制され充分スリップを
抑え、逆に第3図に示す如く路面摩擦係数μが大きい路
面では一部の気筒のみ燃料カットを行なうため、エンジ
ントルクの減少は小さく駆動輪速度の落ち込みが少なく
、ドライバビリティ、加速性が良好であるばかりでなく
、スリップも充分抑えることができる。
In the conventional method, the fuel cut method was the same regardless of the road surface. Therefore, when fuel is cut for the golden cylinders, the drive wheel speed drops significantly on roads with a large road surface friction coefficient μ, leading to deterioration of drivability and acceleration. When a fuel cut was performed, slips could not be sufficiently suppressed on a road surface with a small road surface friction coefficient μ. However, by configuring this embodiment as described above, as shown in FIG.
As a result, the engine torque is greatly suppressed and slip is sufficiently suppressed.On the other hand, as shown in Figure 3, on road surfaces with a large road surface friction coefficient μ, fuel is cut only in some cylinders, so the reduction in engine torque is small and the drop in driving wheel speed is reduced. It not only has good drivability and acceleration, but also can sufficiently suppress slippage.

次に第3実施例について説明づる。本実施例も第2実施
例とほぼ同様の構成であり、制御プログラムにステアリ
ング操舵角判定プログラム及び基準路面摩擦係数μ0変
更プログラムを伺加したものである。
Next, a third embodiment will be explained. This embodiment has almost the same configuration as the second embodiment, and a steering angle determination program and a reference road surface friction coefficient μ0 changing program are added to the control program.

図においてステップ300ないしステップ305、ステ
ップ308ないしステップ311は第2実施例と同様で
あるので説明を省略し、ステップ306、ステップ30
7について説明する。
In the figure, steps 300 to 305 and steps 308 to 311 are the same as those in the second embodiment, so their explanations are omitted, and steps 306 and 30
7 will be explained.

まず処理が開始されると、ステップ300ないしステッ
プ305の処理がなされる。続くステップ306にてス
テアリングの操舵角Oが所定操舵fI′lθ0より大さ
いか否か、換言すれば車両が進行方向を変更する、ある
いは進路変更をづるか否かを判定Jる。rYIEsJと
判定されたならばステップ307へとび、rNOJと判
定されたならばステップ308へとぶ。
First, when the process is started, steps 300 to 305 are performed. In the following step 306, it is determined whether the steering angle O of the steering wheel is larger than a predetermined steering fI'lθ0, in other words, whether the vehicle changes its direction of travel or changes its course. If it is determined to be rYIEsJ, the process advances to step 307, and if it is determined to be rNOJ, the process advances to step 308.

ステップ307にて基準路面摩擦係数μOはμ0より大
きいμmに設定され続くステップ308ないしステップ
311の処理がなされた後ステップ300へとび以下同
様の処理が実行される。
In step 307, the reference road surface friction coefficient .mu.O is set to .mu.m larger than .mu.0, and the subsequent steps 308 to 311 are performed, and then the process advances to step 300, where the same processing is performed.

以上述べた如く本実施例が構成されることにより、車両
が進行方向変更、進路変更する場合、例えば、スリップ
し易い、カーブの多い長い下り坂を走行づ′る場合には
基lit;路面摩擦係数μ0を大きくしてスリップ判定
レベルを厳しくづ”るため更に」−レジン1〜ルクが抑
制されスリップを一層抑え得ることができる。
By configuring this embodiment as described above, when the vehicle changes its traveling direction or course, for example, when traveling down a long downhill slope with many curves that is prone to slipping, the road surface friction is reduced. Since the coefficient .mu.0 is increased and the slip determination level is made stricter, the "resin 1" torque is further suppressed and slips can be further suppressed.

尚、実施例にかかわらず燃料供給が遮断される気筒の個
数は燃料噴射指示信号を適宜制御することにより変更し
ても良く、また燃料供給を1lll111i’l−る代
りに、点火カットあるいはスロワ1〜ルバルブ開閉を行
なっても良く、空燃比のリーン化、吸入空気量の抑制等
によってエンジントルクを抑制しても良く、またエンジ
ン1〜ルクでなく、変速機のギヤ位置、クラッチのすべ
り最によって駆動輪の伝達トルクを抑制しても良く、そ
してスリップ状態と判定された場合にスリップ防止装置
が作動してアクセルペダルの踏込感覚が通常の運転状態
とは異なることを警告ブザー又は警告ランプにて運転者
に通知しても良く、いずれも本発明の要旨を越えない限
り本実施例に限定されるものではない。
Incidentally, regardless of the embodiment, the number of cylinders to which the fuel supply is cut off may be changed by appropriately controlling the fuel injection instruction signal, and instead of cutting off the fuel supply, the number of cylinders to which the fuel supply is cut may be changed by cutting the ignition or The engine torque may be suppressed by opening and closing the valve, making the air-fuel ratio leaner, suppressing the amount of intake air, etc., and the engine torque may be controlled not by the engine torque, but by the gear position of the transmission and the slippage of the clutch. The transmission torque of the drive wheels may be suppressed, and if a slip condition is determined, an anti-slip device is activated and a warning buzzer or warning lamp is displayed to notify that the feeling of pressing the accelerator pedal is different from normal driving conditions. The driver may be notified, and the invention is not limited to this embodiment as long as it does not go beyond the gist of the present invention.

[発明の効果] 本発明は路面摩擦係数μを推定しμの値に応じてエンジ
ン1〜ルクを制御するよう構成している。
[Effects of the Invention] The present invention is configured to estimate the road surface friction coefficient μ and control the engine torque according to the value of μ.

このためμに拘わりなく駆動輪速度が精度良く制御され
、スリップが抑制され、良好な走行安定性を得ることが
可能となる。
Therefore, regardless of μ, the driving wheel speed is controlled with high precision, slippage is suppressed, and good running stability can be obtained.

また加速性・ドライバビリディが□確保され得るといっ
た効果もある。
There is also the effect that acceleration and drivability can be ensured.

イして急発進11.冒こ発生ずる不快なスリップ音をを
抑えるといったII?1次的効果もある。
11. II that suppresses the unpleasant slip noise that occurs? There are also first-order effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的構成図、第2図は第1実施例の
基本的構成を示づアブログ回路、第3図は高μ路にて駆
動輪速度が制御される様子を示すグラフ、第4図は低μ
路にて駆動輪速度が制御される様子を示すグラフ、第5
図は第2実施例の基本的な構成を示す制御回路、第6図
は第2実施例の制御プログラムのフローチャート、第7
図は第3実施例の制御プログラムのフローチャートを夫
々表す。 1.15・・・駆動輪3I度センサ 2.20・・・従動輪速度センサ 7・・・加速度演算回路 8・・・路面判別回路 9・・・比較回路 30・・・第1クランク角センサ 50・・・スリップ制御装量 60・・・燃料供給装置 製 鞠 愕 哲
Fig. 1 is a basic configuration diagram of the present invention, Fig. 2 is an abrog circuit showing the basic configuration of the first embodiment, and Fig. 3 is a graph showing how the driving wheel speed is controlled on a high μ road. , Figure 4 shows low μ
Graph showing how the driving wheel speed is controlled on the road, No. 5
The figure shows a control circuit showing the basic configuration of the second embodiment, FIG. 6 is a flowchart of the control program of the second embodiment, and FIG.
The figures each represent a flowchart of the control program of the third embodiment. 1.15... Drive wheel 3I degree sensor 2.20... Driven wheel speed sensor 7... Acceleration calculation circuit 8... Road surface discrimination circuit 9... Comparison circuit 30... First crank angle sensor 50... Slip control capacity 60... Manufactured by Fuel Supply System Tetsu Mari

Claims (1)

【特許請求の範囲】 1 駆動輪速度を検出する駆動輪速度検出手段と、 従動輪速度を検出づる従動輪速度検出手段と、上記従動
輪速度に基づいて路面摩擦係数μを推定づるμ推定手段
と、 上記路面摩擦係数μと駆動輪速度と従動輪速度とに応じ
た制御信号を出力する制御手段と、該制御手段からの制
御信号に基づいて車両のエンジン1〜ルクを制御するト
ルク制御手段とを備えることを特徴とする車両用スリッ
プ防止装置。 2 上記μ推定手段は従動輪速度から従動輪加速度を演
算し、該従動輪加速度に基づいて路面摩擦係数μを推定
する特許請求の範囲第1項に記載の車両用スリップ防止
装置。 3 上記−制御手段は路面llJ擦係数μの値に応じて
スリップ判定レベルを変更する制御回路である特許請求
の範囲第1項または第2項に記載の車両用スリップ防止
装置。 4 上記制御手段は路面摩擦係数μの値に応じて、燃料
供給が遮断される気筒の個数を変更する制御回路である
特許請求の範囲第1項または第2項または第3項に記載
の車両用スリップ防止装置。
[Scope of Claims] 1. Drive wheel speed detection means for detecting the drive wheel speed, driven wheel speed detection means for detecting the driven wheel speed, and μ estimation means for estimating the road surface friction coefficient μ based on the driven wheel speed. and a control means for outputting a control signal according to the road surface friction coefficient μ, the driving wheel speed and the driven wheel speed, and a torque control means for controlling the engine torque of the vehicle based on the control signal from the control means. A vehicle slip prevention device comprising: 2. The vehicle slip prevention device according to claim 1, wherein the μ estimating means calculates the driven wheel acceleration from the driven wheel speed and estimates the road surface friction coefficient μ based on the driven wheel acceleration. 3. The vehicle slip prevention device according to claim 1 or 2, wherein the control means is a control circuit that changes the slip determination level according to the value of the road surface llJ friction coefficient μ. 4. The vehicle according to claim 1, 2, or 3, wherein the control means is a control circuit that changes the number of cylinders to which fuel supply is cut off according to the value of the road surface friction coefficient μ. Anti-slip device for use.
JP58208025A 1983-11-04 1983-11-04 Slip preventing device for vehicle Granted JPS6099757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58208025A JPS6099757A (en) 1983-11-04 1983-11-04 Slip preventing device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208025A JPS6099757A (en) 1983-11-04 1983-11-04 Slip preventing device for vehicle

Publications (2)

Publication Number Publication Date
JPS6099757A true JPS6099757A (en) 1985-06-03
JPH0438903B2 JPH0438903B2 (en) 1992-06-25

Family

ID=16549422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208025A Granted JPS6099757A (en) 1983-11-04 1983-11-04 Slip preventing device for vehicle

Country Status (1)

Country Link
JP (1) JPS6099757A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235234A (en) * 1985-04-10 1986-10-20 Mazda Motor Corp Skid controller for vehicles
JPS62231836A (en) * 1986-03-31 1987-10-12 Nissan Motor Co Ltd Driving force controlling device for vehicle with automatic transmission
JPS6331831A (en) * 1986-07-28 1988-02-10 Mazda Motor Corp Slip controller for vehicle
JPS6331869A (en) * 1986-07-25 1988-02-10 Mazda Motor Corp Slip controller for automobile
JPS63137035A (en) * 1986-11-28 1988-06-09 Mazda Motor Corp Slip control device for vehicle
JPH01112131A (en) * 1987-10-24 1989-04-28 Fuji Heavy Ind Ltd Road surface mu detecting device
FR2624070A1 (en) * 1987-12-05 1989-06-09 Daimler Benz Ag METHOD FOR DETERMINING SLIDING THRESHOLDS FOR A DRIVING SLIDER CONTROL SYSTEM OF A MOTOR VEHICLE AND DEVICE FOR IMPLEMENTING SAME
JPH0295932A (en) * 1988-04-22 1990-04-06 Honda Motor Co Ltd Torque control device for drive wheel of vehicle
JPH02245433A (en) * 1989-03-17 1990-10-01 Toyota Motor Corp Acceleration slip control device for vehicle
JPH03500518A (en) * 1987-11-06 1991-02-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Drive slip control device
EP0413478A2 (en) * 1989-08-14 1991-02-20 General Motors Corporation Adaptive vehicle traction control system
JPH0330547U (en) * 1989-07-31 1991-03-26
JPH03156136A (en) * 1989-11-13 1991-07-04 Honda Motor Co Ltd Driving wheel slip controller for vehicle
JPH03179140A (en) * 1989-11-18 1991-08-05 Mercedes Benz Ag Regulating method for drive slip
JPH03286157A (en) * 1990-03-30 1991-12-17 Honda Motor Co Ltd Driving wheel slip controller
JPH04501749A (en) * 1988-09-30 1992-03-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Drive slip control device
US5113963A (en) * 1987-12-22 1992-05-19 Robert Bosch Gmbh Drive slip control system
US5159990A (en) * 1988-07-07 1992-11-03 Nippon Denso Co Wheel slippage control apparatus in motor vehicle
US5180027A (en) * 1988-01-22 1993-01-19 Akebono Brake Industry Co., Ltd. Traction control system for motor vehicles
JPH0681685A (en) * 1992-08-31 1994-03-22 Mitsubishi Motors Corp Output control device for vehicle
US5311433A (en) * 1990-11-20 1994-05-10 Toyota Jidosha Kabushiki Kaisha Acceleration slip control device for a vehicle
US5351192A (en) * 1991-12-25 1994-09-27 Mazda Motor Corporation Slippage control system using estimated road surface resistances
US5731976A (en) * 1994-01-21 1998-03-24 Mazda Motor Corporation Traction control system for vehicles
US5944392A (en) * 1995-03-27 1999-08-31 Mazda Motor Corporation Road surface condition determining system
US6141618A (en) * 1994-03-31 2000-10-31 Mazda Motor Corporation Traction control system for vehicles
EP0976629A3 (en) * 1998-07-29 2001-03-07 Volkswagen Aktiengesellschaft Procedure and device for brake performance adaptation at momentary wheel - road -adhesion conditions
JP2002037046A (en) * 2000-07-24 2002-02-06 Sumitomo Rubber Ind Ltd Initialization device and method for road surface friction coefficient determining device
JP2002036837A (en) * 2000-07-28 2002-02-06 Sumitomo Rubber Ind Ltd Abrasion state detection device and method for tire
KR100413392B1 (en) * 2000-12-28 2003-12-31 주식회사 만도 Method of traction control system for vehicle
JP2007030586A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Restraint control device of wheel slip
US7512473B2 (en) 2003-11-06 2009-03-31 Sumitomo Rubber Industries, Ltd. Method for judging road surface condition and device thereof, and program for judging road surface condition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114591A (en) * 1974-07-25 1976-02-05 Mitsubishi Electric Corp SHARYOYOKUDORINKUTENBOSHISOCHI
JPS588436A (en) * 1981-06-29 1983-01-18 ア−・ベ−・ボルボ Control system for spin of wheel for automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114591A (en) * 1974-07-25 1976-02-05 Mitsubishi Electric Corp SHARYOYOKUDORINKUTENBOSHISOCHI
JPS588436A (en) * 1981-06-29 1983-01-18 ア−・ベ−・ボルボ Control system for spin of wheel for automobile

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235234A (en) * 1985-04-10 1986-10-20 Mazda Motor Corp Skid controller for vehicles
JPS62231836A (en) * 1986-03-31 1987-10-12 Nissan Motor Co Ltd Driving force controlling device for vehicle with automatic transmission
JPS6331869A (en) * 1986-07-25 1988-02-10 Mazda Motor Corp Slip controller for automobile
JPS6331831A (en) * 1986-07-28 1988-02-10 Mazda Motor Corp Slip controller for vehicle
JPS63137035A (en) * 1986-11-28 1988-06-09 Mazda Motor Corp Slip control device for vehicle
JPH01112131A (en) * 1987-10-24 1989-04-28 Fuji Heavy Ind Ltd Road surface mu detecting device
JPH03500518A (en) * 1987-11-06 1991-02-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Drive slip control device
FR2624070A1 (en) * 1987-12-05 1989-06-09 Daimler Benz Ag METHOD FOR DETERMINING SLIDING THRESHOLDS FOR A DRIVING SLIDER CONTROL SYSTEM OF A MOTOR VEHICLE AND DEVICE FOR IMPLEMENTING SAME
US5113963A (en) * 1987-12-22 1992-05-19 Robert Bosch Gmbh Drive slip control system
US5180027A (en) * 1988-01-22 1993-01-19 Akebono Brake Industry Co., Ltd. Traction control system for motor vehicles
JPH0295932A (en) * 1988-04-22 1990-04-06 Honda Motor Co Ltd Torque control device for drive wheel of vehicle
US5159990A (en) * 1988-07-07 1992-11-03 Nippon Denso Co Wheel slippage control apparatus in motor vehicle
JPH04501749A (en) * 1988-09-30 1992-03-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Drive slip control device
JPH02245433A (en) * 1989-03-17 1990-10-01 Toyota Motor Corp Acceleration slip control device for vehicle
JPH0330547U (en) * 1989-07-31 1991-03-26
EP0413478A2 (en) * 1989-08-14 1991-02-20 General Motors Corporation Adaptive vehicle traction control system
JPH03156136A (en) * 1989-11-13 1991-07-04 Honda Motor Co Ltd Driving wheel slip controller for vehicle
JPH03179140A (en) * 1989-11-18 1991-08-05 Mercedes Benz Ag Regulating method for drive slip
JPH03286157A (en) * 1990-03-30 1991-12-17 Honda Motor Co Ltd Driving wheel slip controller
US5311433A (en) * 1990-11-20 1994-05-10 Toyota Jidosha Kabushiki Kaisha Acceleration slip control device for a vehicle
US5351192A (en) * 1991-12-25 1994-09-27 Mazda Motor Corporation Slippage control system using estimated road surface resistances
JPH0681685A (en) * 1992-08-31 1994-03-22 Mitsubishi Motors Corp Output control device for vehicle
US5731976A (en) * 1994-01-21 1998-03-24 Mazda Motor Corporation Traction control system for vehicles
US6141618A (en) * 1994-03-31 2000-10-31 Mazda Motor Corporation Traction control system for vehicles
US5944392A (en) * 1995-03-27 1999-08-31 Mazda Motor Corporation Road surface condition determining system
EP0976629A3 (en) * 1998-07-29 2001-03-07 Volkswagen Aktiengesellschaft Procedure and device for brake performance adaptation at momentary wheel - road -adhesion conditions
JP2002037046A (en) * 2000-07-24 2002-02-06 Sumitomo Rubber Ind Ltd Initialization device and method for road surface friction coefficient determining device
JP2002036837A (en) * 2000-07-28 2002-02-06 Sumitomo Rubber Ind Ltd Abrasion state detection device and method for tire
JP4523129B2 (en) * 2000-07-28 2010-08-11 住友ゴム工業株式会社 Tire wear state detecting device and method
KR100413392B1 (en) * 2000-12-28 2003-12-31 주식회사 만도 Method of traction control system for vehicle
US7512473B2 (en) 2003-11-06 2009-03-31 Sumitomo Rubber Industries, Ltd. Method for judging road surface condition and device thereof, and program for judging road surface condition
JP2007030586A (en) * 2005-07-25 2007-02-08 Toyota Motor Corp Restraint control device of wheel slip

Also Published As

Publication number Publication date
JPH0438903B2 (en) 1992-06-25

Similar Documents

Publication Publication Date Title
JPS6099757A (en) Slip preventing device for vehicle
EP0186122B1 (en) Wheel slip control system
JPH04191132A (en) Running resistance detecting device of vehicle
JP2704804B2 (en) Vehicle traction control device
JPH0615825B2 (en) Anti-slip device for vehicle
JP2704774B2 (en) Vehicle drive wheel slip control system
JP3536523B2 (en) Driving force control device for vehicles
JPH05213099A (en) Acceleration slip control device for vehicle with automatic transmission
JP2727714B2 (en) Engine output control method
JPS60121129A (en) Slip preventing device for vehicle
JP3651327B2 (en) Driving force control device for four-wheel drive vehicle
US20090319146A1 (en) Traction control system for diesel powered vehicles
JPS60151159A (en) Slip preventing apparatus for car
JPH0615826B2 (en) Vehicle acceleration slip control device
JP3985450B2 (en) Driving force control device
KR101210753B1 (en) Anti-Slip Control System and the Method for the same
JP2632366B2 (en) Intake air amount control device for internal combustion engine
JPS63113131A (en) Car slip control device
JP2578865B2 (en) Vehicle driving force control device
JPH0756219B2 (en) Automotive skid control
JP2605079B2 (en) Power plant control equipment
JP2917654B2 (en) Vehicle driving force control device
JPH03172549A (en) Slip controller for vehicle
JP3773788B2 (en) Vehicle drive wheel slip control device
JPH0233426A (en) Engine output control method of vehicle