JPS609974B2 - Resin coating method for glass containers - Google Patents

Resin coating method for glass containers

Info

Publication number
JPS609974B2
JPS609974B2 JP52072566A JP7256677A JPS609974B2 JP S609974 B2 JPS609974 B2 JP S609974B2 JP 52072566 A JP52072566 A JP 52072566A JP 7256677 A JP7256677 A JP 7256677A JP S609974 B2 JPS609974 B2 JP S609974B2
Authority
JP
Japan
Prior art keywords
resin
powder
coating
layer
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52072566A
Other languages
Japanese (ja)
Other versions
JPS547413A (en
Inventor
孜 伊藤
鉄次郎 辰己
禮次 宮本
史朗 樽崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP52072566A priority Critical patent/JPS609974B2/en
Publication of JPS547413A publication Critical patent/JPS547413A/en
Publication of JPS609974B2 publication Critical patent/JPS609974B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ガラス瓶等のガラス容器の表面に物性の異な
る合成樹脂粉末を三層以上の多層に静電塗着せしめた後
、加熱あるし、は焼付などの成膜処理を行い三層以上の
合成樹脂被膜層を形成せしめる改良された方法を提案す
る。
Detailed Description of the Invention The present invention involves electrostatically coating three or more layers of synthetic resin powder with different physical properties on the surface of a glass container such as a glass bottle, and then forming a film by heating or baking. An improved method for processing to form three or more synthetic resin coating layers is proposed.

ガラス瓶などのガラス容器は、酒、ビール、コーラ、ジ
ュースその他の炭酸飲料等の貯蔵や運搬容器として広く
使用されているが、これらの容器は衝撃に対しては破壊
し易く、取扱い中にそれらの破片の飛散による事故を起
す危険があり、か)る危険防止対策として合成樹脂被膜
を被着せしめ0た容器が使用されて来ている。
Glass containers such as glass bottles are widely used as containers for storing and transporting alcoholic beverages, beer, colas, juices, and other carbonated beverages. There is a risk of accidents due to flying debris, and as a measure to prevent this risk, containers coated with synthetic resin have been used.

これらの樹脂被膜として硬度の小さいものでは取扱中の
傷や剥離などにより反覆使用時には外観不良により商品
価値の低下をまねき、また硬度の大きいものでは傷はつ
き難いが、容器自体の耐衝タ撃性が充分ではない。
If these resin coatings have a low hardness, they may be scratched or peeled off during handling, resulting in poor appearance and a decrease in product value during repeated use.Also, resin coatings with a high hardness will not easily be scratched, but the impact resistance of the container itself may deteriorate. Not sexual enough.

か)る対策として樹脂被膜を二層とし、内層は比較的弾
性を有するものとし、外層に硬度の大なる層に形成する
提案がなされている。更に、樹脂被膜の形成に当っては
、溶剤型塗料0による塗装は溶媒の公害問題あるいは後
処理の問題から、粉体樹脂の熱融着塗装を経て静電粉体
塗装が主流となりつつある。
As a countermeasure against this, a proposal has been made to form a two-layer resin coating, with the inner layer being relatively elastic and the outer layer being more hard. Furthermore, in forming a resin film, electrostatic powder coating is becoming mainstream after thermal fusion coating of powder resin due to problems with solvent pollution and post-treatment when coating with solvent-based paint 0.

この方法による樹脂被膜の形成は、内層用の樹脂粉末を
静電塗着せしめた後加熱して内層被膜を形成した後、更
にこの膜上に外層用の樹脂粉末を静電塗着して再度の加
熱により二層の被膜を形成せしめる方法が提案されてい
るが、加熱処理の工程が2度に亘り煩雑であるばかりで
なくエネルギー消費が大きい欠点があり、また内層と外
層との樹脂被膜の接着強度も破瓶時の破片の飛散抑制の
点から制限されている。本発明はガラス容器の破壊時の
破片の飛散を防止することを目的とし、ざらに耐アルカ
リ性、耐膜性、反覆使用に耐える耐久性を併せ有する三
層以上の樹脂被膜を形成するための改良された方法を提
供するものである。従って、本発明はガラス容器の樹脂
被覆方法に係り、ガラス容器の樹脂被覆は、ガラス容器
の外表面に合成樹脂被膜を形成するに際し「ガラス容器
の表面に、静電粉体塗着される合成樹脂粉末を融着せし
めた際にガラス表面との接着性が大きくかつ弾性を有す
る被膜を形成する合成樹脂粉末帆を内層として塗着せし
めた後、中間層として該内層の上に、外層用樹脂として
塗着される内層用樹脂と相濠性を有しかつ成膜により高
い硬度と強度とを有する合成樹脂粉末(母と前記内層用
樹脂粉末のとの混合粉末を中間層として静電塗着し、更
に前記外層用樹脂粉末曲を静電塗着せしめた後、これら
複数層よりなる塗装粉末層をガラス容器と共に加熱また
は焼付けして容器表面に融着せしめることにより行われ
る。
Formation of a resin film using this method involves electrostatically applying resin powder for the inner layer, heating it to form an inner layer film, and then electrostatically applying resin powder for the outer layer on top of this film. A method has been proposed in which a two-layer film is formed by heating the resin, but this method has the disadvantage that the heat treatment process is not only complicated but also consumes a lot of energy. Adhesive strength is also limited in terms of preventing fragments from scattering when the bottle is broken. The present invention aims to prevent the scattering of fragments when glass containers are broken, and is an improvement for forming a resin coating of three or more layers that has alkali resistance, film resistance, and durability that can withstand repeated use. This method provides a method for Therefore, the present invention relates to a resin coating method for a glass container, and the resin coating for a glass container is performed by applying electrostatic powder to the surface of the glass container when forming a synthetic resin coating on the outer surface of the glass container. After applying a synthetic resin powder sail as an inner layer, which forms a highly adhesive and elastic film with the glass surface when the resin powder is fused, an outer layer resin is applied as an intermediate layer on top of the inner layer. A synthetic resin powder that is compatible with the resin for the inner layer and has high hardness and strength due to film formation (electrostatic coating using a mixed powder of the mother and the resin powder for the inner layer as an intermediate layer) Furthermore, after electrostatically applying the resin powder for the outer layer, the coating powder layer consisting of a plurality of layers is heated or baked together with the glass container to fuse it to the surface of the container.

上述の如く、本発明では一度の加熱処理のみで複数層の
樹脂被膜の形成が可能となり、熱消費量が著しく低減す
るため、その経剤的効果は大きい。
As described above, in the present invention, it is possible to form a plurality of layers of resin coating with only one heat treatment, and the amount of heat consumption is significantly reduced, so that the pharmaceutical effect is large.

また、三層に形成される樹脂は相互に相溶性を有し、内
、外層あるいは中間層が連続して一体となった被膜とな
るために各樹脂層膜相互の接着力が強く剥離が起らず、
内層はガラス面との接着が強固で剥離し難くかつ弾性を
有するために、外層面から伝達される衝撃を吸収してガ
ラスの破壊を防止する役割を果し、またガラスの破壊が
起っても内層の有する柔軟性によって破片が離散し難く
、従って飛散を抑制する効果が大きく、更に耐アルカリ
性、耐候性、耐擦傷性、反覆使用に耐える耐久性の優れ
たガラス容器を得ることができる。
In addition, the resins formed in the three layers are mutually compatible, and because the inner, outer, or intermediate layers form a continuous and integrated film, the adhesive strength between each resin layer is strong and peeling may occur. No,
The inner layer has strong adhesion to the glass surface, is difficult to peel off, and has elasticity, so it plays the role of absorbing the impact transmitted from the outer layer surface and preventing the glass from breaking. The flexibility of the inner layer makes it difficult for fragments to become dispersed, and therefore, the effect of suppressing scattering is large, and it is possible to obtain a glass container with excellent alkali resistance, weather resistance, scratch resistance, and durability that can withstand repeated use.

本発明において、内層用樹脂としてはガラス面に塗着後
加熱融着により形成された樹脂被膜が適度の弾性を有し
、かつガラス面と強固な接着性を有する樹脂を用いる。
In the present invention, as the resin for the inner layer, a resin is used in which the resin film formed by heat-sealing after coating on the glass surface has appropriate elasticity and has strong adhesion to the glass surface.

このような種類の樹脂として一例をあげると、エチレン
ービニルェステル共重合体、エチレンーピニルェステル
共重合体の部分ケン化物、かかるエチレンービニルェス
テル共重合体あるいはケン化物のカルボキシル変性体、
エチレン−不飽和カルボン酸ェスチル共重合体、0エチ
レン−不飽和カルボン酸ェステル共重合体のカルボキシ
ル変性体及び部分ケン化物、エチレン−不飽和カルボン
酸共重合体、エチレン−不飽和カルボン酸−ビニルェス
テル三元共重合体「エチレン−不飽和カルボン酸−不飽
和カルボン酸ェスタテルミ元共重合体等がある。ビニル
ェステルとしては、酢酸ビニル、プロピオンビニル、酪
酸ビニル等、不飽和カルボン酸としてはアクリル酸、メ
タクリル酸等、不飽和カルボン酸ェステルとしてはアク
リル酸メチル、アク0リル酸エチル、メタアクリル酸メ
チル等が挙げられる。
Examples of these types of resins include ethylene-vinyl ester copolymers, partially saponified ethylene-pinyl ester copolymers, and carboxyl-modified products of such ethylene-vinyl ester copolymers or saponified products. ,
Ethylene-unsaturated carboxylic acid ester copolymer, carboxyl modified product and partially saponified product of ethylene-unsaturated carboxylic acid ester copolymer, ethylene-unsaturated carboxylic acid copolymer, ethylene-unsaturated carboxylic acid vinyl ester copolymer Original copolymers include ethylene-unsaturated carboxylic acid-unsaturated carboxylic acid estothermi original copolymers, etc.Vinyl esters include vinyl acetate, vinyl propion, vinyl butyrate, etc.Unsaturated carboxylic acids include acrylic acid and methacrylic acid. Examples of unsaturated carboxylic acid esters include methyl acrylate, ethyl acrylate, and methyl methacrylate.

この中で「本発明方法において特に好ましい内層用樹脂
としては、酢酸ビニル含量5〜30モル%のエチレン−
酢酸ビニル共重合体の10〜80%ケン化物「あるいは
このケン化物をカルボン酸変タ性して得たカルボキシル
基舎量0.05〜5重量%のカルボキシル変性エチレン
−酢酸ビニル共重合体ケン化物が挙げられる。上記列挙
樹脂以外に、ガラス面と強固な接着性を有しかつ弾性を
有するものであれば、上記の樹0脂に限定されず用いる
ことができる。
Among these, "a particularly preferred resin for the inner layer in the method of the present invention is an ethylene-based resin having a vinyl acetate content of 5 to 30 mol%.
10 to 80% saponified product of vinyl acetate copolymer (or a saponified product of carboxyl-modified ethylene-vinyl acetate copolymer with a carboxyl base content of 0.05 to 5% by weight obtained by modifying this saponified product with carboxylic acid) In addition to the resins listed above, any resin that has strong adhesion to the glass surface and elasticity can be used without being limited to the resins listed above.

また、外層用樹脂としては、内層として塗着された樹脂
に対し融点が近似し、相熔性を有し、かつ成膜された被
膜が耐擦傷性の優れた硬度ならびに強度の大なる物性を
呈する種類の樹脂を用いることができる。
In addition, the resin for the outer layer has a melting point similar to that of the resin applied as the inner layer, has compatibility, and the formed film has physical properties such as high hardness and strength with excellent scratch resistance. Resins of the following types can be used.

こ)で、相糟性とは、二種以上の樹脂粉末を塗着し加熱
溶融して成膜した際に透明な膜を形成しあるいは相互に
融和する物性を呈するものを云う。
In this case, the term "compatibility" means that when two or more resin powders are applied and heated and melted to form a film, they form a transparent film or exhibit physical properties that are compatible with each other.

なお、これら二種以上の異なる樹脂の物性として、融点
、屈折率、および膨張係数が著しく相違しないものであ
る必要がある。上述の如き外層用樹脂としては、上言己
内層用樹脂として列挙した樹脂に適応しうる外層用樹脂
の例をあげると、例えば酢酸ビニル含量5〜50モル%
のエチレン−酢酸ビニル共重合体の高ケン化物、好まし
くは70〜100%ケン化物(1)、このケン化物のカ
ルボキシル変性体(D)、あるいは前記(1)および/
または(ロ)の樹脂に有機ポリィソシアネートブロック
体を混合してなる組成物(m)が挙げられるが、本発明
方法では特に組成物(m)が好ましい外層用樹脂である
Note that the physical properties of these two or more different resins must not be significantly different in melting point, refractive index, and expansion coefficient. As the above-mentioned outer layer resin, examples of outer layer resins that are compatible with the resins listed above as inner layer resins include, for example, vinyl acetate content of 5 to 50 mol%.
A highly saponified product of the ethylene-vinyl acetate copolymer, preferably a 70 to 100% saponified product (1), a carboxyl modified product (D) of this saponified product, or the above (1) and/or
Alternatively, a composition (m) obtained by mixing the resin of (b) with an organic polyisocyanate block may be mentioned, but in the method of the present invention, the composition (m) is particularly preferred as the resin for the outer layer.

上記有機ポリィソシアネートブロック体としては、芳香
族、脂肪族、脂環族のジィソシアネート化合物およびこ
れらのィソシアネート化物の過剰Zと低分子ポリオール
との付加反応によって得られる化合物などがあげられる
Examples of the organic polyisocyanate blocks include aromatic, aliphatic, and alicyclic diisocyanate compounds, and compounds obtained by addition reaction of excess Z of these isocyanates with low-molecular-weight polyols.

また、保護剤としては、イソシアネートのブロック化に
使用されうろことが知られているブロック剤、例えばフ
ェノール系、ラクタム系、活性〆Zチレン系、アルコー
ル系、メルカプタン系、酸アミド系「イミド系、アミン
系「イミダゾール系、尿素系、ィミン系、オキシム系あ
るいは亜硫酸塩系などをあげることができる。
In addition, as protective agents, blocking agents known to be used for isocyanate blocking, such as phenol-based, lactam-based, activated Z tyrene-based, alcohol-based, mercaptan-based, acid amide-based, imide-based, Amine-based substances include imidazole-based, urea-based, imine-based, oxime-based, and sulfite-based.

以上列挙した樹脂以外に、内層用に用いた樹脂2と相溶
性あればこれらの列挙樹脂に限定されるものではなく、
熱硬化性樹脂も適用しうる。
In addition to the resins listed above, the resins are not limited to these listed resins as long as they are compatible with resin 2 used for the inner layer.
Thermosetting resins can also be applied.

内層用と外層用の樹脂の選択において、両者の融点が著
しく相違し、内層用樹脂の融点よりも外層用のそれが高
いとき、塗着後加熱熔融し成膜せ2しめろ過程において
、内層の膜が形成しても外層の成膜が完了せず不完全な
膜となり、もし外層の成膜を良好にしようとすると内層
用樹脂の流動性が大となって流下現象が起り、上と下と
で不均一な厚さの膜となったり、シワ状や波状の被膜と
な3り、商品価値の低い仕上りの品位や強度の低いもの
となる。
When selecting resins for the inner layer and the outer layer, if the melting points of the two are significantly different and the melting point of the resin for the outer layer is higher than that of the resin for the inner layer, the inner layer may be heated and melted after coating, and in the second tightening process. Even if a film is formed, the formation of the outer layer is not completed, resulting in an incomplete film.If you try to improve the film formation of the outer layer, the fluidity of the resin for the inner layer will increase and a falling phenomenon will occur, causing the top and bottom to overlap. This results in a film with non-uniform thickness, wrinkles or waves, resulting in a finished product with low commercial value, poor quality and strength.

また、これとは逆に、内層用樹脂の融点が外層用樹脂の
それよりも高いときには、外層が流動化状態となっても
内層は粉状のま)で成膜されず、3内層の成膜温度まで
昇温すると外層の流下や、これに内層用粉末を伴ったり
して均斉な膜とはならず、あるいは内層用粉末粒子間に
包含されている空気がすでに形成された外相被膜のため
に放散できずに気泡となって残留するなど種々のトラブ
ル4の原因となる。
Conversely, when the melting point of the resin for the inner layer is higher than that of the resin for the outer layer, even if the outer layer becomes fluidized, the inner layer remains powdery and is not formed. If the temperature rises to the film temperature, the outer layer will flow down, the inner layer powder will be mixed with it, and the film will not be uniform, or the outer phase film will have already formed with air trapped between the inner layer powder particles. This causes various troubles such as air bubbles that cannot be dissipated and remain as bubbles.

以上のような理由から、内外層用樹脂の選択にあたって
は、両者の融点がほゞ近似する樹脂を用いることが好ま
しい。
For the above reasons, when selecting resins for the inner and outer layers, it is preferable to use resins whose melting points are approximately similar.

また、外層用樹脂よりも内層用樹脂の融点の幾分低いも
のが好結果を得る。以上述べたように、本発明において
は、内層塗着樹脂と相溶性を有する樹脂を外層に塗着せ
しめることを要点とするものであり、このような樹脂の
選択により三層あるいはそれ以上の複数層に静電塗着さ
れた粉体層を一度の加熱によって均斉な複数層よりなる
透明な樹脂被膜層を形成することが可能となるのである
。このような処理によって「ガラス面との接着性がよく
、耐擦傷性、耐アルカリ性、耐候性に優れ、反覆使用に
耐える耐久性がよく、かつ破瓶に対し危険の少ない樹脂
被膜を有するガラス容器を得ることができる。なお「粉
末樹脂を静電塗着する際、内層用樹脂を塗着した後に外
層用樹脂を塗着するが、特に外層塗着の際に塗着されず
に回収した樹脂粉末中にはすでに塗着された内層用樹脂
粉末の多少の剥離が起って両者の混合物となる。
Further, good results are obtained when the melting point of the resin for the inner layer is somewhat lower than that of the resin for the outer layer. As described above, the key point of the present invention is to coat the outer layer with a resin that is compatible with the inner layer coating resin, and by selecting such resin, three or more layers can be formed. By heating the powder layer electrostatically applied to the layer once, it becomes possible to form a transparent resin coating layer consisting of a uniform plurality of layers. Through this treatment, glass containers with a resin coating that has good adhesion to glass surfaces, excellent scratch resistance, alkali resistance, and weather resistance, are durable enough to withstand repeated use, and are less dangerous to bottle breakage. In addition, when applying electrostatically powdered resin, the resin for the outer layer is applied after the resin for the inner layer is applied. Some peeling of the inner layer resin powder that has already been applied to the powder occurs, resulting in a mixture of the two.

また、外層塗着完了後、余剰分の除去によって回収され
た粉末は、内外層用樹脂の混合粉末となる。これら混合
粉末の分離は一般に困難であり、その後処理に問題を生
ずる。しかし、本発明においては、これらの混合粉末は
「内層塗着層上に中間層として塗着した後、更に外層用
樹脂粉末を塗着しても何等支障を来さない。
Further, after the coating of the outer layer is completed, the powder recovered by removing the excess amount becomes a mixed powder of resin for the inner and outer layers. Separation of these mixed powders is generally difficult and causes problems in subsequent processing. However, in the present invention, after these mixed powders are coated as an intermediate layer on the inner coating layer, there is no problem even if the resin powder for the outer layer is further coated.

即ち、これらを加熱成膜した際に、内外層用樹脂が相溶
性を有するために中間層の存在は何等加熱工程あるいは
仕上り品位ならびに内外二層の被膜の呈する役割りに本
質的な変化を来さず、内層、中間層および外層が一体と
なった樹脂被膜が形成されるという利点を有する。
In other words, when these are heated and formed into films, the presence of the intermediate layer does not cause any essential changes in the heating process, the finished quality, or the role played by the two inner and outer layers because the resins for the inner and outer layers are compatible. However, it has the advantage that a resin coating is formed in which the inner layer, intermediate layer, and outer layer are integrated.

なお、内層用樹脂を静電塗着する前に内層として被膜形
成される樹脂層とガラス表面との接着性を向上するシラ
ンカップリング剤を予めガラス表面に薄く塗布せしめる
と、ガラス表面と内層樹脂膜との接着性の改善に好結果
を与えるので、本剤を使用することは好ましい。
In addition, if you apply a thin layer of silane coupling agent to the glass surface to improve the adhesion between the resin layer to be formed as an inner layer and the glass surface before electrostatically applying the resin for the inner layer, the inner layer resin will bond to the glass surface. It is preferable to use this agent because it gives good results in improving the adhesion with the membrane.

次に、実施例について本発明を説明する。Next, the present invention will be explained with reference to examples.

実施例 1 次に示す2種類の樹脂粉末を用いて、樹脂コート瓶を作
製した。
Example 1 A resin-coated bottle was produced using the following two types of resin powder.

樹脂粉末Aーメルトィンデックス150、酢酸ビニル含
量2笹重量%(約11モル%)のエチレン−酢酸ビニル
共重合体を加水分解して得られるメルトインデックス8
7、ケン化度76%の微粉末樹脂粉末Bーメルトインデ
ックス150、酢酸ビニル含量2笹重量%のエチレン−
酢酸ビニル共重合体を加水分解して得られるメルトイン
デツクス74、ケン化度92%の微粉末に、ぎーカプロ
ラクタムで保護された4・4−メチレンーピス(シクロ
ヘキシルィソシアネート)の酢酸エチル溶液をNCO/
OHのモル比が0.4になるように混合してウェットケ
ーキ状とし、次いで真空乾燥機を用いてウェットケーキ
中の酢酸エチルの大部分を除去したのち、更に流動層乾
燥機を用いて酢酸エチルをほぼ完全に除去せしめること
によって得られた微粉末即ち、予めシランカップリング
剤KBM−403(信越化学製品)の1%水溶液をスプ
レー散布した容量1000の‘のコーラ飲料用ガラス瓶
を塗装コンベアのグリッパーに装着し「次いで静電粉体
塗装法を用いて先ず樹脂粉末Aを8夕/本塗布し、続い
て樹脂粉末AおよびBの混合物である回収粉末を2夕/
本塗布し、更に引続いて樹脂粉末Bを8夕/本塗布した
後、グリッパー及び瓶底部に付着した樹脂粉末を吸収除
去し(これは回収粉末となる)、次いでグリッパーから
瓶を取りはずして競付炉に入れた。
Resin powder A-melt index 150, melt index 8 obtained by hydrolyzing an ethylene-vinyl acetate copolymer with a vinyl acetate content of 2% by weight (approximately 11 mol%)
7. Fine powder resin powder B with saponification degree of 76% - melt index of 150, vinyl acetate content of 2% by weight of ethylene -
An ethyl acetate solution of 4,4-methylene-opis (cyclohexyl isocyanate) protected with G-caprolactam was added to a fine powder with a melt index of 74 and saponification degree of 92% obtained by hydrolyzing vinyl acetate copolymer. /
Mix the OH so that the molar ratio is 0.4 to form a wet cake, then use a vacuum dryer to remove most of the ethyl acetate in the wet cake, and then use a fluidized bed dryer to remove acetic acid. Fine powder obtained by almost complete removal of ethyl, namely glass bottles for cola drinks with a capacity of 1000', which had been sprayed with a 1% aqueous solution of silane coupling agent KBM-403 (Shin-Etsu Chemical), were placed on a coating conveyor. Then, using an electrostatic powder coating method, resin powder A was first applied for 8 coats, and then recovered powder, which is a mixture of resin powders A and B, was applied for 2 coats/coat.
After applying the main coating and subsequently applying resin powder B for 8 days/application, the resin powder adhering to the gripper and the bottom of the bottle is absorbed and removed (this becomes recovered powder), and then the bottle is removed from the gripper and the bottle is removed. I put it in the furnace.

焼付けは、先ず130q0で30分間加熱して熔融しべ
リングした後、210ooで15分間加熱して樹脂粉末
Bを架橋反応化せしめた。
In the baking process, the resin powder B was first heated at 130 q0 for 30 minutes to melt and stain, and then heated at 210 oo for 15 minutes to cause the resin powder B to undergo a crosslinking reaction.

このようにして得られた樹脂コート瓶の性能を後記試験
方法にしたがって試験し、第1表の結果を得た。
The performance of the resin-coated bottle thus obtained was tested according to the test method described below, and the results shown in Table 1 were obtained.

比較例 1 実施例1の樹脂粉末Aだけを18夕/本塗布した樹脂コ
ート瓶を作製し、その性能について試験した結果を第1
表に示した。
Comparative Example 1 A resin-coated bottle was prepared by applying only the resin powder A of Example 1 for 18 days, and the performance of the bottle was tested.
Shown in the table.

比較例 2 実施例1の樹脂粉末Bだけを18夕/本塗布した樹脂コ
ート瓶を作製し、その性能について試験し0た結果を第
1表に示した。
Comparative Example 2 A resin-coated bottle was prepared by applying only the resin powder B of Example 1 for 18 days, and its performance was tested.The results are shown in Table 1.

比較例 3 実施例1において〜樹脂粉末Bとして熱硬化性アクリル
粉体塗料(クリアー)を使用する以外、実施例1に準拠
して樹脂コート瓶を作製した。
Comparative Example 3 A resin-coated bottle was produced in accordance with Example 1 except that a thermosetting acrylic powder coating (clear) was used as resin powder B in Example 1.

た夕だし「塚付けは、先ず130ooで30分間加熱し
熔融しべリングした後、本試験に使用したアクリル粉体
塗料を硬化させるのに適切な条件、すなわち230こ○
で15分間加熱した。得られた樹脂コ−ト瓶の性能につ
いて試験した結果を第1表に示した。比較例 4実施例
1において、樹脂粉末Bとしてェポキシ粉体塗料(クリ
アー)を使用する以外、実施例1に準拠した樹脂コート
瓶を作製した。
For the mound attachment, first heat at 130°C for 30 minutes to melt and label, and then heat under conditions suitable for curing the acrylic powder paint used in this test, that is, 230°C.
and heated for 15 minutes. Table 1 shows the results of testing the performance of the resin-coated bottles obtained. Comparative Example 4 A resin-coated bottle was produced in accordance with Example 1 except that an epoxy powder coating (clear) was used as resin powder B.

蛭付けは、先ず130午0で3び分間加熱し、熔融しべ
リングした後、本試験に使用したェポキシ粉体塗料を硬
化させるのに適切な条件、即ちi80C0×3び分間加
熱した。得られた樹脂コート瓶の性能について試験した
結果を第1表に示した。第 1 表 実施例 2 実施例1において、樹脂粉末A及び樹脂粉末Bとして次
のものを用いる以外は、実施例1に準拠して樹脂コート
瓶を作製した。
For the leech application, first, the material was heated at 130 pm for 3 minutes, and after melting and staining, it was heated for 3 minutes under conditions suitable for curing the epoxy powder coating used in this test, i.e., i80C0 x 3 minutes. Table 1 shows the results of testing the performance of the resin-coated bottles obtained. Table 1 Example 2 A resin-coated bottle was produced in accordance with Example 1, except that the following resin powders A and B were used in Example 1.

樹脂粉末A−メルトインデックス150、酢酸ピニル舎
量2母重量%のエチレン−酢酸ビニル共重合体を加水分
解して得られるケン化度71%のケン化物にアクリル酸
を0.4重量%グラフトさせたグラフト変性体(メルト
ィンデックス75)の微粉末樹脂粉末Bーメルトィンデ
ツクス150、酢酸ビニル舎量2塁重量%のエチレン−
酢酸ピニル共重合体を加水分解して得られるケン化度8
7%のケン化物にアクリル酸を0.3重量%グラフトさ
せたグラフト変性体(メルトインデツクス82)に、f
−カプロラクタムで された4・4−メチレンービ*
*ス(シクロヘキシルイソシアネート)をNCO/OH
のモル比が0.45になるように小型押出機を用いて1
20ooで溶融混線し、更に機械粉砕して得られる平均
粒度74山の微粉末得られた樹脂コート瓶についての性
能試験の結果を第2表に示した。
Resin Powder A - 0.4% by weight of acrylic acid was grafted onto a saponified product with a degree of saponification of 71% obtained by hydrolyzing an ethylene-vinyl acetate copolymer with a melt index of 150 and a pinyl acetate content of 2% by weight. Finely powdered resin powder B of the graft modified product (Melt Index 75) - Melt Index 150, vinyl acetate amount 2 base weight % ethylene -
Saponification degree 8 obtained by hydrolyzing pinyl acetate copolymer
A graft modified product (melt index 82) in which 0.3% by weight of acrylic acid was grafted onto 7% saponified product was
-4,4-methylenebis treated with caprolactam*
*S(cyclohexyl isocyanate) is NCO/OH
1 using a small extruder so that the molar ratio of
Table 2 shows the results of a performance test on a resin-coated bottle obtained by melting and mixing at 20 oo and then mechanically pulverizing to obtain a fine powder with an average particle size of 74 particles.

比較例 5 実施例2の樹脂粉末Aだけを18夕/本塗布した樹脂コ
ート瓶を作製し、その性能について試験した結果を第2
表に示した。
Comparative Example 5 A resin-coated bottle was prepared by applying only the resin powder A of Example 2 for 18 days, and the performance of the bottle was tested.
Shown in the table.

比較例 6 実施例2の樹脂粉末Bだけを18多/本塗布した樹脂コ
ート瓶を作製し、その性能について試験した結果を第2
表に示した。
Comparative Example 6 A resin-coated bottle was prepared by applying only resin powder B of Example 2 18 times per bottle, and the performance of the bottle was tested.
Shown in the table.

第 2 表 実施例 3〜8 樹脂粉末Aとして実施例2に示したものを用い、樹脂粉
末Bとして次に示したものを用いた。
Table 2 Examples 3 to 8 As resin powder A, the resin powder shown in Example 2 was used, and as resin powder B, the resin powder shown below was used.

樹脂粉末Bーメルトィンデックス150、酢酸ビニル含
量2鑓重量%のエチレン−酢酸ビニル共重合体を加水分
解して得られるケン化度87%のケン化物にアクリル酸
を0.3重量%グラフトさせたグラフト変性体(メルト
ィンデックス82)に、第3表に示す種類の有機ポリィ
ソシアネートブロック体を実施例2の方法に準拠してN
CO/OHモル比が0.4になるように混合し、さらに
機械粉砕して得られる平均粒度60〜80仏の微粉末上
記の2種類の樹脂粉末を用い、実施例1に準拠して樹脂
コート瓶を作製した。
Resin Powder B - Melt Index 150, 0.3% by weight of acrylic acid was grafted onto a saponified product with a degree of saponification of 87% obtained by hydrolyzing an ethylene-vinyl acetate copolymer with a vinyl acetate content of 2% by weight. An organic polyisocyanate block of the type shown in Table 3 was added to the graft modified product (melt index 82) according to the method of Example 2.
A fine powder with an average particle size of 60 to 80 French obtained by mixing the CO/OH molar ratio to 0.4 and mechanically pulverizing the resin powder according to Example 1 using the above two types of resin powders. A coated bottle was made.

ただし、レベリング条件及び加熱架橋化条件を第3表に
示した条件に変更した。このようにして得られた樹脂コ
ート瓶の性能について試験した結果、外観、耐アルカリ
性、接着性、耐擦傷性及び飛散防止性のいずれも良好で
、実施例2の樹脂コート瓶とほぼ同程度の性能を有する
ことが確認された。
However, the leveling conditions and thermal crosslinking conditions were changed to those shown in Table 3. As a result of testing the performance of the resin-coated bottle thus obtained, it was found that the appearance, alkali resistance, adhesion, scratch resistance, and shatterproof properties were all good, and that the resin-coated bottle obtained in Example 2 was approximately the same as the resin-coated bottle of Example 2. It was confirmed that the product had good performance.

第 3 表 〔試験方法〕 {1} 耐アルカリ性 樹脂被覆ガラス瓶を700○の4%苛性ソーダ水溶液に
3時間浸潰した後、取り出して外観に異常が生じていな
いかどうかを検査した。
Table 3 [Test Method] {1} After immersing an alkali-resistant resin-coated glass bottle in a 4% caustic soda aqueous solution of 700° for 3 hours, it was taken out and inspected for any abnormality in appearance.

■ 接着強度 樹脂被覆ガラス瓶を7000の4%苛性ソーダ水溶液に
3時間浸潰した後、取り出して水洗し、カッターナイフ
で樹脂被覆膜に10側中の切目をつけ「インストロン型
引張試験機を用いてガラス表面から樹脂膜を剥離するに
要する応力を測定した。
■ Adhesive strength After soaking the resin-coated glass bottle in a 4% caustic soda aqueous solution of 7000 for 3 hours, take it out and wash it with water, make a cut in the resin-coated film on the 10 side with a cutter knife and test it using an Instron type tensile tester. The stress required to peel the resin film from the glass surface was measured.

{3} 耐擦傷性 樹脂被覆ガラス瓶を7000の4%苛性ソーダ水溶液に
3時間嬢潰した後、AGR製ラインシュミレーターで6
び分処理した時に被覆樹脂表面に付着する擦傷の程度を
検査した。
{3} After crushing the scratch-resistant resin-coated glass bottle in a 4% caustic soda aqueous solution of 7000 for 3 hours, it was washed with an AGR line simulator for 6 hours.
The degree of scratches that adhered to the coated resin surface during the coating treatment was examined.

{4} 耐候性 樹脂被覆ガラス瓶をサンシャイン型ウェサロメ−夕一で
100加時間照射後、外観異常が生じないかどうかを検
査した。
{4} After irradiating a weather-resistant resin-coated glass bottle with a sunshine-type Wesalome-Yuichi for 100 hours, it was inspected to see if there were any abnormalities in appearance.

■ 飛散防止性 試験瓶にガス容積3.6の炭酸水を規定量充填して封冠
し4000の恒温水槽に30分以上浸潰した後、表面が
滑らかで厚さ20肌以上のコンクリート床に75肌の高
さから水平落下させたとき、割れたガラスの破片の95
重量%以上が落下した地点を中心として半径lm以内に
ある場合を合格とした。
■ Shatterproof test bottle was filled with a specified amount of carbonated water with a gas volume of 3.6, sealed, and immersed in a constant temperature water bath of 4,000 ℃ for more than 30 minutes. 75 95 of broken glass fragments when dropped horizontally from skin height
A case where % by weight or more was within a radius of lm around the point where it fell was considered to be a pass.

Claims (1)

【特許請求の範囲】 1 ガラス容器の外表面に合成樹脂被膜を形成するに際
し、ガラス容器の表面に、静電粉体塗着される合成樹脂
粉末を融着せしめた際にガラス表面との接着性が大きく
かつ弾性を有する被膜を形成する合成樹脂粉末(A)を
内層として塗着せしめた後、中間層として該内層の上に
、外層用樹脂として塗着される内層用樹脂と相溶性を有
しかつ成膜により高い硬度と強度とを有する合成樹脂粉
末(B)と前記内層用樹脂粉末(A)との混合粉末を中
間層として静電塗着し、更に前記外層用樹脂粉末(B)
を静電塗着せしめた後、これら複数層よりなる塗着粉末
層をガラス容器と共に加熱または焼付けして容器表面に
融着せしめることを特徴とするガラス容器の樹脂被膜方
法。 2 中間層用混合粉末として、静電塗着工程で回収され
た内層用樹脂および外層用樹脂の混合粉末が用いられる
特許請求の範囲第1項記載のガラス容器の樹脂被膜方法
[Scope of Claims] 1. When forming a synthetic resin coating on the outer surface of a glass container, adhesion to the glass surface occurs when the synthetic resin powder coated with electrostatic powder is fused to the surface of the glass container. After coating a synthetic resin powder (A) that forms a film with high elasticity and elasticity as an inner layer, a synthetic resin powder (A) that is compatible with the inner layer resin to be coated as an outer layer resin is applied on the inner layer as an intermediate layer. A mixed powder of the synthetic resin powder (B) which has high hardness and strength upon film formation and the resin powder for the inner layer (A) is electrostatically applied as an intermediate layer, and further the resin powder for the outer layer (B) is coated electrostatically as an intermediate layer. )
1. A method for coating a glass container with a resin, which comprises electrostatically applying the powder, and then heating or baking the coating powder layer together with the glass container to fuse it to the surface of the container. 2. The resin coating method for a glass container according to claim 1, wherein a mixed powder of an inner layer resin and an outer layer resin recovered in an electrostatic coating process is used as the mixed powder for the intermediate layer.
JP52072566A 1977-06-19 1977-06-19 Resin coating method for glass containers Expired JPS609974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52072566A JPS609974B2 (en) 1977-06-19 1977-06-19 Resin coating method for glass containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52072566A JPS609974B2 (en) 1977-06-19 1977-06-19 Resin coating method for glass containers

Publications (2)

Publication Number Publication Date
JPS547413A JPS547413A (en) 1979-01-20
JPS609974B2 true JPS609974B2 (en) 1985-03-14

Family

ID=13493035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52072566A Expired JPS609974B2 (en) 1977-06-19 1977-06-19 Resin coating method for glass containers

Country Status (1)

Country Link
JP (1) JPS609974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060463U (en) * 1983-09-28 1985-04-26 株式会社稲生工業所 Barrel plating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10863752B2 (en) 2015-10-29 2020-12-15 National Institute of Technology Plasma sterilization device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060463U (en) * 1983-09-28 1985-04-26 株式会社稲生工業所 Barrel plating device

Also Published As

Publication number Publication date
JPS547413A (en) 1979-01-20

Similar Documents

Publication Publication Date Title
US4767671A (en) Coated articles and methods for the preparation thereof
US6548164B1 (en) Removable sheeting
US8071212B2 (en) Self-adhesive film
US4171056A (en) Coated bottle and method of coating
EP1154005A1 (en) Surface protecting film and laminate comprising the same
CA2424135A1 (en) Glass container with improved coating
US3937854A (en) Method of making a thermoplastic ink decorated, polymer coated glass article
US3285802A (en) Glass aerosol bottles and method for making same
JP2002528366A (en) Method of repairing scratched and / or shaved transparent substrate and repaired substrate
JP4464626B2 (en) Glass surface treatment coating composition and glass product
US4133923A (en) Coated bottles
JPS609974B2 (en) Resin coating method for glass containers
US3864151A (en) Glass article coated with plastic and lubricity coatings and method of coating
JPH05500794A (en) Method for increasing the strength of glass containers and glass containers with increased strength
US3937676A (en) Lubricity coating for plastic coated glass articles
US3889030A (en) Method of coating glass article and improved coated glassware product
GB2411879A (en) Label removable from article by hot washing
WO2000043324A1 (en) Safety coating of frangible ware
US4265947A (en) Thermoplastic ink decorated, polymer coated glass articles
JP2889991B2 (en) Coating composition for glass
JP2683818B2 (en) Cover material for hermetically sealed packages
JP4310261B2 (en) Glass products
JP4286044B2 (en) Method for imparting hydrophilicity to resin surface, resin product and glass product
JPS6154587B2 (en)
JPS63502502A (en) Improved products and improvement methods