JPS6099380A - Corrosion inhibiting method of seawater desalination apparatus - Google Patents

Corrosion inhibiting method of seawater desalination apparatus

Info

Publication number
JPS6099380A
JPS6099380A JP58206555A JP20655583A JPS6099380A JP S6099380 A JPS6099380 A JP S6099380A JP 58206555 A JP58206555 A JP 58206555A JP 20655583 A JP20655583 A JP 20655583A JP S6099380 A JPS6099380 A JP S6099380A
Authority
JP
Japan
Prior art keywords
corrosion
water
bottom plate
zinc
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58206555A
Other languages
Japanese (ja)
Inventor
Toshihiko Sato
寿彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58206555A priority Critical patent/JPS6099380A/en
Publication of JPS6099380A publication Critical patent/JPS6099380A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To form a film on the bottom plate of an evaporation chamber made of stainless steel, and to prevent accurately the clearance corrosion by sprinkling a corrosion inhibitor of a specified composition. CONSTITUTION:A mixture of zinc powder and a water-soluble dispersant or a mixture of zinc powder, a water-soluble dispersant, and a water-soluble binder is used as a corrosion inhibitor. The clearance corrsion can be prevented by sprinkling said corrosion inhibitor into an evaporation chamber made of stainless steel, and setting the inhibitor on the bottom plate to form a film. Since the film is the water-soluble deposit of zinc hydroxide, etc., the deposit is completely eluted in a hydraulic test and in the normal operation stage, and the difficulties due to the remaining substance do not occur.

Description

【発明の詳細な説明】 本発明は、海水淡水化装置の腐食防止方法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in corrosion prevention methods for seawater desalination equipment.

多段フラッシュ式淡水化装置の蒸発室拡、多くの場合8
UF3316L、 5US317L等のステンレス鋼あ
るいれステンレスクラツド銅板で形成され、定常運転時
における高温脱気プライン中の腐食防止を図っている。
Expansion of evaporation chamber in multi-stage flash desalination equipment, often 8
It is made of stainless steel such as UF3316L, 5US317L or stainless steel clad copper plate, and is designed to prevent corrosion in the high temperature degassing pline during steady operation.

しかしステンレス鋼部分においても次の(1)〜(4)
のような条件下で腐食が多発している。
However, even in the stainless steel part, the following (1) to (4)
Corrosion occurs frequently under these conditions.

(リ 製作、輸送及び現地据付段階で異物が付着すると
、その個所に隙間腐食が生じる。
(If foreign matter adheres during the manufacturing, transportation, and on-site installation stages, crevice corrosion will occur at those locations.

(2)水圧試験時に底板部及び異物付着部に隙間腐食が
生じる。
(2) During the water pressure test, crevice corrosion occurs on the bottom plate and the area where foreign matter adheres.

(3)試運転段階において運転が停止され蒸発室が空気
圧解放されるような条件下になると、シライン中に酸素
が溶解するが、プラインが流動していないため、異物付
着部で隙間腐食が発生する。
(3) During the trial run stage, when the operation is stopped and the air pressure in the evaporation chamber is released, oxygen will dissolve in the pline, but since the pline is not flowing, crevice corrosion will occur where foreign matter adheres. .

(4)淡水化装置の運転を長期間停止して保管する場合
、停止前に蒸発室内を塩濃度の低い水によって洗浄した
後乾燥して腐食防止を図っているが、塩分が濃縮し、ま
た洗浄が不完全なため、底板部のステンレス鋼が腐食を
起すことがある。
(4) When desalination equipment is stopped for a long time and stored, the inside of the evaporation chamber is washed with water with low salt concentration before it is stopped and then dried to prevent corrosion. Incomplete cleaning may cause corrosion of the stainless steel on the bottom plate.

これらのうち水圧試験時の隙間腐食を防止する場合、従
来無機系及び有機系のインヒビターを使用している。し
かし、現地事情から水圧試験用耐圧水として種々の水質
性状のものを使用しているため、次のような欠点がある
Among these, inorganic and organic inhibitors have been conventionally used to prevent crevice corrosion during hydraulic tests. However, due to local circumstances, water with various quality properties is used as pressure-resistant water for hydraulic pressure tests, which has the following drawbacks.

(1) インヒビター添加では、1009gの防食効果
が得られず、ステンレス鋼のように局部腐食が主体とな
る材料系に対して隙間腐食等を十分に防止することがで
きない。
(1) Addition of an inhibitor does not provide a corrosion protection effect of 1009 g, and it is not possible to sufficiently prevent crevice corrosion etc. for materials such as stainless steel where local corrosion is the main cause.

(2)多段フラッジ一式海水淡水化装置の蒸発室を水圧
試販する場合、4000〜6000m”と多量の耐圧水
が必要となシ、これに1〜3%のインヒビターを添加す
ると排水時に海洋汚染を生ずる。
(2) When testing the evaporation chamber of a multi-stage flood seawater desalination equipment, a large amount of pressure-resistant water of 4,000 to 6,000 m is required, and if 1 to 3% inhibitor is added to this water, it will pollute the ocean during drainage. will occur.

(3) インヒビターを添加しても、スノ千ツター下部
及びデポジット下部等では腐食防止効果がほとんど期待
できない。
(3) Even if an inhibitor is added, little corrosion prevention effect can be expected in the lower part of the snowboard and the lower part of the deposit.

そこで本発明者祉、ステンレス鋼製蒸発室の底板部の隙
間腐食の問題を解決するために鋭意研究をおこなった結
果、異物付着部に多数の隙間腐食が発生し、インヒビタ
ーを添加してもこれを完全に防止することはできないが
、底板部以外の個B1では無添加でも腐食問題は発生し
なかった。従って底板部のみ全局部的に防食処理するこ
とによって隙間腐食を防止することができることがわか
った。
Therefore, the present inventor conducted intensive research to solve the problem of crevice corrosion on the bottom plate of a stainless steel evaporation chamber, and as a result, found that a large number of crevice corrosion occurred in the part where foreign matter was attached. Although it is not possible to completely prevent corrosion, corrosion problems did not occur in pieces B1 other than the bottom plate even when no additives were used. Therefore, it was found that crevice corrosion can be prevented by locally applying anti-corrosion treatment to only the bottom plate.

この防食処理方法として、鉄よシも卑な電位にある亜鉛
を用いて電気化学的作用によって陰極性保護を与える流
電陽極方式の電気防食法、ジンクリッチペイント塗装法
、隙間腐食防止剤による防食法、などが従来から実用化
されている。
Corrosion prevention treatment methods include a galvanic anode type cathodic protection method that provides cathodic protection through electrochemical action using zinc, which has a base potential on steel, a zinc-rich paint coating method, and corrosion protection using crevice corrosion inhibitors. methods, etc. have been put into practical use for some time.

しかし電気防食法は、水圧試験に使用する水の電導度が
小さい場合、電流到達範囲が著しく狭い。このため実用
上亜鉛を使用することができず、マグネシウム等を使用
する必要があり、適当でない。
However, in the cathodic protection method, if the conductivity of the water used in the hydraulic test is low, the current reach range is extremely narrow. For this reason, zinc cannot be used in practice, and it is necessary to use magnesium or the like, which is not appropriate.

またジンクリッチペイント塗装法は、エチルシリケート
又はエポキシ樹脂等のバインダーと亜鉛粉末とを混合し
た塗液を使用したもので、乾燥皮膜中の亜鉛量が87〜
93%程度となっている。
In addition, the zinc rich paint coating method uses a coating liquid containing a binder such as ethyl silicate or epoxy resin mixed with zinc powder, and the amount of zinc in the dry film is 87 to 87%.
It is around 93%.

この塗膜は、水圧試験中では十分な防食効果を有する。This coating film has sufficient anticorrosion effect during the hydraulic test.

しかし、その後の定常運転において亜鉛が溶出するとバ
インダーがステンレス鋼表面に残存し、これが隙間腐食
を加速することが実験によル確認されている。
However, it has been experimentally confirmed that when the zinc is eluted during subsequent steady-state operation, the binder remains on the stainless steel surface and that this accelerates crevice corrosion.

また隙間腐食防止剤による方法ケよ、ポリエチレン又は
エチレングロピレンゴム系のパイイタ−と10〜50%
の亜鉛粉末を混合したペースト状又はシート状にしたも
のを使用する方法である。
In addition, a method using a crevice corrosion inhibitor may be used, with 10 to 50% of polyethylene or ethylene glopylene rubber
This method uses a mixture of zinc powder in the form of a paste or sheet.

この方法で得られた皮膜社、ジンクリッチペイント塗装
法と同様バインダーが水溶性でないため亜鉛が溶出して
しまうとバインダーが残存し、残存物による隙間腐食を
加速する。
As with the zinc-rich paint coating method, the binder is not water-soluble, so if the zinc is eluted, the binder remains and the residue accelerates crevice corrosion.

本発明り、上記事情に鑑みてなされたもので、その目的
とするところ鉱、ステンレス鋼製蒸発室の底板部の隙間
腐食を防止することができる海水淡水化装置の腐食防止
方法を得んとするものである。
The present invention has been made in view of the above circumstances, and its purpose is to provide a corrosion prevention method for seawater desalination equipment that can prevent crevice corrosion in the bottom plate of an evaporation chamber made of mineral or stainless steel. It is something to do.

すなわち本発明は、亜□鉛粉末を主体とする水溶性の腐
食防止剤を海水淡水化装置のステンレス鋼製蒸発′室に
散付し、底板部に沈澱上しめて隙間腐食を防止すること
を特徴とする。
That is, the present invention is characterized in that a water-soluble corrosion inhibitor mainly composed of zinc powder is sprinkled on the stainless steel evaporation chamber of the seawater desalination equipment, and is deposited on the bottom plate to prevent crevice corrosion. shall be.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の腐食防止方法は、海水淡水化装置のステンレス
銅製蒸発室に亜鉛粉末を主体とする水溶性の腐食防止剤
を散付する方法である。この腐食防止剤としては、亜鉛
粉末と水溶性の分散剤とによって構成したものと、亜鉛
粉末と水溶性の分散剤と水溶性のバインダーとによって
構成したものとがある。
The corrosion prevention method of the present invention is a method in which a water-soluble corrosion inhibitor mainly consisting of zinc powder is sprinkled on a stainless steel evaporation chamber of a seawater desalination apparatus. This corrosion inhibitor may be composed of zinc powder and a water-soluble dispersant, or it may be composed of zinc powder, a water-soluble dispersant, and a water-soluble binder.

この腐食防止剤を散付することによシ、底板部に皮膜が
形成され腐食を防止する。この皮膜は、亜鉛及び亜鉛水
酸化物等の水溶性沈澱物であるため、水圧試験及び定常
運転段階で完全に溶出し、残存物による障害は起らない
By sprinkling this corrosion inhibitor, a film is formed on the bottom plate to prevent corrosion. Since this film is a water-soluble precipitate such as zinc and zinc hydroxide, it is completely eluted during the hydraulic test and steady-state operation stage, and no damage is caused by residual substances.

なお本発明方法は、水圧試験に限らず、海上輸送時及び
長時間停止時の防食方法として適用できる。次に本発明
の実験例につき説明する。
Note that the method of the present invention is applicable not only to water pressure tests but also as a corrosion prevention method during marine transportation and during long-term suspension. Next, an experimental example of the present invention will be explained.

この実験例は、この腐食防止方法の効果を確認するため
、NaC2250ppmの模擬水圧水を使用してステン
レス鋼(Sl:IS 316L )に対する電気化学的
な防食効果及びpH制御性について詭べたものである。
In this experimental example, in order to confirm the effectiveness of this corrosion prevention method, we studied the electrochemical corrosion prevention effect and pH controllability on stainless steel (Sl: IS 316L) using simulated hydraulic water containing 2250 ppm NaC. .

実験例1(基本的防食試験) 下記本発明及び比較用腐食防止剤を用いて防食効果を調
べた。その結果tl−第1表に示す。
Experimental Example 1 (Basic Corrosion Prevention Test) Corrosion prevention effects were investigated using the following corrosion inhibitors of the present invention and for comparison. The results are shown in Table 1.

上表からステンレスM (8US 316L )は、亜
鉛粉末の吸着によって電気化学的に次のような防食作用
があることが確認された。
From the above table, it was confirmed that stainless steel M (8US 316L) has the following electrochemical anti-corrosion effect due to adsorption of zinc powder.

(a) 孔食電位及び保護電位は、大きくなる#1ど隙
間腐食防止効果は、向上することが知られている。この
発明方法は亜硝酸塩素インヒビターと同等の効果を有す
る。
(a) It is known that the pitting corrosion potential and protection potential are increased #1, and the crevice corrosion prevention effect is improved. The method of this invention has an effect comparable to that of chlorine nitrite inhibitors.

(b) SUS 316Lの腐食電位紘、阻極側への分
極が大きくなる#旦ど孔食及び隙間腐食は発生し難くな
る。この方法は、−0,65V vs SCEと最も優
れている。
(b) The corrosion potential of SUS 316L increases, and the polarization towards the negative polarization side increases. # Once this occurs, pitting corrosion and crevice corrosion become less likely to occur. This method is the best -0.65V vs SCE.

(c) 耐孔食性の評価値として、(孔食電位)−(酸
化還元電位)が使用ちれるが、この数値もこの発明方法
が最も良い。
(c) As an evaluation value of pitting corrosion resistance, (pitting corrosion potential) - (oxidation-reduction potential) is used, and this value is also the best in the method of this invention.

(a) SUs 3i6L表面近傍におけるpH値は、
アルカリ性に近づく程、隙間腐食の発生が起シ難くなる
。この発明方法は、水酸化亜鉛の生成によってpH9,
2に制御することができる。
(a) The pH value near the surface of SUs 3i6L is
The closer it is to alkalinity, the more difficult it is for crevice corrosion to occur. The method of this invention has a pH of 9,
It can be controlled to 2.

(c)防食添加剤の濃度分布状況紘、比較方法(亜硝酸
塩素インヒビター)の場合完全溶解するためビーカー中
のどの部分においても濃度性一定である。
(c) Concentration distribution of anticorrosion additive In the case of the comparative method (chlorine nitrite inhibitor), the concentration is constant in all parts of the beaker because it is completely dissolved.

一方、本発明方法は添加後攪拌が停止すると、大部分の
亜鉛末はビー力の底部に沈澱する。一部の亜鉛末は、液
中に分散し、ビー力中央部に設置したSUS 316L
試験片表面に吸着している。
On the other hand, in the method of the present invention, when stirring is stopped after addition, most of the zinc powder settles at the bottom of the bead. Some of the zinc powder was dispersed in the liquid and installed in the center of the beer force.
It is adsorbed on the surface of the test piece.

この沈澱及び浮遊効果によって、底部近傍は高濃度の亜
鉛及び亜鉛化合物(水酸化亜鉛)の環境を形成すること
ができる。
Due to this sedimentation and floating effect, an environment with a high concentration of zinc and zinc compounds (zinc hydroxide) can be formed near the bottom.

実験例2(モデル化防食試験) 第2表に示す通シ、本発明方法は、スパッター付着のよ
うに複雑な隙間構造部に対しても優れた防食性を有して
いる。
Experimental Example 2 (Modeled Corrosion Test) As shown in Table 2, the method of the present invention has excellent corrosion protection even for complex gap structures such as sputter deposition.

次に本発明の実施例につき説明する。Next, examples of the present invention will be described.

24段の蒸発室によって構成される海水淡水化装置は、
1〜6段と24段にSUS 316L羽が使用されてい
る。また、各段の底板部は3mX18mの寸法となって
いる。
The seawater desalination equipment consists of 24 stages of evaporation chambers.
SUS 316L blades are used in stages 1 to 6 and stage 24. Furthermore, the bottom plate portion of each stage has dimensions of 3m x 18m.

本装置の水圧試験の通水前に次の様な処理を行ない防食
性を調査した。
Before passing water through the water pressure test of this equipment, the following treatments were carried out to investigate the corrosion resistance.

(1〜6段目) 各段底板部に水圧水と同一性状の水を流した後、直ちに
金属亜鉛粉末(三菱金属KK製)全各段6〜1oKft
−均一に散布する。
(1st to 6th tier) After flowing water with the same properties as hydraulic water to the bottom plate of each tier, immediately apply metal zinc powder (manufactured by Mitsubishi Metals KK) to all tiers of 6 to 1oKft.
- Spread evenly.

次いでブラシでこす′り亜鉛と水を混合した。The brushed zinc and water were then mixed.

そして処理後5日目に水圧試験水を通水した。Then, on the fifth day after the treatment, hydraulic test water was passed through the water.

(24段目) 真空掃除機で底板部を清掃した後3日目に水圧試験水を
通水した。
(24th stage) After cleaning the bottom plate part with a vacuum cleaner, water pressure test water was passed on the third day.

通水から排水乾燥までの時間は32日間でありた0 排水乾燥後、各段の底板面の病食状況を調査したところ
、亜鉛粉末で処理した1〜6段には、スパッター付着部
を含め全く腐食鉱認められなかった。
The time from water flow to drying of the drain was 32 days. After drying the drain, we investigated the condition of the bottom plate of each tier, and found that tiers 1 to 6 treated with zinc powder had no signs of corrosion, including areas where spatter had adhered. No corrosion ore was detected.

一方、24段目には、スノやツタ−も蓋部及び平滑部に
合計12ケ所の腐食が発生していた。
On the other hand, on the 24th stage, corrosion had occurred in a total of 12 places on the lid and smooth parts of the snow and ivy.

以上の結果から明らかなように本発明によれは、簡単な
方法で確実に底板部の腐食を防止することができる顕著
な効果を奏する。
As is clear from the above results, the present invention has a remarkable effect of reliably preventing corrosion of the bottom plate portion using a simple method.

Claims (1)

【特許請求の範囲】[Claims] 亜鉛粉末を主体とする水溶性の腐食防止剤を海水淡水化
装置のステンレス鋼製蒸発室に散付し、底板部に沈澱せ
しめて腐食を防止することを特徴とする海水淡水化装置
の腐食防止方法。
Corrosion prevention for seawater desalination equipment, characterized in that a water-soluble corrosion inhibitor mainly composed of zinc powder is sprinkled on the stainless steel evaporation chamber of the seawater desalination equipment and precipitated on the bottom plate to prevent corrosion. Method.
JP58206555A 1983-11-02 1983-11-02 Corrosion inhibiting method of seawater desalination apparatus Pending JPS6099380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58206555A JPS6099380A (en) 1983-11-02 1983-11-02 Corrosion inhibiting method of seawater desalination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206555A JPS6099380A (en) 1983-11-02 1983-11-02 Corrosion inhibiting method of seawater desalination apparatus

Publications (1)

Publication Number Publication Date
JPS6099380A true JPS6099380A (en) 1985-06-03

Family

ID=16525327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206555A Pending JPS6099380A (en) 1983-11-02 1983-11-02 Corrosion inhibiting method of seawater desalination apparatus

Country Status (1)

Country Link
JP (1) JPS6099380A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046892A (en) * 2011-08-29 2013-03-07 Kurita Water Ind Ltd Treatment method of ship ballast water
CN103011483A (en) * 2012-12-26 2013-04-03 大连理工大学 Sea water desalting plant with ion trapper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046892A (en) * 2011-08-29 2013-03-07 Kurita Water Ind Ltd Treatment method of ship ballast water
CN103011483A (en) * 2012-12-26 2013-04-03 大连理工大学 Sea water desalting plant with ion trapper

Similar Documents

Publication Publication Date Title
US3658710A (en) Method of removing tubercles using organic polymers and silica and/or chromium compounds
US6602555B1 (en) Tobacco extract composition and method
Mahross et al. Experimental and theoretical study on corrosion inhibition of mild steel in oilfield formation water using some Schiff base metal complexes
CA1273482A (en) Anti corrosion metal complex compositions
Reinhard Formulation of water-borne dispersions for corrosion-protective primers
GB2139250A (en) Corrosion inhibition
US4098928A (en) Method of coating underwater metal surfaces
JPS6099380A (en) Corrosion inhibiting method of seawater desalination apparatus
Manfredi et al. Selection of copper base alloys for use in polluted seawater
Devanny et al. Corrosion resistance of epoxy primer, polyurethane, and silyl acrylate anti-fouling on carbon steel
Fujioka et al. The inhibition of passive film breakdown on iron in a borate buffer solution containing chloride ions by mixtures of hard and soft base inhibitors
Du et al. Research on the effects of environmental parameters on AC corrosion behavior
JPS626863B2 (en)
WO1996033296A1 (en) Method for inhibiting microbially influenced corrosion
Nezgoda et al. Calcareous Deposits Formed Under Long‐Term In Situ Cathodic Protection Tests
Edwards The protection of Cu-Ni condenser tubes with high molecular weight water-soluble polymers
Kulkarni A review on studies and research on corrosion and its prevention
US3651189A (en) Water treatment process
JP2001172091A (en) Antifouling and degradation preventive agent for concrete structure, and method for antifouling and degradation prevention
Shuldener et al. Influence of bicarbonate ion on inhibition of corrosion by sodium silicate in a zinc-iron system
Fenn et al. Passivation of iron
King et al. Corrosion of ferrous metals by bacterially produced iron sulphides and its control by cathodic protection
KR810000511B1 (en) Method for treatment of oxidized metal surfaces
Ghanem et al. Advances in Anticorrosive and Antifouling Coatings
de Vlieger Watch those topsides! The influence of cathodic protection on the lower part of topsides