JPS6098755A - Optical sensor - Google Patents

Optical sensor

Info

Publication number
JPS6098755A
JPS6098755A JP58205806A JP20580683A JPS6098755A JP S6098755 A JPS6098755 A JP S6098755A JP 58205806 A JP58205806 A JP 58205806A JP 20580683 A JP20580683 A JP 20580683A JP S6098755 A JPS6098755 A JP S6098755A
Authority
JP
Japan
Prior art keywords
sensor
optical sensor
optical
board
arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58205806A
Other languages
Japanese (ja)
Inventor
Ryoji Oritsuki
折付 良二
Hiromi Kanai
紘美 金井
Hideo Enoki
英雄 榎
Tsukasa Yamauchi
司 山内
Susumu Saito
進 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58205806A priority Critical patent/JPS6098755A/en
Publication of JPS6098755A publication Critical patent/JPS6098755A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the yield by increasing the distance between an end picture element of a sensor board of a contact type optical sensor and a connecting end face of the board. CONSTITUTION:The connecting end face 3a of the board 1a of each optical sensor is formed obliquely to the arrangement 2a of picture elements and shows a trapezoidal form as a whole and the arrangement 2a is shifted toward the long side by 2mm. from the center line 5 of the trapezoidal form. In arranging and interconnecting the sensor boards 1a, the picture element arrangement 2a is in zigzag alternately at each adjacent boards 1a. The reading position of the optical sensors are formed on a line on this paper by combining plural fiber plates 7 incorporating an optical fiber 8 or ''Selfoc'' lenses corresponding to the zigzag arrangement. Thus, the distance between the board end face 3a and the end picture element 4 is increased.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、接続個所で読み取り欠陥が生じないようにし
た、複数個の基板を接続して主走査線方向を延長した光
センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical sensor in which a plurality of substrates are connected and extended in the main scanning line direction, so that reading defects do not occur at connection points.

〔発明の背景〕[Background of the invention]

主走査線方向に長い密着形−次元光センサを製作するの
に、単一基板で長い物を製作するのは困難あるいは不経
済なため、複数個のセンサ基板をセンサの画素配列方向
に連結接続していた。
When manufacturing a close-contact-dimensional optical sensor that is long in the main scanning line direction, it is difficult or uneconomical to manufacture a long one with a single substrate, so multiple sensor substrates are connected in the direction of the sensor's pixel arrangement. Was.

従来は、このような光センサを製作する際、第1図に示
すように、各センサ基板を画素配列方向に垂直に端面を
切断、研磨し、隣接する基板と接続していた。この場合
、例えば、画素のピッチを125μm1画素の大きさを
100μmとすれば画素間の余裕は125−100=2
5μmとなり、接続端面と画素との間隔を10〜20μ
mに保つ必要があった。このため、精密研磨を要し、か
つ、研磨時に端面近傍に位置する画素の特性を劣化させ
る欠点があった。
Conventionally, when manufacturing such an optical sensor, as shown in FIG. 1, the end face of each sensor substrate was cut and polished perpendicular to the pixel arrangement direction, and then connected to an adjacent substrate. In this case, for example, if the pixel pitch is 125 μm and the size of one pixel is 100 μm, the margin between pixels is 125-100=2
5 μm, and the distance between the connection end surface and the pixel is 10 to 20 μm.
It was necessary to keep it at m. For this reason, there is a drawback that precision polishing is required and the characteristics of pixels located near the end face are deteriorated during polishing.

なお、第1図において、1はセンサ基板、2は画素配列
(アレイ)、3は接続端面である。
In addition, in FIG. 1, 1 is a sensor substrate, 2 is a pixel arrangement (array), and 3 is a connection end surface.

(発明の目的〕 本発明の目的は、上記の如き欠点のない、基板端面と端
部画素の距離を大きくとれ、しかも複数個のセンサ基板
を接続して一つの長いセンサに形成した際に読み取り欠
陥が生じないようにした密着形−次元光センサを提供す
ることにある。
(Object of the Invention) The object of the present invention is to avoid the above-mentioned drawbacks, to provide a large distance between the end surface of the substrate and the end pixels, and to enable reading when a plurality of sensor substrates are connected to form one long sensor. An object of the present invention is to provide a contact type dimensional optical sensor that is free from defects.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明においては、各光セン
サの接続端面の方向が主走査線方向に対して斜めに交差
し、かつ、光センサの画素配列位置が各センサ基板毎に
副走査線方向に交互に位置をずらした千鳥配置となって
いるようにした。その際、センサの画素配列位置の千鳥
配置に対応して、光ファイバを斜めに内蔵した複数個の
光フアイバプレート又はセルフォックレンズなどと組み
合わせて、光センサの読み取り位置が紙面上で一直線を
なすように構成しなければならない、このような構成と
することによって、隣接する基板間の端部画素の読み取
り位置を紙面上で重複させることが可能となり、基板端
面と端部画素の間隔を十分大きくとることが出来る。
In order to achieve the above object, in the present invention, the direction of the connecting end surface of each optical sensor diagonally intersects with the main scanning line direction, and the pixel arrangement position of the optical sensor is arranged on the sub-scanning line for each sensor board. A staggered arrangement was created in which the positions were alternately shifted in the direction. In this case, in response to the staggered arrangement of the sensor's pixel arrangement position, the reading position of the optical sensor forms a straight line on the paper by combining multiple optical fiber plates with diagonally built-in optical fibers or SELFOC lenses. With this configuration, it is possible to overlap the reading positions of edge pixels between adjacent substrates on the paper surface, and the distance between the edge pixels of the substrate and the edge pixels can be made sufficiently large. You can take it.

〔発明の実施例〕[Embodiments of the invention]

以下、図面により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第2図は本発明の一実施例図で、1aはセンサ基板、2
aは画素配列、3aは接続端面である。
FIG. 2 is a diagram showing one embodiment of the present invention, in which 1a is a sensor board, 2
a is a pixel array, and 3a is a connection end surface.

センサ基板1aは、接続端面3aが画素配列2aに対し
斜めになっており、全体として台形を呈している。画素
配列2aは台形の中心線から2酋長辺側にずれており、
第2図に示すように各センサ基板を配列して接続すると
、画素配列2aは隣接する基板毎に交互に千鳥に配置さ
れる。ここで読みとられる原稿は画素配列と垂直な副走
査線方向に送られるが、あるセンサ基板の画素配列の端
部画素の位置から副走査線方向に直線を引いて、この直
線が隣接するセンサ基板の画素配列の端部画素の上を通
るようにすることが出来る。即ち、紙面上の同じ所を、
隣接するセンサ基板の画素配列の端部画素が重複して読
み取ることが可能となる、これで、主走査線方向に原稿
を途切れなく読み取ることができるが、このとき端部画
素4と接続端面3aの距離は第3図から明らかなように
F鵡即ち約1,4鶴とれることが判る。従来の20μm
に対し、70倍の余裕となる。なお、第3図中の符号で
第2図中と同じものは同一部材を示し、5i中心線であ
る。このようなセンサ基板1aと、光ファイバ8を斜め
に内蔵したファイバプレート7を組み合わせることによ
り、第4図に示すように、画素配列が隣接センサ基板毎
に交互にずれて千鳥配置になっているにもかかわらず、
読み取り位置を紙面上の一直線に対応させることが出来
る。但し、第4図に示すように、光ファイバ8はファイ
バプレート7の面に対して45度に内蔵されており、か
つ、ファイバプレート7の厚さは2餌とし、センサ基板
1aに密着させである。ここで光源からの光6でファイ
バプレート7に密着して送られる原稿を照明する。途中
で照明光が光ファイバを横切るが、ファイバのクラッド
部に光吸収塗料を含まない透明なファイバプレートを使
用すれば原稿照明に支障はない、ついで、原稿からの反
射光は、ファイバによってセンサ基板の中心線から2■
離れた位置にある画素配列に導かれ電気信号に変換され
る。ここで、画素配列の千鳥配置に合わせてファイバの
向きを右45度あるいは左45度にすることにより原稿
上では一直線上のデータを読み取ることが出来る。また
、このようなファイバプレートの代わりにセルフォック
レンズを2列配しても同様の結果を得る。
The sensor substrate 1a has a connection end surface 3a oblique to the pixel array 2a, and has a trapezoidal shape as a whole. The pixel array 2a is offset from the center line of the trapezoid by 2 lengths on the long side,
When the sensor substrates are arranged and connected as shown in FIG. 2, the pixel arrays 2a are alternately arranged in a staggered manner for each adjacent substrate. The original to be read here is sent in the sub-scanning line direction perpendicular to the pixel array, but if a straight line is drawn in the sub-scanning line direction from the position of the end pixel of the pixel array on a certain sensor board, then this straight line will be connected to the adjacent sensor. It is possible to pass over the end pixels of the pixel array of the substrate. In other words, the same place on the paper,
The end pixels of the pixel arrays of adjacent sensor boards can be read overlappingly, and the original can be read without interruption in the main scanning line direction. At this time, the end pixels 4 and the connecting end surface 3a As is clear from Fig. 3, it can be seen that the distance is F parrot, that is, about 1.4 cranes. Conventional 20μm
However, there is a margin of 70 times greater. Note that the same reference numerals in FIG. 3 as in FIG. 2 indicate the same members, and are the center line 5i. By combining such a sensor substrate 1a and a fiber plate 7 in which optical fibers 8 are built diagonally, the pixel arrangement is alternately shifted from one adjacent sensor substrate to another in a staggered arrangement, as shown in FIG. in spite of,
The reading position can be made to correspond to a straight line on the paper surface. However, as shown in FIG. 4, the optical fiber 8 is built in at a 45 degree angle to the surface of the fiber plate 7, and the thickness of the fiber plate 7 is 2 mm, so that it cannot be brought into close contact with the sensor board 1a. be. Here, the original document being sent in close contact with the fiber plate 7 is illuminated with light 6 from the light source. The illumination light crosses the optical fiber along the way, but if you use a transparent fiber plate that does not contain light-absorbing paint in the cladding of the fiber, there will be no problem with document illumination.Then, the reflected light from the document will be passed through the fiber to the sensor board. 2■ from the center line of
The signal is guided to a pixel array located at a remote location and converted into an electrical signal. Here, by oriented the fiber at 45 degrees to the right or 45 degrees to the left in accordance with the staggered arrangement of the pixel array, it is possible to read data on a straight line on the original. Also, similar results can be obtained by arranging two rows of SELFOC lenses instead of such a fiber plate.

次ぎに、第5図は接続端面を斜めに切断したセンサ基板
1aを、効率良(材料取りする方法を示す。同図中、1
0は菱形のガラス基板、9はダイシングラインで、この
破線で示したダイシングライン9に沿ってグイシングす
ると無駄な面積を排除できる。また、菱形ガラス基板1
0は長方形のガラス材を斜めに切断すれば無駄な(利用
できる。また、ガラス基板を第6図に示す如く配置する
と六角形になり、円形状の基板ホルダを有する光電変換
膜形成装置に有効である。
Next, FIG. 5 shows a method for efficiently removing the sensor substrate 1a whose connecting end face is cut diagonally.
0 is a diamond-shaped glass substrate, 9 is a dicing line, and by dicing along the dicing line 9 shown by this broken line, wasted area can be eliminated. In addition, the rhombic glass substrate 1
0 is useless if a rectangular glass material is cut diagonally (it can be used.Also, if the glass substrate is arranged as shown in Fig. 6, it becomes a hexagonal shape, which is effective for a photoelectric conversion film forming apparatus having a circular substrate holder. It is.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、センサ基板の端部
Vt*Sと基板の接続端面との距離を大きくすることが
出来、高い歩留りで一次元光センサを生産出来るように
なる。
As explained above, according to the present invention, it is possible to increase the distance between the end portion Vt*S of the sensor substrate and the connecting end surface of the substrate, and it becomes possible to produce one-dimensional optical sensors with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一次元光センサの基板接続方法を示す図
、第2図は本発明−実施例図、第3図は同実施例におぼ
ろ隣接基板接続部近傍図、第4図はファイバプレートに
よるF!ii素配列素子列配置対応策説明図、第5図は
台形センサ基板の材料取り説明図、第6図は膜形成時の
ガラス基板配置図である。 1a・−センサ基板、 2a−画素配列、 3a・−・
−接続端面、 4一端部画素、 5−中心線、6・・・
−・光源からの光、7−・ファイバプレート、8−・−
光ファイバ、9・・・−ダイシングライン、1第 1 
図 第 2 図 第 3 図 第 4 図 びグ 第 5 図 /ct 第 6 図
Fig. 1 is a diagram showing a conventional one-dimensional optical sensor board connection method, Fig. 2 is an embodiment of the present invention, Fig. 3 is a close-up view of the connection part of the adjacent board in the same embodiment, and Fig. 4 is a fiber F by plate! FIG. 5 is an explanatory diagram of material removal for the trapezoidal sensor substrate, and FIG. 6 is a diagram of the arrangement of the glass substrate during film formation. 1a--sensor board, 2a-pixel array, 3a--
- connection end surface, 4 one end pixel, 5 - center line, 6...
−・Light from light source, 7−・Fiber plate, 8−・−
Optical fiber, 9...-Dicing line, 1st
Figure 2 Figure 3 Figure 4 Figure 5/ct Figure 6

Claims (1)

【特許請求の範囲】 1、複数個のセンサ基板をセンサの画素配列方向に連結
接続して主走査線方向の長さを延長した密着形−次元光
センサにおいて、前記接続を行うセンサ基板端面の方向
が主走査線方向に対して斜めに交差し、かつ、光センサ
の画素配列位置が隣接する各センサ基板毎に副走査線方
向に交互に位置をずらした千鳥配置となっていることを
特徴とする光センサ。 2、光ファイバを斜めに内蔵した複数個の光フアイバプ
レートと組み合わせて、光センサの読み取り位置を紙面
上の一直線に対応させた特許請求の範囲第1項記載の光
センサ。 3、隣接センサ基板の端部の画素の読み取り位置が主走
査線方向で重複するように配置されている特許請求の範
囲第1項記載の光センサ。 4、菱形のガラス基板からセンサ基板の材料取りを行う
ようにした特許請求の範囲第1項記載の光センサ。
[Claims] 1. In a close-contact type dimensional optical sensor in which a plurality of sensor substrates are connected and connected in the pixel arrangement direction of the sensor to extend the length in the main scanning line direction, the end surface of the sensor substrate to which the connection is made It is characterized by a direction that intersects diagonally with the main scanning line direction, and a staggered arrangement in which the pixel arrangement position of the optical sensor is alternately shifted in the sub-scanning line direction for each adjacent sensor board. Optical sensor. 2. The optical sensor according to claim 1, wherein the optical sensor is combined with a plurality of optical fiber plates having optical fibers installed diagonally so that the reading position of the optical sensor corresponds to a straight line on the paper surface. 3. The optical sensor according to claim 1, wherein the reading positions of pixels at the ends of adjacent sensor substrates are arranged so as to overlap in the main scanning line direction. 4. The optical sensor according to claim 1, wherein material for the sensor substrate is obtained from a diamond-shaped glass substrate.
JP58205806A 1983-11-04 1983-11-04 Optical sensor Pending JPS6098755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205806A JPS6098755A (en) 1983-11-04 1983-11-04 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205806A JPS6098755A (en) 1983-11-04 1983-11-04 Optical sensor

Publications (1)

Publication Number Publication Date
JPS6098755A true JPS6098755A (en) 1985-06-01

Family

ID=16512993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205806A Pending JPS6098755A (en) 1983-11-04 1983-11-04 Optical sensor

Country Status (1)

Country Link
JP (1) JPS6098755A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075608A (en) * 1974-06-24 1991-12-24 Erdman David M Control system, electronically commutated motor system, draft inducer apparatus and method
USRE35124E (en) * 1974-06-24 1995-12-19 General Electric Company Control system, electronically commutated motor system, draft inducer apparatus and method
WO2019225410A1 (en) * 2018-05-23 2019-11-28 三菱電機株式会社 Photoelectric conversion element and light receiving unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075608A (en) * 1974-06-24 1991-12-24 Erdman David M Control system, electronically commutated motor system, draft inducer apparatus and method
USRE35124E (en) * 1974-06-24 1995-12-19 General Electric Company Control system, electronically commutated motor system, draft inducer apparatus and method
WO2019225410A1 (en) * 2018-05-23 2019-11-28 三菱電機株式会社 Photoelectric conversion element and light receiving unit
JP6690068B1 (en) * 2018-05-23 2020-04-28 三菱電機株式会社 Light receiving unit
US11153457B2 (en) 2018-05-23 2021-10-19 Mitsubishi Electric Corporation Light receiving unit

Similar Documents

Publication Publication Date Title
US4232219A (en) Photosensor
SU1367870A3 (en) Method of optronic read-out in reproduction of raster originals
JPS6098755A (en) Optical sensor
JPH03175402A (en) Optical transmission plate
JPH0580273A (en) Color image reader
JPS61159604A (en) Optical fiber array plate and optical fiber array plate mounting photoelectric transducer
JPH0437801A (en) Image forming optical element array
JPH04326658A (en) Unmagnification reader
JPH11331492A (en) Multi-chip mounting unmagnified image sensor and multi-chip mounted led print head
JPS613556A (en) Linear image sensor device
JP2661426B2 (en) Optical Fiber Array Substrate and Fully Adhesive Image Sensor Using Optical Fiber Array Substrate
JPS60218967A (en) Optical reader
JPS58152205A (en) Optical scanning head
JPH0318057A (en) Image sensor
JPH03274958A (en) Color image sensor
JPH056671Y2 (en)
JPS60208158A (en) Contact type color picture reader
JP2846328B2 (en) 1x imaging element
JPH0575789A (en) Image sensor
JPS6090970U (en) Image reading device
JPH01264469A (en) Optical sensor unit
JPH0343789B2 (en)
JPH03139958A (en) Image sensor and its producing device
JPS59119663U (en) Image reading device
JPH08192534A (en) Led printing head