JPS609851B2 - Method for manufacturing hollow porous powder - Google Patents

Method for manufacturing hollow porous powder

Info

Publication number
JPS609851B2
JPS609851B2 JP5805881A JP5805881A JPS609851B2 JP S609851 B2 JPS609851 B2 JP S609851B2 JP 5805881 A JP5805881 A JP 5805881A JP 5805881 A JP5805881 A JP 5805881A JP S609851 B2 JPS609851 B2 JP S609851B2
Authority
JP
Japan
Prior art keywords
particle size
average particle
weight
inner core
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5805881A
Other languages
Japanese (ja)
Other versions
JPS5781823A (en
Inventor
政章 堀野
公一 萱生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pola Orbis Holdings Inc
Original Assignee
Pola Chemical Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pola Chemical Industries Inc filed Critical Pola Chemical Industries Inc
Priority to JP5805881A priority Critical patent/JPS609851B2/en
Publication of JPS5781823A publication Critical patent/JPS5781823A/en
Publication of JPS609851B2 publication Critical patent/JPS609851B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Glanulating (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は中空多孔性粉体、詳しくは強度、耐熱性、耐光
性、保香性、保温性、分散性、通気性、充填性、感触性
に優れ平均粒径が1〜100仏程度好ましくは1〜20
仏程度の中空多孔性粉体を製造する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a hollow porous powder, in particular, a powder having an average particle size of Approximately 1 to 100 Buddhas, preferably 1 to 20
The present invention relates to a method for producing a hollow porous powder of the same size as a flower.

従来使用されている粉体は、結晶の生長過程が複雑であ
るため結晶作用により構造が形成されるときに既に欠陥
を生じている場合が多く、特に天然鉱物では、例えば原
子配列の乱雑性、原子の脱落、結晶内の均質性の欠如な
どによって不連続的なブロックの集合からなる構造を呈
していて理想的配列を有する結晶は殆んどない。
Conventionally used powders often have defects when the structure is formed by crystallization due to the complicated crystal growth process. Especially in natural minerals, for example, the disorder of atomic arrangement, There are very few crystals that exhibit an ideal arrangement and exhibit a structure consisting of a discontinuous collection of blocks due to dropout of atoms and lack of homogeneity within the crystal.

このような天然鉱物からなる粉体は通常の粉体がもつ諸
物性の内で弾性、比熱、比重、透明度、硬度、電磁性、
展延性、耐熱性、男関性、榛曲性などに固有の特性をも
ち、結晶構造およびその繊密性、結晶形から種々の性質
を与えるものである。例えば、鱗片タ状で三層構造をな
した鉱物は層間の結合が弱く完全な男開が発達している
ため滑り感を与え、弾性に富んでいるが、逆にこれを製
造充填する場合は充填性を欠いているために製造上のト
ラブルの一つの原因となっている。また二層構造の粉体
は男開性に優れたものはごく一部にすぎないとともに、
結晶が不定形であるため粉体の有する操曲性、結晶性の
繊密性の面から最密充填構造をとりにくく、充填性に劣
ると同時に滑り感において満足し得るものを入手するこ
とはできない。一方、天然鉱物には水分や不純物が存在
し、また生成条件に対し影響を受ける敏感性のものと影
響を受けない非敏感性のものとがある。結晶構造内の水
分は自由水、付着水、吸着水、結合水とがあるが、自由
水、付着水、吸着水は外的条件により容易に脱着、付着
または吸着するものであり、特に結合水は脱着すると結
晶構造に変化を来すものである。以上から理解されるよ
うに天然鉱物は、本釆保温性の低いものが袷んどである
。このように構造面から捉えると天然鉱物は水分、香料
の保持性が低く、僅かの経時で香料の匂いが弱くなる欠
点を有していることが立証される。また、天然鉱物は一
層、二層或いは三層構造を示しているのが殆んどである
が、それらは多孔性を有しないため通気性に乏しく、例
えば化粧料に配合して皮膚に塗布したとき皮膚呼吸を阻
害しやすく皮膚に負坦をかける原因となっている。本発
明は前記のような従釆の諸問題を解決し、すぐれた物性
の中空多孔性粉体を提供することを目的として発明され
たものである。
Powders made of natural minerals have the physical properties of ordinary powders, such as elasticity, specific heat, specific gravity, transparency, hardness, electromagnetic properties,
It has unique characteristics such as ductility, heat resistance, masculinity, and elasticity, and it has various properties depending on its crystal structure, its fineness, and crystal shape. For example, a mineral with a three-layered structure in the shape of a scale has weak bonds between the layers and has a fully developed penis, giving it a slippery feel and being highly elastic. The lack of filling properties is one of the causes of manufacturing troubles. In addition, only some powders with a two-layer structure have excellent virility, and
Because the crystals are amorphous, it is difficult to obtain a close-packed structure due to the bendability of the powder and the fineness of the crystallinity. Can not. On the other hand, natural minerals contain water and impurities, and there are some sensitive minerals that are affected by the production conditions and non-sensitive minerals that are not affected. There are three types of water in a crystal structure: free water, attached water, adsorbed water, and bound water. Free water, attached water, and adsorbed water are easily desorbed, attached, or adsorbed depending on external conditions, and especially bound water When desorbed, the crystal structure changes. As can be understood from the above, natural minerals have low heat retention properties. Viewed from a structural perspective, natural minerals are proven to have the disadvantage of having poor retention of moisture and fragrance, and the smell of fragrance weakens over a short period of time. In addition, most natural minerals have a one-, two-, or three-layer structure, but since they do not have porosity, they have poor breathability, so they cannot be mixed into cosmetics and applied to the skin. When exposed to skin, it tends to inhibit the skin's ability to breathe, causing stress on the skin. The present invention was invented for the purpose of solving the above-mentioned problems and providing a hollow porous powder with excellent physical properties.

即ち、前記目的を達成するため本発明は、被覆物質であ
る無水珪酸鉱物、アルミナ珪酸鉱物、マグネシウム珪酸
鉱物の一種または二種以上よりなる平均粒径1〜50り
の微粉末と;内芯核物質である揮発性物質の一種または
二種以上よりなる平均粒径1〜50仏の微粉末:とから
なり混合重量割合0を約8:2〜4:5とした混合物を
水系中或いは不活性溶媒中において燈拝し、内芯核物質
の表面に被覆物質を付着凝集させて平均粒径1〜100
仏の徴粉体を作り、次に前記徴粉体を加熱して内芯核物
質を揮発除去することを第一の特徴としてし・夕る。
That is, in order to achieve the above object, the present invention provides a fine powder having an average particle size of 1 to 50 and made of one or more of anhydrous silicate mineral, alumina silicate mineral, and magnesium silicate mineral as a coating material; and an inner core. Fine powder with an average particle size of 1 to 50 particles consisting of one or more types of volatile substances as substances, and a mixture with a mixing weight ratio of 0 to about 8:2 to 4:5 in an aqueous system or inert The coating substance is attached and aggregated to the surface of the inner core material by soaking it in a solvent to form particles with an average particle size of 1 to 100.
The first feature is to make a Buddha powder, then heat the powder to volatilize and remove the inner core material.

また、本発明は前記内芯核物質に金属炭酸鉱物および(
または)水以外の揮発性物質を含有する無水アルミナ珪
酸鉱物の一種または二種以上よりなる平均粒径1〜50
仏の微粉末を加え、且つ得ら0れた徴粉体に酸液で洗浄
する工程を加えて金属炭酸鉱物および(または)無水ア
ルミナ珪酸鉱物を溶出することを第二の特徴としている
The present invention also provides metal carbonate minerals and (
or) an average particle size of 1 to 50 made of one or more types of anhydrous alumina silicate mineral containing volatile substances other than water
The second feature is that the metal carbonate mineral and/or anhydrous alumina silicate mineral are eluted by adding a fine powder of Buddha and washing the obtained powder with an acid solution.

次に本発明の詳細を具体的に説明すると、先ず被覆物質
を構成する天然鉱物およびその好ましいタ具体例は次表
の通りである。
Next, to explain the details of the present invention in detail, first, the natural minerals constituting the coating material and preferred specific examples thereof are as shown in the following table.

但し、具体例に列挙した物質に限定されるものでないこ
とは言うまでもない。
However, it goes without saying that the present invention is not limited to the substances listed in the specific examples.

次に、内芯核物質を構成する揮発性物質としては、メン
トール、カンフル、メチル/ぐラベン、エチル/ゞラベ
ン、フ。
Next, the volatile substances that make up the inner core substance include menthol, camphor, methyl/graben, ethyl/graben, and fluorine.

ロピル/ゞラベン、プチル/ゞラベン、ナフタリン、ィ
オウソルピン酸、デヒドロ酷酸、安息香酸、サリチル酸
、ケィ皮酸tパラクロル安息香酸、パラオキシ安息香酸
などが例示される。また、揮発性物質と混合して用いら
れる内芯核物質を構成する金属炭酸鉱物としては、炭酸
マグネシウム、炭酸ベリリウム、炭酸カルシウム、炭酸
第二鉄、炭酸バリウム、炭酸マンガン、炭酸リチウム、
炭酸コバルト、炭酸水素マグネシウムカリウム、炭酸ス
トロンチューム、炭酸水素リチウム、炭酸亜鉛、炭酸ク
ロムなどが例示され、天然鉱物として存在する金属炭酸
鉱物としては、ドロマィト、方解石、アラレ石、ストロ
ンチァン石「リョクドウ石、ドクジョウド石などが例示
される。
Illustrative examples include lopyl/ylaben, butyl/ylaben, naphthalene, diosorpic acid, dehydroblastic acid, benzoic acid, salicylic acid, cinnamic acid, t-parachlorobenzoic acid, and paraoxybenzoic acid. In addition, metal carbonate minerals constituting the inner core material used in mixture with volatile substances include magnesium carbonate, beryllium carbonate, calcium carbonate, ferric carbonate, barium carbonate, manganese carbonate, lithium carbonate,
Examples include cobalt carbonate, potassium magnesium hydrogen carbonate, strontium carbonate, lithium hydrogen carbonate, zinc carbonate, and chromium carbonate.Metal carbonate minerals that exist as natural minerals include dolomite, calcite, aralite, strontianite, and munganite. , Dokujodo stone, etc. are exemplified.

更に前記金属炭酸鉱物と併用し或いは単独で揮発性物質
と混合して用いられる水以外の揮発性成分を含む無水ア
ルミナ達酸鉱物としては、角内石、黒雲母、黄玉、デュ
モリチーライト、ズニ石などが例示される。これらは加
熱によって揮発成分を失い容易にムラィトに移化し体積
を収縮する鉱物であり、加熱によって膨脹する真珠石、
黒擢石、松脂石などは好ましくないので使用しない。尚
、内芯核物質を構成する揮発性物質および金属炭酸鉱物
、水以外の揮発性成分を含有する無水アルミナ珪酸鉱物
はいずれも一種または二種以上を任意に選んで用いるも
のであり、各成分の混合割合は内芯核物質の全部を除去
する場合においては特に制限がないが、内芯核物質の一
部を除去する場合においては除去する程度に応じて後二
者の合計量と前者との混合重量割合を約8:2〜2:8
の範囲内で調整する。ここで、後二者の混合重量割合に
ついては特に制限はない。ここで、本発明においては被
覆物質として平均粒径が1〜50r、好ましくは1〜2
0仏の微粉末を用い、内芯核物質としては平均粒径が1
〜50仏、好、ましくは1〜15仏の微粉末を用いるも
のである。
Further, as the anhydrous alumina dermatite mineral containing a volatile component other than water, which can be used in combination with the metal carbonate mineral or alone in a mixture with a volatile substance, examples include kakunai stone, biotite, ochite, dumoly chielite, Examples include Zuni stone. These are minerals that lose their volatile components when heated, easily transform into mullite, and shrink in volume; nacre, which expands when heated;
Do not use black gourd stone or pine stone as they are undesirable. Incidentally, volatile substances and metal carbonate minerals constituting the inner core material, and anhydrous alumina silicate minerals containing volatile components other than water, are used by arbitrarily selecting one or more kinds, and each component There is no particular restriction on the mixing ratio when removing all of the inner core material, but when removing a part of the inner core material, the mixing ratio of the latter two and the former may be mixed depending on the extent of removal. The mixing weight ratio of about 8:2 to 2:8
Adjust within the range. Here, there is no particular restriction on the mixing weight ratio of the latter two. Here, in the present invention, the coating material has an average particle diameter of 1 to 50 r, preferably 1 to 2 r.
A fine powder of 0.0 mm is used, and the average particle size is 1 as the inner core material.
A fine powder of ~50 Buddhas, preferably 1 to 15 Buddhas, is used.

即ち、被覆物質の平均粒径が50仏以上であると、得ら
れた中空多孔性粉体の強度が低下するばかりか、例えば
化粧料に添加する場合分散性に劣るとともにざらついて
使用感が悪いという欠点があり、また内芯核物質の平均
粒径が50〃以上であると、得られた中空多孔性粉体を
例えば化粧料に添加した場合ざらつくと同時に肌への密
着性が低下するという欠点があるので前記範囲の平均粒
蚤とした。更に、本発明においては被覆物質と内芯核物
質との混合重量割合を約8:2〜4:5としたが、これ
よりも被覆物質が多いと得られた中空多孔性粉体の保香
性、保温性、通気性が劣り、反対に少ないと得られた中
空多孔性粉体の強度が低下して例えば化粧料へ添加する
に際して混合縄梓工程などで破壊され中空多孔I性粉体
としての機能を失いやすいという問題を生じる。
That is, if the average particle size of the coating material is 50 mm or more, not only the strength of the obtained hollow porous powder will be reduced, but also the dispersibility will be poor when added to cosmetics, and the powder will have a rough feel when used. In addition, if the average particle size of the inner core material is 50 mm or more, when the resulting hollow porous powder is added to cosmetics, for example, it will become rough and the adhesion to the skin will decrease. Because of the drawbacks, the average particle size was determined to be within the above range. Furthermore, in the present invention, the mixed weight ratio of the coating material and the inner core material is approximately 8:2 to 4:5, but if the coating material is larger than this, the fragrance retention of the hollow porous powder obtained will be reduced. If the strength, heat retention, and air permeability are poor, and on the other hand, if the strength is low, the strength of the hollow porous powder obtained will decrease, and when added to cosmetics, for example, it will be destroyed in the mixing process and become a hollow porous powder. The problem arises that the function of the device is easily lost.

また、前記混合重量割合は内芯核物質の表面に被覆物質
を付着凝集させる雰囲気が水系、不活性溶媒のいずれで
あっても同じである。前記の被覆物質と、内芯核物質で
ある揮発性物質或いはこれと金属炭酸鉱物および(また
は)水以外の揮発性成分を含有する無水アルミナ珪酸鉱
物からなり、前記の混合重量割合の混合物を水系中で常
温にして好ましくは700〜76仇桝Hg程度の減圧下
で縄拝すると、内芯核物質の表面に吸着イオン層を生じ
、これらに被覆物質である負電荷の鉱物が吸引され内芯
核物質の表面に被覆物質が付着凝集して平均粒径1〜1
00仏の有芯多孔性の徴粉体が作られるのである。
Further, the above-mentioned mixing weight ratio is the same regardless of whether the atmosphere in which the coating material is adhered and coagulated on the surface of the inner core material is aqueous or inert solvent. A mixture of the above-mentioned coating material, a volatile substance as the inner core material, or anhydrous alumina-silicate mineral containing a metal carbonate mineral and/or a volatile component other than water, in the above-mentioned mixed weight ratio, is mixed into an aqueous system. When roped inside at room temperature and under reduced pressure, preferably about 700 to 76 meters Hg, an adsorbed ion layer is formed on the surface of the inner core core material, and the negatively charged minerals that are the coating material are attracted to the inner core. The coating material adheres to the surface of the nuclear material and aggregates, resulting in an average particle size of 1 to 1.
A cored porous powder with a diameter of 0.00 mm is produced.

水系の代りに不活性溶媒を用いる場合においては被覆物
質および内芯物質と不活性溶媒との混合重量割合を9:
1〜6:4、好ましくは8.3〜1.7とする。不活性
溶媒としては、シリコンオイル、ポリブラン、ポリオキ
シェチレントール油誘導体などが例示され、これらの不
活性溶媒に前記混合物を加え常温にして好ましくは70
0〜760肋Hg程度の減圧下で強力に蝿拝すると、被
覆物質と内芯核物質とが不活性溶媒で包囲され同一体化
し、それらを吸引櫨遇すると平均粒径1〜100仏程度
の有芯多孔一性の徴粉体を得ることができる。次で、前
記のようにして作られた徴粉体を取り出し、酸化気流中
で50〜15000○程度で1一2独特間程度加熱焼成
すると、先ず比較的低い加熱温度で内芯核を構成してい
る揮発性物質が揮発して完全中空または半中空となり、
これより高温度に加熱夕し焼成することによって被覆物
質を構成する微粉末の粒子が互いに強固に結着するので
ある。
When using an inert solvent instead of an aqueous solvent, the mixing weight ratio of the coating material and inner core material to the inert solvent is 9:
The ratio is 1 to 6:4, preferably 8.3 to 1.7. Examples of inert solvents include silicone oil, polybran, polyoxyethylene tall oil derivatives, etc. The above mixture is added to these inert solvents and brought to room temperature, preferably at 70%
When strongly applied under reduced pressure of about 0 to 760 Hg, the coating material and the inner core material are surrounded by an inert solvent and become one, and when they are subjected to suction, particles with an average particle size of about 1 to 100 Fg are formed. A cored porous powder can be obtained. Next, the powdered material made in the above manner is taken out and fired in an oxidizing air stream at a temperature of about 50 to 15,000° for about 1-2 hours, first forming an inner core at a relatively low heating temperature. Volatile substances contained in it evaporate and it becomes completely hollow or semi-hollow,
By heating and baking at a higher temperature than this, the fine powder particles constituting the coating material are firmly bound to each other.

内芯核物質に金属炭酸鉱物、無水アルミナ珪酸鉱物を含
んでいるときは、これらの微粉末の粒子も焼成の際に互
いに強固に結着すると同時に被覆物質をZ構成する微粉
末の粒子とも強固に結着するに至る。更に、内芯核物質
が金属炭酸鉱物および(または)無水アルミナ珪酸鉱物
を含んでいる場合は焼成後濃度1〜2の重量%程度の塩
酸、硝酸、硫酸等Zの酸液で洗浄して内芯核物質を溶出
し中空多孔性粉体とするものである。
When the inner core material contains metal carbonate minerals and anhydrous alumina silicate minerals, these fine powder particles also bind strongly to each other during firing, and at the same time, they also firmly bind to the fine powder particles that make up the coating material Z. This leads to the conclusion that Furthermore, if the inner core material contains metal carbonate minerals and/or anhydrous alumina silicate minerals, after firing, it is washed with a Z acid solution such as hydrochloric acid, nitric acid, or sulfuric acid with a concentration of 1 to 2% by weight. The core material is eluted to form a hollow porous powder.

以上のように、内芯核物質が揮発し更に溶出して得られ
た中空多孔性粉体は電子顕微鏡観察(略)によると、微
細な被覆物質である天然鉱物2が平均粒径1〜100山
程度の球状、楕円球状に近い形状で互いに貼り合わさっ
た集合体となって居り、各被覆物質間に大小の無数の空
隙が認められこの空隙と内芯核部の空所または空隙とに
よって液体、気体の吸収放散能力が優れていることが判
2つた。そして、表層部は被覆物質の永久収縮、一部結
晶質への転化などにより高強度の膜体を形成している。
また、本発明によって得られた中空多孔性粉体は構成成
分が無機物質であるから、耐熱性、耐光3性に優れ「且
つ水系、非水系において見掛けの比重が軽く、しかも溶
媒との親和性があり、そのため混合系では非沈降性を有
するものであり、単一体として挙動し分散曲こ優れてい
るとともに粉体として例えば化粧料に利用した場合従来
の粉体に3なし、しつとした感触を与え、感触のなめら
かさ、密着性のよいものが提供できるのである。また、
容器へ充填した場合、最密充填構造をつくりやすくパッ
キング性にも優れているものである。更に、本発明によ
って得られた中空多孔‘性粉体は皮膚刺激性、蓑一性が
全くなく、健康肌の女性102名の前勝部ににおける貼
布試験においても24時間、7細時間後の判定で何等の
異常も認められなかった。即ち、本発明による中空多孔
性粉体を配合した化粧料は肌に負担をかけずにしっとり
とし滑らかな且つ密着性が優れしかも保香力があり長時
間に百つて芳香を発しすぐれた化粧効果を有するもので
あるとともに充填性を大きく向上させるものである。
As described above, the hollow porous powder obtained by volatilization and further elution of the inner core material shows, according to electron microscopic observation (omitted), that the natural mineral 2, which is a fine coating material, has an average particle size of 1 to 100. It is an aggregate that is stuck to each other in a shape similar to a mountain-like sphere or an elliptical sphere, and there are countless voids of various sizes between each coating material, and these voids and the voids or voids in the inner core form an aggregate that is bonded to each other. It was found that the material had excellent gas absorption and dissipation ability. The surface layer forms a high-strength film due to permanent shrinkage of the coating material and partial conversion to crystalline material.
In addition, since the hollow porous powder obtained by the present invention is composed of inorganic substances, it has excellent heat resistance and light resistance, has a light apparent specific gravity in aqueous and non-aqueous systems, and has good affinity with solvents. Therefore, in a mixed system, it has non-sedimenting properties, behaves as a single body, has excellent dispersion flexibility, and when used as a powder, for example in cosmetics, it has a moist feel unlike conventional powders. This makes it possible to provide products with a smooth feel and good adhesion.Also,
When filled into a container, it is easy to create a close-packed structure and has excellent packing properties. Furthermore, the hollow porous powder obtained according to the present invention has no skin irritation or skin irritation, and in a patch test on the maekatsube of 102 women with healthy skin, the powder showed no skin irritation after 24 hours and 7 hours. No abnormalities were found in the evaluation. In other words, the cosmetics containing the hollow porous powder according to the present invention are moist and smooth without putting any burden on the skin, have excellent adhesion, and have a fragrance-retaining ability that lasts for a long time and emits a fragrance, resulting in excellent cosmetic effects. In addition to this, the filling properties are greatly improved.

また塗料などに配合した場合、流動性を向上するととも
に耐熱性、耐光性をも向上し得るものであり、更に合成
樹脂に充填剤として適用するときは製品の軽量化に役立
つものである。尚、内芯核物質に金属炭酸鉱物、無水ア
ルミナ珪酸鉱物を含むときは、被覆物質と一部残存する
内芯核物質との結合時における両者の混合重量割合を変
化させることによって粒隆ト被覆物質層の強度を自由に
調整することができる。
Furthermore, when blended into paints, etc., it can improve fluidity as well as heat resistance and light resistance, and when applied as a filler to synthetic resins, it can help reduce the weight of the product. In addition, when the inner core core material contains metal carbonate minerals or anhydrous alumina silicate minerals, grain protrusions can be coated by changing the mixing weight ratio of both when combining the coating material and the partially remaining inner core core material. The strength of the material layer can be adjusted freely.

次に鯛香師10名による保香性の官能試験結果を示す。Next, the results of a sensory test of fragrance retention by 10 sea bream perfumers are shown.

試料A:実施例1による中空多孔性粉体を65重量%含
有するプレストパウダに香料レモンを0.亀重量%賦香 試料B:通常の天然鉱物微粉末を65重量%含有するプ
レストパウダに香料レモンを0.6重量%賦香 (1)常温評価(乙0〜25℃) 凶 40℃評価 注 ±さま揮発強度を示す。
Sample A: A pressed powder containing 65% by weight of the hollow porous powder according to Example 1 was added with 0.0% lemon flavor. Tortoise weight% perfumed sample B: 0.6% by weight of lemon flavor added to pressed powder containing 65% by weight of normal natural mineral fine powder (1) Room temperature evaluation (Otsu 0-25℃) 40℃ evaluation Note Indicates the volatilization intensity of ±.

(−なし、十あり)次に本発明の実施例を示す。実施例
1 平均粒径3〜5一のカオリン15重量部と平均粒径2〜
よ8〆のカリ長石15重量部と平均粒径5〜10一のナ
フタリン7重量部とに精製水31の‘を加え、遠心回転
形ボールミルで1加持間摩砕した後取出し、30000
まで電気炉内で4時間で昇温して内芯核物質であるナフ
タリンを揮発し、更に100000で8時間焼成を行っ
て平均粒径7〜15仏の中空多孔性粉体20重量部を得
た。
(- none, 10) Next, examples of the present invention will be shown. Example 1 15 parts by weight of kaolin with an average particle size of 3 to 5 and an average particle size of 2 to 5 parts by weight
Add 31 parts by weight of purified water to 15 parts by weight of potash feldspar and 7 parts by weight of naphthalene having an average particle size of 5 to 10, milled in a centrifugal rotary ball mill for 1 time, and then take out the mixture.
The temperature was raised in an electric furnace for 4 hours to volatilize naphthalene, which is the inner core material, and then fired at 100,000 ℃ for 8 hours to obtain 20 parts by weight of hollow porous powder with an average particle size of 7 to 15 mm. Ta.

実施例 2 平均粒径1〜2山のペントナイト15重量部と平均粒径
3〜5仏のカオリン15重量部と平均粒径4〜7仏のブ
チルパラベン10重量部とを精製水に分散し、5時間蝿
拝した後にアスピレータで吸引櫨遇し、電気炉内で常温
より400ooまで4時間で昇温して内芯核物質である
ブチルパラベンを揮発し、更に1000qoで5時間焼
成して平均粒径8〜15山の中空多孔性粉体2母重量部
を得た。
Example 2 15 parts by weight of pentonite with an average particle size of 1 to 2 particles, 15 parts by weight of kaolin with an average particle size of 3 to 5 particles, and 10 parts by weight of butylparaben with an average particle size of 4 to 7 particles were dispersed in purified water. After being heated for 5 hours, it was sucked with an aspirator, heated in an electric furnace from room temperature to 400 oo over 4 hours to volatilize the inner core material, butylparaben, and then fired at 1000 qo for 5 hours to give an average Two parts by weight of hollow porous powder having a particle size of 8 to 15 particles were obtained.

実施例 3 平均粒径1〜2ムのペントナィト1の重量部と平均粒径
3〜7仏のブチルパラベン1の重量部とをZIO比pS
のジメチルシロキサン50の重量部中に蝿拝しながら徐
々に添加し、常温で30分間縄辞した後取出し、吸引ア
スピレータで吸引猿過し、電気炉内で2000より13
000まで3時間で昇温して内芯核物質であるブチルパ
ラベンを揮発させ、更に900Z℃で3時間焼成して平
均粒蓬5〜9ムの中空多孔性粉体8.5重量部を得た。
Example 3 Parts by weight of pentonite 1 with an average particle size of 1 to 2 mm and parts by weight of butyl paraben 1 with an average particle size of 3 to 7 mm were adjusted to ZIO ratio pS
was gradually added to 50 parts by weight of dimethylsiloxane, stirred for 30 minutes at room temperature, taken out, filtered with a suction aspirator, and placed in an electric furnace at 2,000 to 13 parts by weight.
000 in 3 hours to volatilize the inner core material, butylparaben, and further calcined at 900Z℃ for 3 hours to obtain 8.5 parts by weight of hollow porous powder with an average grain size of 5 to 9 mm. Ta.

実施例 4平均粒径3〜5ムのカオリン3の重量部と平
均粒径5〜10rのナフタリン2重量部と平均粒径5〜
28〃の黒雲母5重量部とに精製水31の上を加え、遠
心回転形ボールミルで12時間摩砕した後に取出し、4
0000まで電気炉内で4時間で昇温して内芯核物質で
あるナフタリンを揮発し、更に900qoで1加持間焼
成して平均粒径6〜14仏の半中空多孔性2粉体2亀重
量部を得た。
Example 4 3 parts by weight of kaolin with an average particle size of 3 to 5 μm, 2 parts by weight of naphthalene with an average particle size of 5 to 10 μm, and 2 parts by weight of naphthalene with an average particle size of 5 to 5 μm
Add purified water 31 to 5 parts by weight of biotite from No. 28, mill it in a centrifugal rotary ball mill for 12 hours, and then take it out.
0,000 in 4 hours in an electric furnace to volatilize naphthalene, which is the inner core material, and then fired at 900 qo for 1 time to form semi-hollow porous 2 powders with an average particle size of 6 to 14 mm. Parts by weight were obtained.

次でこの半中空多孔性粉体2亀重量部を7%の塩酸50
0叫中に10時間浸潰した後に取出し吸引アスピレータ
で吸引猿適し乾燥して平均粒径5〜12仏の中空多孔I
性粉体2の重量部を得た。
3実施例 5 平均粒径3〜5仏のカオリン3の重量部と平均粒径5〜
8仏のカンフル15重量部と平均粒径5〜8Aの黒雲母
15重量部とに精製水31の‘を加え、遠心回転形ボー
ルミルで1餌時間摩砕した後に取出し、5%の塩酸30
0必中に10時間浸潰した後に取出し、吸引アスピレー
タで吸引薄遇し乾燥して平均粒径7〜15rの半中空多
孔性粉体4$重量部を得た。
Next, add 2 parts by weight of this semi-hollow porous powder to 50% of 7% hydrochloric acid.
After soaking in water for 10 hours, take it out and suck it with a suction aspirator and dry it with a hollow pore with an average particle size of 5-12.
Parts by weight of powder 2 were obtained.
3 Example 5 Average particle size 3-5 parts by weight of Buddha's Kaolin 3 and average particle size 5-5
Add 31 parts by weight of purified water to 15 parts by weight of camphor of 8 degrees Fahrenheit and 15 parts by weight of biotite with an average particle size of 5 to 8A, grind the mixture in a centrifugal rotary ball mill for 1 hour, take it out, and add 30 parts by weight of 5% hydrochloric acid.
After soaking in water for 10 hours, the mixture was taken out and dried by suction with a suction aspirator to obtain 4 parts by weight of semi-hollow porous powder with an average particle size of 7 to 15 r.

次で、30000まで電気炉内で4時間で昇温して内芯
核物質であるカンフルを揮発し、更に1000℃で8時
間焼成して平均粒径5〜12仏の中空多孔性粉体35重
量部を得た。実施例 6 平均粒径3〜6〃のカオリン2塁重量部と平均粒径5〜
11仏のメントール3重量部と平均粒径5〜8Aの炭酸
カルシウム6重量部とに精製水40の‘を加え、遠D回
転形ボールミルで1細時間摩砕した後に取出し、400
qoまで電気炉内で4時間で昇温して内芯核物質である
メントールを揮発し、更に900ooで1印時間焼成し
て平均粒径6〜14rの半中空多孔性粉体20重量部を
得た。
Next, the temperature was raised to 30,000°C in an electric furnace for 4 hours to volatilize camphor, which is the inner core material, and then baked at 1,000°C for 8 hours to obtain a hollow porous powder with an average particle size of 5 to 12 particles. Parts by weight were obtained. Example 6 Kaolin second base weight part with an average particle size of 3 to 6 and an average particle size of 5 to 6
Add 40% of purified water to 3 parts by weight of menthol of 11 grams and 6 parts of calcium carbonate with an average particle size of 5 to 8A, grind for 1 hour in a far-D rotary ball mill, and then take out the mixture.
qo in an electric furnace for 4 hours to volatilize the inner core material, menthol, and further calcined at 900 oo for 1 hour to obtain 20 parts by weight of semi-hollow porous powder with an average particle size of 6 to 14 r. Obtained.

次で、この半中空多孔性粉体20重量部を7%の硝酸5
00の‘中に7時間浸潰した後に取出し、吸引アスピレ
ータで吸引櫨遇し乾燥して平均粒径5〜12仏の中空多
孔性粉体1塁重量部を得た。実施例 7 平均粒径3〜5〃のペントナィト3の重量部と平均粒蓬
5〜8仏のプチルパラベン14重量部と平均粒径5〜8
仏の炭酸第二鉄1錠重量部とに精製水34Mを加え、遠
心回転形ボールミルで1幼時間摩砕した後に取出し、5
%の硝酸50肋‘中に10時間浸潰した後に取出し、吸
引アスピレータで吸引櫨遇し乾燥して平均粒径7〜16
〃の半中空多孔性粉体43重量部を得た。
Next, 20 parts by weight of this semi-hollow porous powder was mixed with 7% nitric acid and 5 parts by weight.
After being immersed in 00' for 7 hours, the powder was taken out and dried by suction using a suction aspirator to obtain a hollow porous powder having an average particle size of 5 to 12 mm. Example 7 Parts by weight of pentonite 3 with an average particle size of 3 to 5, 14 parts by weight of butyl paraben with an average particle size of 5 to 8, and an average particle size of 5 to 8
Add 34M of purified water to 1 part by weight of French ferric carbonate tablet, grind in a centrifugal rotary ball mill for 1 hour, then take out,
After soaking in 50% nitric acid for 10 hours, it was taken out and dried using a suction aspirator to obtain particles with an average particle size of 7 to 16.
43 parts by weight of semi-hollow porous powder was obtained.

次で、30000まで電気炉内で4時間で昇温して内芯
核物質であるブチルパラベンを揮発し、更に1000午
0で8時間焼成して平均粒径5〜12仏の中空多孔性粉
体3亀重量部を得た。実施例 8前記実施例7の炭酸第
二鉄の代りに黒雲母8重量部と炭酸カルシウム8重量部
とを用い、同様の方法により中空多孔性粉体3亀重量部
を得た。
Next, the temperature was raised to 30,000 ℃ in an electric furnace for 4 hours to volatilize the inner core substance, butyl paraben, and then baked at 1,000 ℃ for 8 hours to form a hollow porous powder with an average particle size of 5 to 12 F. Three parts by weight of the body were obtained. Example 8 8 parts by weight of biotite and 8 parts by weight of calcium carbonate were used in place of the ferric carbonate in Example 7, and 3 parts by weight of hollow porous powder was obtained in the same manner.

実施例 9平均粒径1〜12山のペントナィト15重量
部と平均粒径3〜5仏のカオリン15重量部と平均粒径
4〜7仏のブチルパラベン1り重量部とを精製水に分散
し、5時間燈拝した後にアスピレータで吸引猿過し、電
気炉内で常温より40000まで4時間で昇温して内芯
核物質であるブチルパラベンを揮発し、更に1000q
oで5時間焼成し、得られた粉体を5%の硝酸300の
‘中に3時間浸潰した後に取出し、吸引アスピレータで
吸引櫨過し乾燥して平均粒径8〜15山の中空多孔性粉
体2亀重量部を得た。
Example 9 15 parts by weight of pentonite with an average particle size of 1 to 12 particles, 15 parts by weight of kaolin with an average particle size of 3 to 5 particles, and 1 part by weight of butyl paraben with an average particle size of 4 to 7 particles were dispersed in purified water. After lighting for 5 hours, it was sucked and filtered with an aspirator, and heated in an electric furnace from room temperature to 40,000 ℃ in 4 hours to volatilize the inner core substance, butyl paraben, and further 1,000 q.
The resulting powder was soaked in 300°C of 5% nitric acid for 3 hours, taken out, passed through a suction aspirator, dried, and had hollow pores with an average particle size of 8 to 15 mounds. 2 parts by weight of a powder was obtained.

実施例 10平均粒径3〜5山のペントナィト3の重量
部と平均粒径5〜8仏のブチルパラベン14重量部と平
均粒径5〜8〃の黒雲母および炭酸カルシウム各8重量
部ずっとに精製水34の‘を加え、遠心回転形ボールミ
ルで1幼時間摩砕した後に取出し、吸引アスピレータで
吸引薄遇し乾燥して平均粒径7〜16仏の粉体4紅重量
部を得た。
Example 10 3 parts by weight of pentonite with an average particle size of 3 to 5, 14 parts by weight of butylparaben with an average particle size of 5 to 8, and 8 parts by weight each of biotite and calcium carbonate with an average particle size of 5 to 8. After adding 34 parts of purified water and grinding for 1 hour in a centrifugal rotary ball mill, the mixture was taken out and dried by suction using a suction aspirator to obtain 4 parts by weight of powder with an average particle size of 7 to 16 mm.

Claims (1)

【特許請求の範囲】 1 (a) 被覆物質である無水珪酸鉱物、アルミナ珪
酸鉱物、マグネシウム珪酸鉱物の一種または二種以上よ
りなる平均粒径1〜50μの微粉末と;内芯核物質であ
る揮発性物質の一種または二種以上よりなる平均粒径1
〜50μの微粉末;とからなり混合重量割合を約8:2
〜4:5とした混合物を水系中或いは不活性溶媒中にお
いて撹拌し、内芯核物質の表面に被覆物質を付着凝集さ
せて平均粒径1〜100μの微粉体を作り、(b) 次
に前記微粉体を加熱して内芯核物質を揮発除去すること
を特徴とする中空多孔性粉体の製造方法。 2 (a) 被覆物質である無水珪酸鉱物、アルミナ珪
酸鉱物、マグネシウム珪酸鉱物の一種または二種以上よ
りなる平均粒径1〜50μの微粉末と;内芯核物質であ
る揮発性物質の一種または二種以上と金属炭酸鉱物およ
び(または)水以外の揮発性物質を含有する無水アルミ
ナ珪酸鉱物の一種または二種以上とよりなる平均粒径1
〜50μの微粉末;とからなり混合重量割合を約8:2
〜4:5とした混合物を水系中或いは不活性溶媒中にお
いて撹拌し、内芯核物質の表面に被覆物質を付着凝集さ
せて平均粒径1〜100μの微粉体を作り、(b) 次
に前記微粉体を加熱して揮発性物質を揮発除去し、更に
酸液で洗浄して金属炭酸鉱物および(または)無水アル
ミナ珪酸鉱物を溶出することを特徴とする中空多孔性粉
体の製造方法。
[Scope of Claims] 1 (a) Fine powder with an average particle size of 1 to 50μ made of one or more of anhydrous silicate mineral, alumina silicate mineral, and magnesium silicate mineral, which is a coating material; and an inner core material. Average particle size 1 consisting of one or more volatile substances
~50μ fine powder; mixed weight ratio approximately 8:2
A mixture of ~4:5 is stirred in an aqueous system or an inert solvent, and the coating material is adhered and aggregated on the surface of the inner core material to form a fine powder with an average particle size of 1 to 100μ, (b) Next. A method for producing a hollow porous powder, comprising heating the fine powder to volatilize and remove the inner core material. 2 (a) A fine powder with an average particle size of 1 to 50 μ made of one or more of anhydrous silicate mineral, alumina silicate mineral, and magnesium silicate mineral, which is a coating material; and one kind of volatile substance, which is an inner core material, or Average particle size 1 consisting of two or more types and one or more types of anhydrous alumina silicate mineral containing a metal carbonate mineral and/or a volatile substance other than water.
~50μ fine powder; mixed weight ratio approximately 8:2
A mixture of ~4:5 is stirred in an aqueous system or an inert solvent, and the coating material is adhered and aggregated on the surface of the inner core material to form a fine powder with an average particle size of 1 to 100μ, (b) Next. A method for producing a hollow porous powder, characterized in that the fine powder is heated to volatilize and remove volatile substances, and further washed with an acid solution to elute metal carbonate minerals and/or anhydrous alumina silicate minerals.
JP5805881A 1981-04-17 1981-04-17 Method for manufacturing hollow porous powder Expired JPS609851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5805881A JPS609851B2 (en) 1981-04-17 1981-04-17 Method for manufacturing hollow porous powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5805881A JPS609851B2 (en) 1981-04-17 1981-04-17 Method for manufacturing hollow porous powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8879576A Division JPS5313626A (en) 1976-07-26 1976-07-26 Porous powder

Publications (2)

Publication Number Publication Date
JPS5781823A JPS5781823A (en) 1982-05-22
JPS609851B2 true JPS609851B2 (en) 1985-03-13

Family

ID=13073306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5805881A Expired JPS609851B2 (en) 1981-04-17 1981-04-17 Method for manufacturing hollow porous powder

Country Status (1)

Country Link
JP (1) JPS609851B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182103A (en) * 1985-12-09 1993-01-26 Shiseido Company, Ltd. Magnesium aluminometasilicate coated composite powder and use thereof
US5122418A (en) * 1985-12-09 1992-06-16 Shiseido Company Ltd. Composite powder and production process
JPH02141444A (en) * 1989-10-04 1990-05-30 Takeichi Hirose Production of artificial lightweight coarse aggregate

Also Published As

Publication number Publication date
JPS5781823A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
JP3419787B2 (en) Method for producing hollow silica particles
CN112741775B (en) Preparation method of composite mica powder with oil control performance for cosmetics
Fernandes et al. Gelatin-clay bio-nanocomposites: structural and functional properties as advanced materials
US2525072A (en) Chewing dentifrices
JPS6021567B2 (en) Patch cosmetics
Khan et al. Characterization of inorganic fillers in visible‐light‐cured dental composite resins
JPS609851B2 (en) Method for manufacturing hollow porous powder
US4485092A (en) Talc compositions
WO2000025729A1 (en) Improved filler for dental composite materials
US3527563A (en) Process for preparing silica gel granules
EP2983814A1 (en) Reduced crystalline silica diatomaceous earth products and methods of manufacturing the same
JP6668495B2 (en) White deodorant, chemical product with deodorant function, method of using white deodorant, and method of producing white deodorant
JP2984112B2 (en) Bone filler
JP3876521B2 (en) Ultraviolet shielding fine powder composition and use thereof
JPS6019281B2 (en) cosmetics
JP3160705B2 (en) Method for preparing fired tourmaline-containing ceramics having enhanced water pH increasing properties and metal ion adsorption properties
JPH10337469A (en) Adsorptive porous sintered compact and its production
JP6756247B2 (en) Unsaturated fatty acid adsorbent and cosmetics containing it
JPS5949945B2 (en) colored porous powder
JP2004142954A (en) Surface porous calcium carbonate granular particle, manufacturing method therefor, and slurry consisting of the same
JPS60100510A (en) Cosmetic
JPS6214524B2 (en)
JPS60100509A (en) Cosmetic
JP2000334033A (en) Deodorant
JPS5858099B2 (en) condom