JPS6098407A - Low loss optical fiber - Google Patents

Low loss optical fiber

Info

Publication number
JPS6098407A
JPS6098407A JP58206649A JP20664983A JPS6098407A JP S6098407 A JPS6098407 A JP S6098407A JP 58206649 A JP58206649 A JP 58206649A JP 20664983 A JP20664983 A JP 20664983A JP S6098407 A JPS6098407 A JP S6098407A
Authority
JP
Japan
Prior art keywords
refractive index
polymer
core component
component
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58206649A
Other languages
Japanese (ja)
Inventor
Yoshiharu Tategami
義治 立上
Katsuramaru Fujita
藤田 桂丸
Motonobu Furuta
元信 古田
Toshibumi Tamura
俊文 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58206649A priority Critical patent/JPS6098407A/en
Priority to DE8484113086T priority patent/DE3470127D1/en
Priority to EP84113086A priority patent/EP0144712B1/en
Priority to CA000466983A priority patent/CA1255939A/en
Publication of JPS6098407A publication Critical patent/JPS6098407A/en
Priority to US07/065,108 priority patent/US4779954A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve moisture resistance and flexibility by using a polymer consisting principally of deutero methyl methacrylate contg. a specific range amt. of cyclohexyl methacrylate compd. as a core component and a transparent polymer having the refractive index lower by a specific ratio or below than the refractive index of the core component as a sleeve component. CONSTITUTION:A polymer for a core component consisting principally of deutro methyl methacrylate is required to be incorporated therein with 10-40% cyclohexyl methacrylate compd. as the constituting component thereof. If the content is below 10%, the effect of improving the resistance to moisture absorption is not enough and if the content exceeds 40%, mechanical properties and above all flexibility are not enough and are undesirable for practicability. A transparent resin or fluoro-rubber having the refractive index smaller by at least 3% than the refractive index of the core component is used as a sleeve component. If the difference in the refractive index is smaller than 3%, the ratio of reflection of light by the sleeve component decreases and the loss of photoconduction increases.

Description

【発明の詳細な説明】 本発明は耐湿性にすぐれた低2損失光→繊維に関する。[Detailed description of the invention] The present invention relates to a low two-loss optical fiber with excellent moisture resistance.

光#41fm維は、従来ガラス系材料を基体として製造
され、光信号伝送媒体として機器間や機器内の計測制御
用、データ伝送用あるいは医療用、装飾用や画像伝送用
として広く利用されている。しかし、ガラス系材料を基
材とした光←〆織繊維、内径の細い繊維にしバと可撓性
に乏と、比重が大きいこと、およびコネクターを含めて
高価であることなどの理由から、最近これをプラスチ・
ツクで作る試みが種々提案されている。
Optical #41fm fibers are conventionally manufactured using glass-based materials as a base material, and are widely used as optical signal transmission media for measurement control between and within devices, for data transmission, for medical purposes, for decoration, and for image transmission. . However, optical woven fibers made from glass-based materials have a thin inner diameter, are less flexible, have a large specific gravity, and are expensive, including connectors. Plasti this
Various attempts have been made to make it with Tsuku.

プラスチ・lりを使用した場合の大きな特徴は軽量であ
ること、内匝の太い繊維でも強靭で用平糺性に富むこと
、従って、高開口度、大口径が可能であり、受発光素子
との結合が容易であることなど操作性にすぐれているこ
とが挙げられる。プラスチ・ツクを用いてこのような光
≠4繊維を製造する一般的な方法は、屈折率が大きく、
かつ光の透過性が良好なプラスチ・7りを芯成分とし、
これよりも屈折率が小さく、かつ透明なプラスチックを
さや成分とした芯−さや構造を有する繊維を形成するも
のである。この方法は、芯−さや界面で光を反射させる
ことにより、光を伝送するものであり、芯とさやを構成
するプラスチックの屈折率の差の大きいものほど光伝送
性にすぐれている。
The major characteristics of using Plasti Luri are that it is lightweight, and even with thick fibers in the inner bag, it is strong and has excellent tenacity.Therefore, high opening degree and large diameter are possible, and it is suitable for use with light receiving and emitting elements. It is easy to connect and has excellent operability. A common method for producing such optical≠4 fibers using plastics is that they have a large refractive index and
The core component is Plasti-7, which also has good light transmittance.
A fiber having a core-sheath structure with a refractive index smaller than this and a transparent plastic as the sheath component is formed. This method transmits light by reflecting it at the core-sheath interface, and the larger the difference in refractive index between the plastics that make up the core and sheath, the better the light transmission properties.

霊稟:凪姓小宣いイらフキ、6県1f神 価中形の材料
が好ましく、工業的にはポリメタクリル酸メチルや、ポ
リスチレンが注目される材料である(例えば、特公昭4
3−8978号公報特公昭53−21660号公報)。
Spiritual name: Nagi name, small name, Irafuki, 6 prefectures, 1st floor, Kami Preferably, medium-sized materials, and industrially, polymethyl methacrylate and polystyrene are the materials that are attracting attention (for example,
3-8978, Japanese Patent Publication No. 53-21660).

しかし、このようなプラスチ・ツク光≠抱繊維は無機ガ
ラスで製造される光幹椹繊維に比べ光伝送損失が大きい
という欠点があった。即ちプラスチック光≠犠繊維の伝
送損失の要因は、本質的にそれを構成する炭素−水素の
赤外振動の高周波に起因するものであり、脂肪族炭素に
結合する水素の炭素−水素赤外吸収振動の7倍音が波長
560nmに、6倍音が645nmに、5倍音が760
nmにあられれ、芳香族炭素に結合する水素の炭素−水
素赤外吸収振動の7倍音が波長530 nm、6倍音が
610 nm に、5倍音が71 Q nrn に現わ
れる。これらの吸収のすそのために、いわゆる損失の窓
における光伝送損失が大きくなっている。このために、
炭素−水素の吸収振動を小さくあるいは無くする方法と
して、水素を重水素に置換し、0−Hの吸収振動を消失
させる方法が考案されている。fコとえばメタクリル酸
メチルを重水素化した樹脂を芯とした光椰考繊維が既に
提案されている(特開昭54−65555@)。この光
伝送繊維は、可視光域から近赤外光域にわたり、低損失
である(六゛能俊邦、藤木道也、奈良茂男、Pn l 
ymc rr’r(!p5i+山、Jコ11)旧l肛、
544(I981))、、シか17ながら、重水素化メ
タクリル酸メチルを芯材とする光卿犠繊維は吸湿性が高
く、吸湿にもとづく損失増は、周囲環境の相対湿度によ
−て一義的に決定され、相対湿度60%では84 Q 
n1ll て550 dB/l<+n 、 746 n
m テ450 dB/I、m O”I損失増がみとめら
れ、従って近赤外用光源を用いるシステムの光幹勇繊維
としては使用出来ないことがわかった。
However, such plastic fibers have a disadvantage in that they have a greater optical transmission loss than optical fibers made of inorganic glass. In other words, the cause of the transmission loss of plastic light≠sacrificial fiber is essentially due to the high frequency of infrared vibration of carbon-hydrogen that constitutes it, and the carbon-hydrogen infrared absorption of hydrogen bonded to aliphatic carbon. The 7th harmonic of vibration has a wavelength of 560 nm, the 6th harmonic has a wavelength of 645 nm, and the 5th harmonic has a wavelength of 760 nm.
The seventh overtone of the carbon-hydrogen infrared absorption vibration of hydrogen bonded to aromatic carbon appears at a wavelength of 530 nm, the sixth overtone at 610 nm, and the fifth overtone at 71 Q nrn . Due to these absorption paths, the optical transmission loss in the so-called loss window increases. For this,
As a method for reducing or eliminating the carbon-hydrogen absorption vibration, a method has been devised in which hydrogen is replaced with deuterium to eliminate the 0-H absorption vibration. For example, a light coconut fiber having a core made of a resin made of deuterated methyl methacrylate has already been proposed (Japanese Unexamined Patent Publication No. 1983-65555). This optical transmission fiber has low loss from the visible light region to the near-infrared light region (Toshikuni Rokuno, Michiya Fujiki, Shigeo Nara, Pnl
ymc rr'r (! p5i + mountain, J co11) old l anus,
544 (I981)), 17 However, optical sacrificial fibers whose core material is deuterated methyl methacrylate are highly hygroscopic, and the increase in loss due to moisture absorption is primarily determined by the relative humidity of the surrounding environment. 84 Q at 60% relative humidity.
n1ll 550 dB/l<+n, 746 n
An increase in loss of 450 dB/I and mO''I was observed, and therefore it was found that it could not be used as a fiber optic fiber in a system using a near-infrared light source.

声発明者らは耐湿性と可撓性にすぐれ、か−)、可視光
域から近赤外光域の広い範囲にわたり低い導光損失を示
す光伝送性にすぐれたプラスチック光←犠繊維の開発を
鋭意検討した結果、本発明に到達した。
The inventors have developed a plastic optical sacrificial fiber that has excellent moisture resistance, flexibility, and low light transmission loss over a wide range from the visible light region to the near-infrared light region. As a result of intensive studies, we have arrived at the present invention.

すなわち、本発明は、メタクリル酸シクロヘキシル系化
合物10〜40重量%(以F、単に%と記す)を含有し
た重水素化メタクリル酸メチルを主体とする重合体を芯
成分とし、該芯成分よりも少なくとも3%小さい屈折率
を有する透明重合体をさや成分とすることを特徴とする
耐湿性と可十表性にすぐれた低損失光≠本繊維を提供す
るものである。
That is, the present invention uses a polymer mainly composed of deuterated methyl methacrylate containing 10 to 40% by weight (F, simply referred to as %) of a cyclohexyl methacrylate compound as a core component, and The object of the present invention is to provide a low-loss optical fiber with excellent moisture resistance and flexibility, which is characterized by having a transparent polymer having a refractive index lower by at least 3% as a sheath component.

本発明の光≠巻繊維は常温から80°C附近までの温度
範囲において芯成分にポリメタクリル酸メチルを使用し
た従来から提案されている光矢魯繊維に比べ、湿度の増
大と共に生ずる導光損失の低下の割合が少なく光信号伝
送媒体としての信頼性をいちじるしく高めうるものであ
る。
The light-wound fiber of the present invention suffers from light guide loss that occurs with increased humidity in the temperature range from room temperature to around 80°C, compared to the conventionally proposed Koyaro fiber that uses polymethyl methacrylate as the core component. The rate of decrease in the optical signal transmission medium is small, and the reliability as an optical signal transmission medium can be significantly improved.

本発明において芯成分重合体の製造に使用されるメタク
リル酸ノクロヘキシル系化合物としては、メタクリル酸
ノクロヘキシル、メタクリル酸メチルシクロヘキシルお
よびメタクリル酸ジメチルシクロへキシルなどをあげる
ことが出来る。
Examples of the noclohexyl methacrylate compound used in the production of the core component polymer in the present invention include noclohexyl methacrylate, methylcyclohexyl methacrylate, and dimethylcyclohexyl methacrylate.

本発明に用いる重水素化メタクリル酸メチルを主体とす
る芯成分重合体には、その構成成分トシテメタクリル酸
シクロヘキシル系化合物を10〜40%含有させること
が必要でJ)る。
It is necessary that the core component polymer mainly composed of deuterated methyl methacrylate used in the present invention contains 10 to 40% of its constituent component cyclohexyl methacrylate compound.

10%未満では、耐吸湿性改善効果が十分でなく、40
%を超えると機械的性勢、特に可撓性が不十分であり、
実用上好ましくない。重水素化メタクリル酸メチルには
+1+〜118一体まであるが就中d8一体が好ましい
。尚、重水素化メタ/ クリル酸メチルと共に重水素化スチレンを用い2て共重
合体を形成することもできる。
If it is less than 10%, the moisture absorption resistance improvement effect is not sufficient, and 40%
If it exceeds %, mechanical strength, especially flexibility, is insufficient;
Practically unfavorable. Deuterated methyl methacrylate includes +1+ to 118 monomers, with d8 monomers being particularly preferred. Incidentally, a copolymer can also be formed by using deuterated styrene together with deuterated meth/methyl acrylate.

本発明の芯成分重合体は、懸濁重合法および塊状重合法
など従来の公知の方法で製造することができる。ただし
懸濁重合法においては、多量の水を使用するtコめ、そ
の中に含まれる異物が重合体中に混入しやすく、又、そ
の脱水工程においても異物が混入する可能性があるので
、必要ならば、ン慮過法や蒸留法によりゴミなどの異物
を除去したのち重合する。さらに望ましい方法としては
、まず芯成分の重合体を高温度丁で連続塊状重合工程お
よびそれにつづく残存未反応単量体を主体とする揮発分
の連続分離工程の2工程で製造し、さらに、この芯成分
の重合体の製造段階と光曾セ繊維の製造段階とを連続し
た工程で行jCう方法がある。まtこ、芯成分を塊状重
合し、ついで、得られた重合体からの芯成分の形成及び
さや成分形成を共に二重押出し法によりおこICう製造
法も望ましい方法である。
The core component polymer of the present invention can be produced by conventionally known methods such as suspension polymerization and bulk polymerization. However, in the suspension polymerization method, since a large amount of water is used, foreign substances contained therein are likely to get mixed into the polymer, and there is also a possibility that foreign substances can get mixed in during the dehydration process. If necessary, foreign substances such as dust are removed by a filtration method or a distillation method before polymerization. A more desirable method is to first produce the core component polymer in two steps: a continuous bulk polymerization step at a high temperature, followed by a continuous separation step of volatile components mainly containing residual unreacted monomers; There is a method in which the steps of manufacturing the core component polymer and the step of manufacturing the fibers are carried out in a continuous process. Another desirable method is an IC manufacturing method in which the core component is bulk polymerized, and then both the core component and the sheath component are formed from the obtained polymer by a double extrusion method.

上記各重合において用いられるラジカル重合開始剤とし
ては、例えば、2.2′−アゾヒス(イソブチロニ1−
リル)、1 、1’−アゾヒス(ンクロヘキサン力ルボ
ニ!・リル)、2.2’−アゾヒス(2,4−ジメチル
バレロニトリル)、アゾヒスイソブタノールジアセテ−
1−、アゾ−もert−ブタン等のアゾ化合物ならびに
ジーtert−ブチルパーオキサイド、レフミルパーオ
キサイド、メチルエチルケ1ヘノパーオキサイド、ジー
tert−プチルバーフタレ−1・、ジーtert−ブ
チルパーアセテ−1〜、’)−tert−アミルパーオ
キサイド等の有機過酸化物があげられる。これら重合開
始剤の添加割合は、単量体に対して0.001〜1モル
%であるのが好ましい。
The radical polymerization initiator used in each of the above polymerizations is, for example, 2,2'-azohis (isobutyroni-1-
), 1,1'-Azohis (Nclohexane-Ruboni!-Ryl), 2,2'-Azohis (2,4-dimethylvaleronitrile), Azohis-isobutanol diacetate
azo compounds such as tert-butane, di-tert-butyl peroxide, lefmil peroxide, methyl ethyl henoperoxide, di-tert-butyl barphthale-1, di-tert-butyl peracet-1, ') Examples include organic peroxides such as -tert-amyl peroxide. The addition ratio of these polymerization initiators is preferably 0.001 to 1 mol % based on the monomer.

又、重合系中には分子量を制御するために連鎖移動剤と
してLert−ブチル、jl−ブチル、tl−オクチル
、及び11−ドテノルメル力プタノ等が、単量体に対し
て約1モル%以下添加さ11る。
In addition, in the polymerization system, in order to control the molecular weight, lert-butyl, jl-butyl, tl-octyl, 11-dotenormel, etc. are added as chain transfer agents in an amount of about 1 mol % or less based on the monomers. Sa11ru.

一方、さや成分重合体の製造法は、従来の公知の方法で
行なうことができる。さや成分重合体の場合は、芯成分
重合体の場合はど製造法による光云送性への影響は認め
られないので、特にコミなどの異物が混入しないように
17で、さらに必要ならば濾過法などによりゴzlcと
の、異物を除去して、さや成分重合体の製造をljこな
うのがよい。
On the other hand, the sheath component polymer can be produced by conventionally known methods. In the case of the sheath component polymer, in the case of the core component polymer, the manufacturing method has no effect on light transmission properties, so it should be treated at 17 to prevent foreign matter such as dust from getting mixed in, and if necessary, it should be filtered. It is preferable to remove foreign substances from the sheath component by a method or the like to produce the sheath component polymer.

芯成分とさや成分の割合は重量比で約7030〜98.
2であり、好ましくは80:2Q〜95°5である。ま
た、芯−さや構造からなる光←巻m維の外径は約0.1
5〜1.5MてJ、す、好ましくは約0.20〜1.0
mmである。
The ratio of the core component to the sheath component is approximately 7030 to 98.
2, preferably 80:2Q to 95°5. In addition, the outer diameter of the optical fiber with a core-sheath structure is approximately 0.1
5-1.5M, preferably about 0.20-1.0
It is mm.

一方、本発明を構成する他の重要な要素であるさや成分
としては、芯成分よりも少なくとも3%小さい屈折率を
有する透明樹脂、又は弗素ゴムが用いられや。屈折率の
差が3%より小さい場合、さや成分による光の反射割合
が小さくなり導光損失が大きくなる。具体的な屈折率と
しては1.42以Fであるのが好ましく、結晶性でなく
無定形に近い重合体で、かつ、前記芯成分との接着性が
良好なものが望ましい。
On the other hand, as the sheath component, which is another important element constituting the present invention, a transparent resin or fluororubber having a refractive index that is at least 3% lower than that of the core component is used. If the difference in refractive index is smaller than 3%, the proportion of light reflected by the sheath component will be small and the light guide loss will be large. Specifically, it is preferable that the refractive index is 1.42 or more F, and it is preferable that the polymer be a non-crystalline, nearly amorphous polymer, and that has good adhesion to the core component.

好ましい透明樹脂としては、弗素樹脂、熱可塑性弗素ゴ
ムおよび弗素ゴムが挙げられる。弗素樹脂とjlでは、
例えば、ビニルフルオライド、ビニリデンフルオライド
、トリフルオロエチレン、テトラフルオロエチレン、ヘ
キサフルオロプロペン、トリフルオロメチルトリフルオ
ロヒニルエーテル、パーフルオロプロビルトリフルオロ
ビニルエーテル、メタクリル酸パーフルオロイ゛レプロ
ビル、メタクリル酸パーフルオロ−tert−ブチルな
どの含弗素重合体をあげることができる。これらの中で
、特に好ましい弗素樹脂としては、ヒニリデンフルオラ
イドーテトラフルオロエチレン共重合体、トリフルオロ
エチレンービニリデノフルオライド共重合体、ヒニリデ
ンフルオライドーテトラフルオロエチレンーへキサフル
オロプロペノ共重合体、メタクリル酸パーフルオロイソ
プロピル重合体、メタクリル酸パーフルオロ−t e 
r 1.−ブチル重合体を挙げることができろ。
Preferred transparent resins include fluororesins, thermoplastic fluororubbers, and fluororubbers. With fluororesin and jl,
For example, vinyl fluoride, vinylidene fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropene, trifluoromethyl trifluorohinyl ether, perfluoroprobyl trifluorovinyl ether, perfluoroprovir methacrylate, perfluoro-tert methacrylate. -Fluorine-containing polymers such as butyl can be mentioned. Among these, particularly preferred fluororesins include hnylidene fluoride-tetrafluoroethylene copolymer, trifluoroethylene-vinylidenofluoride copolymer, and hnylidene fluoride-tetrafluoroethylene-hexafluoropropetrope. copolymer, perfluoroisopropyl methacrylate polymer, perfluoro-te methacrylate
r1. -Can you name a butyl polymer?

また熱可塑性弗素ゴムは分子内に弗素ゴム相からなるソ
フトセグメントと弗素樹脂相からなるハードセグメント
を有し、常温において弗素樹脂相で物理的な架橋がおこ
なわれてコム弾性を有し、融点以上の高温では熱可塑性
プラスチ・ツクと同様な挙動を有するものである。
In addition, thermoplastic fluororubber has a soft segment consisting of a fluororesin phase and a hard segment consisting of a fluororesin phase in its molecule, and has comb elasticity due to physical crosslinking in the fluororesin phase at room temperature. At high temperatures, it behaves similar to thermoplastic plastics.

ソフトセグメント ビニリデンフルオライド/ヘキサフルオロプロピレンま
たはペンタフルオロプロピレン/テトラフルオロエチレ
ン(モル比45〜90 5〜50:O〜35)ポリマー
オヨびパーフルオロ(アルキルヒニルエーテル)/テI
・ラフルオロ15〜75:0〜850〜85)ポリマー
から選択された分子量go、ooo〜1.200.00
0の弗素ゴム10〜95部とハードセグメントをなす弗
素樹脂相としてはヒニリデノフルオライド/テ1〜ラフ
ルオロエチレン(モル比0−100:O〜100)ポリ
マーお。l:びエチレン/テトラフルオロエチレン(モ
ル比40〜60 :60〜40)のポリマーから選択さ
れた分子量1.0 、000〜400.000の弗素樹
脂5〜90部が結合した熱可塑性弗素ゴムをあげること
ができろ。熱可塑性弗素ゴムの代表的なものとしては、
グイエルサーモプラスチ・・、り(タイキノ工業(株)
社製)があげられる。
Soft segment vinylidene fluoride/hexafluoropropylene or pentafluoropropylene/tetrafluoroethylene (mole ratio 45-90, 5-50:O-35) polymer and perfluoro(alkyl hinyl ether)/teI
・Rafluoro15-75: 0-850-85) Molecular weight selected from polymer go, ooo ~ 1.200.00
The fluororesin phase forming the hard segment with 10 to 95 parts of 0-fluororubber is a polymer of hinylidenofluoride/te1-rafluoroethylene (molar ratio 0-100:O-100). l: thermoplastic fluororubber bound with 5 to 90 parts of a fluororesin having a molecular weight of 1.0, 000 to 400,000 selected from polymers of ethylene and tetrafluoroethylene (molar ratio 40 to 60: 60 to 40). You can give it to me. Typical thermoplastic fluororubbers include:
Guyer Thermoplasti (Taikino Kogyo Co., Ltd.)
Company-made products are available.

また好ましい弗素ゴムとしては、ビニリデンフルオライ
ドーへキサフルオロプロペノ共重合体、ビニリデンフル
オライドーペンタフルオロペン共重合体、ビニリチンフ
ルオライド−クロロトリシルオロエチレン共重合体、な
どをあげることができる。ことに好適にはビニリデンフ
ルオライド−へキサフルオロプロペノ共重合体である。
Preferred fluororubbers include vinylidene fluoride-hexafluoropropeno copolymer, vinylidene fluoride-pentafluoropene copolymer, vinylitine fluoride-chlorotrisiloloethylene copolymer, and the like. can. Particularly preferred is vinylidene fluoride-hexafluoropropeno copolymer.

本発明は上述のごとく、芯−さや構造を有する光≠増繊
維において、芯成分に特定の重合体を使用することによ
り、従来のプラスチ、7り光幹犠繊維の適用湿度範囲を
大111に拡大することができる低損失光≠巻繊維を提
供するものでありその工業的価値はきわめて高いもので
ある。
As mentioned above, the present invention uses a specific polymer as the core component in optical fibers having a core-sheath structure, thereby increasing the applicable humidity range of conventional plasti and 7-ri optical trunk sacrificial fibers to 111%. It provides a low-loss optical fiber that can be expanded, and its industrial value is extremely high.

常用湿度を相対湿度75%以」−とすることができるこ
とから、たとえば自動車、船舶、ロボ、。
Since the normal humidity can be set to 75% relative humidity or higher, it can be used, for example, in automobiles, ships, robots, etc.

ト等への適用を可能とするものである。This makes it possible to apply this method to

次に本発明を実施例により更に詳細に説明するが本発明
はこれによってなんら限定される′\きものではないっ なお、実施例中の導光損失の測定にはハロケノタノグス
テンランプを光源とする回折格子分光器を用い、650
 nm 波長における被測定光幹*繊維と基準光≠慕繊
維の出力強度をノリコンフォトダイオードで読みとった
。繊維長[・(krn) の異なる光≠慕繊維の入口お
よび出口での光の強さをそれぞれIo 、 I とし、
次式により導光損失αをめた。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these in any way.In addition, in the Examples, a halokenotanogusten lamp was used as the light source for measuring the light guide loss. Using a diffraction grating spectrometer, 650
The output intensities of the optical fiber to be measured and the reference light≠M fiber at the nm wavelength were read using a Noricon photodiode. Light with different fiber lengths [・(krn)≠M] Let the light intensities at the entrance and exit of the fiber be Io and I, respectively,
The light guide loss α was calculated using the following formula.

10 I この式においてα値が小さいほど光伝送性はすぐれてい
ることを示している。
10 I In this equation, the smaller the α value, the better the optical transmission properties.

時間経過後に取出し、上記の方法で導光損失をめた。測
定は1時間以内におこなった。
After the elapse of time, it was taken out and the light guide loss was determined using the method described above. Measurements were taken within 1 hour.

実施例1 実質的に酸素の存在しない密閉系の重合装置内で蒸留を
行った重水素化メタクリル酸メチル−(18単量体70
部に、メタクリル酸シクロヘキシル28部、アクリル酸
メチル2部、7 ソー Lert−ブタン0.14部、
n−ブチルメルカプタフ0.18部をいずれも蒸溜によ
って添加した。この1ift体混合物を十分混合し、1
30°C148時間でバルク重合させたのち、徐々に昇
温し、最終的に180°C124時間加熱し重合を完結
させて芯成分重合体をえた、”””0.60. n 1
.49)コノi合体ヲ(〔η〕2゜。 P 210″Cで溶融紡糸し、直径0.85順の繊維をえな
がら更にさや成分としてメタクリル酸−2−トリフルオ
ロメチル−3,8,3−1−リフルオロプロピル−メタ
クリル酸メチル共重合体(共重合比:90:10(%)
Example 1 Deuterated methyl methacrylate (18 monomers, 70
28 parts of cyclohexyl methacrylate, 2 parts of methyl acrylate, 0.14 parts of 7-so-Lert-butane,
0.18 part of n-butylmercaptaf was added to each by distillation. Thoroughly mix this 1 ift body mixture,
After bulk polymerization at 30°C for 148 hours, the temperature was gradually raised and finally heated at 180°C for 124 hours to complete the polymerization and obtain a core component polymer, """0.60. n 1
.. 49) Konoi coalescence ([η] 2°. P Melt-spun at 210″C to obtain fibers with diameters of 0.85 and 2-trifluoromethyl methacrylate-3,8,3 as a sheath component. -1-Lifluoropropyl-methyl methacrylate copolymer (copolymerization ratio: 90:10 (%)
.

r1201.40 、溶融粘度1.0X10 ボイズ(
220”C))のへキサフルオロメタキシレン30%溶
液を塗布しながら膜厚0.1聰の芯−さや構造からなる
光件哄繊維をえた。
r1201.40, melt viscosity 1.0X10 Boise (
A photonic fiber having a core-sheath structure with a film thickness of 0.1 thick was obtained by applying a 30% solution of hexafluorometa-xylene of 220"C)).

導光損失を測定したところ、84ozの波長において1
10 dB/kmであった。
When the light guide loss was measured, it was found to be 1 at a wavelength of 84 oz.
It was 10 dB/km.

該光忰勢繊維を相対湿度90%、40°Cに24時間静
置したのち、導光損失を測定したトコ口140 dB/
kmてあった。
After the optical fiber was left at 40°C with a relative humidity of 90% for 24 hours, the light guide loss was measured at 140 dB/
It was km.

I施例2〜3 実施例1と同様な操作により、芯成分およびさや成分重
合体をかえて光伝送繊維(085〜0.75I+II+
Iψ)をえたのら、840 nm の波長におけろ耐湿
性試験をおこなった。
I Examples 2 to 3 By the same operation as in Example 1, optical transmission fibers (085 to 0.75I+II+
After obtaining Iψ), a moisture resistance test was conducted at a wavelength of 840 nm.

いずれもすぐれた耐湿性を示す光≠#織繊維あった(表
1)。
All of the fibers had light≠# woven fibers showing excellent moisture resistance (Table 1).

比較例1 芯成分として、重水素化メタクリル酸→を合成した以外
は実施例1と同様なさや成分を用いて同様な操作により
光≠劣繊維をえた。
Comparative Example 1 A light-poor fiber was obtained using the same sheath components as in Example 1, except that deuterated methacrylic acid was synthesized as a core component, and by the same operations.

導光損失を測定したところ、840 nm において、
9 Q d’l−L/lunであった。該光幹巷繊維を
相対湿度90%、50°Cに24時間静置したのら、導
光1u失を測定したところ750 dB/1(nl で
あり伝送損失がいちじるしく増大した、比較例2および
3 比較例1と同様な芯成分を用い、さや成分として実施例
2および3を用いて光併巻繊維をえた。導光損失を測定
したところそれぞれ12Q dB/km 、 9Q d
B/km テあッタウコれらの晃≠*繊維を相対湿度9
0%、50°Cに24時間静置したのち、導光損失を測
定したところ、それぞれ789 dB/に、mと600
 dB/kmであり、伝送損失がいちじるしく増大した
When the light guide loss was measured, at 840 nm,
9 Q d'l-L/lun. When the light trunk fiber was left standing at 50°C with a relative humidity of 90% for 24 hours, the loss of 1 u of guided light was measured and was 750 dB/1 (nl), indicating that the transmission loss was significantly increased in Comparative Example 2 and 3 Optical co-wound fibers were obtained using the same core component as in Comparative Example 1 and Examples 2 and 3 as sheath components.The light guide loss was measured to be 12Q dB/km and 9Q d, respectively.
B/km Relative humidity of fiber 9
After standing at 0% and 50°C for 24 hours, the light guide loss was measured to be 789 dB/m and 600 dB/m, respectively.
dB/km, and the transmission loss increased significantly.

Claims (1)

【特許請求の範囲】[Claims] メタクリル酸ノクロヘキシル系化合物10〜40重量%
を含有した重水素化メタクリル酸メチルを主体とする重
合体を芯成分し、該芯成分よりも少なくとも3%小さい
屈折率を有する透明重合体をさや成分とすることを特徴
とする但l損失光幹桑繊維。
Noclohexyl methacrylate compound 10-40% by weight
Loss light characterized in that the core component is a polymer mainly composed of deuterated methyl methacrylate containing the following, and the sheath component is a transparent polymer having a refractive index that is at least 3% lower than that of the core component. Stem mulberry fiber.
JP58206649A 1983-11-02 1983-11-02 Low loss optical fiber Pending JPS6098407A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58206649A JPS6098407A (en) 1983-11-02 1983-11-02 Low loss optical fiber
DE8484113086T DE3470127D1 (en) 1983-11-02 1984-10-30 Optical fiber
EP84113086A EP0144712B1 (en) 1983-11-02 1984-10-30 Optical fiber
CA000466983A CA1255939A (en) 1983-11-02 1984-11-02 Optical fiber
US07/065,108 US4779954A (en) 1983-11-02 1987-06-19 Plastic optical fiber resistant to heat and humidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206649A JPS6098407A (en) 1983-11-02 1983-11-02 Low loss optical fiber

Publications (1)

Publication Number Publication Date
JPS6098407A true JPS6098407A (en) 1985-06-01

Family

ID=16526842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206649A Pending JPS6098407A (en) 1983-11-02 1983-11-02 Low loss optical fiber

Country Status (1)

Country Link
JP (1) JPS6098407A (en)

Similar Documents

Publication Publication Date Title
KR920004429B1 (en) Plastic optical fiber
EP0097325A2 (en) Optical fiber
EP0357354B1 (en) Polymer composition and optical fiber having cladding composed of that composition
JPH041704A (en) Plastic optical fiber
US4842369A (en) Cladding material for plastic optical fiber and plastic optical fiber using the same
JPH0610683B2 (en) Plastic fiber optic fiber
EP0144712B1 (en) Optical fiber
JPS6098407A (en) Low loss optical fiber
JPS6043613A (en) Light-transmittable fiber
JP2002148451A (en) Plastic optical fiber
JP2003139972A (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JP2003139971A (en) Plastic optical fiber
JP2003014952A (en) Plastic optical fiber, plastic optical fiber cable and plastic optical fiber cable with plug
JPS59200202A (en) Optical transmission fiber
JPH0451206A (en) Plastic optical fiber
JPS59172603A (en) Optical transmission fiber
JPH10221543A (en) Broadband plastic optical fiber
JPH04191707A (en) Plastic optical fiber and its manufacture
JPH0521202B2 (en)
JPS59226302A (en) Optical transmission cable
JP2020190717A (en) Plastic optical fiber and method for manufacturing the same
JP2844258B2 (en) Plastic optical fiber
JP2964702B2 (en) Plastic optical fiber
EP0190656A2 (en) Method for producing plastic optical fiber with heat resistance
JPH04264504A (en) Plastic optical fiber made of heat resistant fluorine