JPS6098385A - Limiter device in nuclear fusion device - Google Patents

Limiter device in nuclear fusion device

Info

Publication number
JPS6098385A
JPS6098385A JP58205758A JP20575883A JPS6098385A JP S6098385 A JPS6098385 A JP S6098385A JP 58205758 A JP58205758 A JP 58205758A JP 20575883 A JP20575883 A JP 20575883A JP S6098385 A JPS6098385 A JP S6098385A
Authority
JP
Japan
Prior art keywords
limiter
limiter plate
nuclear fusion
plate
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58205758A
Other languages
Japanese (ja)
Inventor
明聖 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58205758A priority Critical patent/JPS6098385A/en
Publication of JPS6098385A publication Critical patent/JPS6098385A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、核融合反応によって生ずるヘリウムイオンな
どの不純物を除去するために用いられる核融合装置にお
けるリミタ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a limiter device in a nuclear fusion device used to remove impurities such as helium ions produced by a nuclear fusion reaction.

[発明の技術的背景とその問題点] 核融合装置の代表例としてトカマク型核融合装置がある
が、その本体はプラズマを保持加熱する磁場コイル、プ
ラズマ領域を起部真空に保つ超高真空容器とそれらの支
持構造物から構成されている0 ところで、かかる核融合装置においては、燃料重水素と
3重水素との核融合反早によってヘリウムイオンなどの
不純物が生ずるが、このような不純物が炉心で蓄積する
ことを防止するためにポンプリミタ装置が設置されてい
る。
[Technical background of the invention and its problems] A tokamak-type fusion device is a typical example of a nuclear fusion device, and its main body consists of a magnetic field coil that holds and heats the plasma, and an ultra-high vacuum container that keeps the plasma region in a vacuum at its origin. By the way, in such a nuclear fusion device, impurities such as helium ions are generated by the fusion reaction of deuterium fuel and tritium. A pump limiter device is installed to prevent build-up.

第1図は、トカマク型核融合装置の概略断面図であり、
この図によりポンプリミタ装置の概略を簡単に説明する
。同図において、1はトロイダル磁場コイル、2はボロ
イダルl&i揚コイル、3Fi真空容器で全体としてド
ーナツ形状すなわちトーラス形状をなし、その内部にプ
ラズマ4を発生させる。トロイダル磁場コイル1および
ボロイダル磁場コイル2による重畳磁場は、真空容器3
の内部にトーラス状の閉じた磁気面を形成し鍋温の炉心
プラズマ4を第1図に示すような領域に閉じ込める。j
142図は第1図における炉心プラズマ4およびリミタ
板5部分を拡大した概略図であり、この図に示すように
炉心プラズマ4から拡散により流出する荷電粒子は、炉
心プラズマ4に比較して低温の周辺プラズマ)*7の内
部に存在する磁力線に沿ってリミタ板5の近傍まで導か
れ、その表面または裏面において中性化される。中性化
された粒子は第1図に示した排気ダクト6を辿して真壁
容器3の外部へ排気される。このようにして、核融合反
応の結果生ずるヘリウム灰の炉心での蓄積。
FIG. 1 is a schematic cross-sectional view of a tokamak-type fusion device,
The outline of the pump limiter device will be briefly explained with reference to this figure. In the figure, 1 is a toroidal magnetic field coil, 2 is a voloidal I&I lift coil, and 3Fi vacuum vessel has a donut shape, that is, a torus shape as a whole, and plasma 4 is generated inside thereof. The superimposed magnetic field by the toroidal magnetic field coil 1 and the voloidal magnetic field coil 2 is
A torus-shaped closed magnetic surface is formed inside the reactor core to confine the reactor core plasma 4 at the pot temperature to an area as shown in FIG. j
FIG. 142 is an enlarged schematic diagram of the core plasma 4 and limiter plate 5 portions in FIG. The peripheral plasma) *7 is guided to the vicinity of the limiter plate 5 along the lines of magnetic force existing inside it, and is neutralized on its front or back surface. The neutralized particles follow the exhaust duct 6 shown in FIG. 1 and are exhausted to the outside of the Makabe container 3. Thus, the accumulation of helium ash in the reactor core resulting from the fusion reaction.

プラズマ4と真空容器5の内壁との相互作用の結果生ず
る不純物の炉心への混入が防止される0ところが、リミ
タ板5は高温のプラズマに直接面しているため以下に述
べるような不具合が生ずる。すなわち、リミタ板5は、
炉心から流出する重水素イオン等の尚エネルギー荷電粒
子の入射を受けるため、スパッタリングによるリミタ板
原子の損耗が激しく、その結果、リミタ板の交換または
修理のための作業が頻繁となり、核融合装置の保守性お
よび稼動率の面からみても不具合である。
However, since the limiter plate 5 faces the high-temperature plasma directly, the following problems occur. . That is, the limiter plate 5 is
Due to the incidence of energetic charged particles such as deuterium ions flowing out from the reactor core, limiter plate atoms are subject to severe wear and tear due to sputtering.As a result, work to replace or repair limiter plates becomes frequent, and fusion device This is also a problem from the viewpoint of maintainability and availability.

さらに、スパッタされた原子が、イオン化され不純物イ
オンとして炉心プラズマに混入し、この混入角が多い場
合には、不純物イオンによる電子の制動輻射損失黄が増
大し炉心プラズマ4は冷却されることになり、その結果
、核融合反応が生じにくくなって核融会炉の経済性の面
からも不具合である。
Furthermore, the sputtered atoms are ionized and mixed into the core plasma as impurity ions, and if the angle of entry is large, the bremsstrahlung radiation loss of electrons due to the impurity ions increases and the core plasma 4 is cooled. As a result, the fusion reaction becomes difficult to occur, which is a problem from the economic standpoint of the fusion reactor.

以上説明したような不具合に対処するため、従来、いく
つかの改良案が提案されている。第3図はこのような改
良案の従来例を示すもので、この図からも明らかなよう
にリミッタ板8の形状を角曲形状となるように構成した
ものである。リミッタ板8をこのように構成することに
よりリミッタ板8とプラズマ表面とのなす角度を小さく
して実質的な荷電粒子の入射面の拡大を計ることが可能
となり、その結果リミッタ材の損*mの減少が期待でき
る。すなわち、スパッタリングによる材料の単位時間轟
りの損耗量は入射粒子束(単位面積当りの入射イオン数
)とスパッタ比(入射イオン1個当リスバッタされる材
料原子数)との積に比例する。したがって、前述したよ
うにリミッタ板8を湾曲形状に構成したものは実効的な
入射粒子束を小さくすることができるのでリミタ板8の
損耗量を低減することが可能となる。
In order to deal with the problems described above, several improvement plans have been proposed in the past. FIG. 3 shows a conventional example of such an improved proposal, and as is clear from this figure, the limiter plate 8 is configured to have a corner-curved shape. By configuring the limiter plate 8 in this way, it is possible to reduce the angle formed between the limiter plate 8 and the plasma surface, thereby effectively expanding the incident surface of charged particles, and as a result, the loss of the limiter material *m can be expected to decrease. That is, the amount of wear and tear on the material due to sputtering per unit time is proportional to the product of the incident particle flux (the number of incident ions per unit area) and the sputtering ratio (the number of material atoms sputtered per one incident ion). Therefore, as described above, when the limiter plate 8 is configured in a curved shape, the effective incident particle flux can be reduced, so that the amount of wear and tear on the limiter plate 8 can be reduced.

一方、不純物イオンによる電子の制動輻射損失は前述し
たように不純物イオンの電荷数が大きいほど増大するこ
とが知られている。そして、電子の制動輻射損失が増大
すると炉心プラズマを冷却するという不具合が生ずるが
、このような不具合に対処するために、スパッタされて
プラズマ中に混入した場合に比較的電荷数の小さいベリ
リウムまたはダラファイト等の低原子量の材料(以下、
低2材料という)で、リミタ板表面全体を覆うという方
法が提案さすしている。しかし、この方法を用いてもリ
ミッタ板端部付近の損耗は依然として残されている。こ
のことを第4図について説明する。第4図は湾曲形状リ
ミタ板8の端部8Aを拡大した断面図であり、同図にお
いて9は磁力線を示す。入射イオンは、これら磁力線9
に沿ってリミタ板8に入射する。この場合、リミタ板8
の端部8A付近においては、磁力線9とリミタ板8との
なす角けはソ直角となる。したがって、湾曲形状リミタ
板8においても前述したような入射面の拡大効果を期待
することはできない。また、リミタ板全体の寿命もその
端部の損耗によって決まってし甘う。さらに、リミタ板
の端部での損耗が大きいため不純物イオンの混入量が増
大して低2材料を用いたことによる効果が発揮できない
という不具せがある。
On the other hand, it is known that the bremsstrahlung radiation loss of electrons due to impurity ions increases as the number of charges on the impurity ions increases, as described above. When the bremsstrahlung radiation loss of electrons increases, problems occur in cooling the core plasma. Low atomic weight materials such as phytophytes (hereinafter referred to as
A method has been proposed in which the entire surface of the limiter plate is covered with a material called "Low 2 material". However, even if this method is used, wear and tear near the end of the limiter plate still remains. This will be explained with reference to FIG. FIG. 4 is an enlarged sectional view of the end portion 8A of the curved limiter plate 8, and in the figure, 9 indicates lines of magnetic force. Incident ions follow these magnetic field lines 9
The light enters the limiter plate 8 along the line . In this case, limiter plate 8
In the vicinity of the end 8A, the angle between the lines of magnetic force 9 and the limiter plate 8 is a right angle. Therefore, even with the curved limiter plate 8, the effect of enlarging the incident surface as described above cannot be expected. Furthermore, the lifespan of the limiter plate as a whole is determined by wear and tear on its ends. Furthermore, there is a disadvantage that the end portion of the limiter plate is heavily worn, so that the amount of impurity ions mixed in increases, and the effect of using a low 2 material cannot be achieved.

[発明の目的コ 不発8Aij1上記早悄に鑑みてなされたもので、その
目的は、リミタ板の端部でのスパッタリングによる損耗
を防止するとともにリミタ材料のスパッタリングにより
生ずる不純物の混入量を低減することを可能とした核融
合装置におけるリミタ装置を提供することにある。
[Purpose of the Invention] This was made in view of the above-mentioned premature failure, and its purpose is to prevent wear due to sputtering at the end of the limiter plate and to reduce the amount of impurities mixed in by sputtering of the limiter material. It is an object of the present invention to provide a limiter device in a nuclear fusion device that makes possible the following.

[発明の概要] 本発明は、上記目的を達成するために、核融合装置にお
けるリミタ装置のリミタ板の中央部をべリリウム、グラ
ファイト等の低Z材料で、またその端部なタングステン
等の高Z材料で構成してリミタ板端部での材料の損耗を
低減するようにした核融合装置のリミタ装置に関するも
のである。
[Summary of the Invention] In order to achieve the above object, the present invention makes the central part of the limiter plate of the limiter device in a nuclear fusion device with a low Z material such as beryllium or graphite, and the end part with a high Z material such as tungsten. This invention relates to a limiter device for a nuclear fusion device that is made of Z material to reduce material wear at the end of the limiter plate.

次に、本発明にょろりミタ装置、すなわち、とくにリミ
タ板端部にタングステン等の高Z材料を使用することに
よりリミタ板端部の損耗量が十分に低減できることにつ
いて以下に定量的に説明する0 リミタ板のスパッタリングによる損耗速度は、前に述べ
たように入射粒子束とスパッタ比との積に比例する。m
1記した第3図に示した湾曲形状リミタ板8の場合、実
質的に入射粒子束を減少させてリミタ板の構成材料の損
耗量を低減させる方法であるが前述せる理由により、リ
ミタ板端部では入射粒子束の低減は望めなく、従ってリ
ミタ板端部での損耗1lli−の低減も充分に期待する
ことができない。
Next, it will be quantitatively explained below that the wear amount of the limiter plate end can be sufficiently reduced by using the Nyorori limiter device of the present invention, that is, by using a high Z material such as tungsten especially for the limiter plate end. The wear rate of the limiter plate due to sputtering is proportional to the product of the incident particle flux and the sputtering ratio, as stated above. m
In the case of the curved limiter plate 8 shown in FIG. It cannot be expected to reduce the incident particle flux at the end of the limiter plate, and therefore it cannot be expected to sufficiently reduce the wear at the end of the limiter plate.

一方、桐材のスパッタ比Sは、入射イオンのエイ・ルギ
ーをE(eV)とすると、実験式によれば下記zMI 
E −Eth S(、、J” Z?ZL M、 ((H−Eth)+5
0”。21〕z(Btam/1on)O たyし、Uo・・・リミタ材料の結合エネルギー(eV
)Zl、 z、、・・・各々の入射イオンとリミタ材料
の電荷数 MI、 ML・・・各々の入射イオンとリミタ材料の原
子量 Eth・・・スパッタリングに対する入射イオンエネル
ギーのしきい値 ここで、スパッタリングに対する入射イオンエネルギー
のしきい値Ethは各々の入射イオンとリミタ材料の原
子量Ml、MLの大小関係により各々、Hth = (
Ml +M、、) ”Uo /4MIML (Mr <
 ML ) 、 Hth=MLUo/M工(Ml>ML
)で与えられる。
On the other hand, the sputtering ratio S of paulownia wood is given by the following zMI according to the experimental formula, assuming that the energy of incident ions is E (eV).
E −Eth S(,,J” Z?ZL M, ((H−Eth)+5
0”.21]z(Btam/1on)O and Uo...Binding energy of limiter material (eV
) Zl, z,...Number of charges of each incident ion and limiter material MI, ML...Atomic weight of each incident ion and limiter material Eth...Threshold of incident ion energy for sputtering Here, The threshold value Eth of the incident ion energy for sputtering is determined by the relationship between the atomic weights Ml and ML of each incident ion and the limiter material, respectively, as follows: Hth = (
Ml +M,,) ”Uo /4MIML (Mr <
ML), Hth=MLUo/M Engineering (Ml>ML
) is given by

第5図は、■水素イオンが入射した場合のベリリウムB
eとタングステンWとについてのスノくツタ比の入射イ
オンエネルギー依存性の計算例を示した図でおる。
Figure 5 shows ■ Beryllium B when hydrogen ions are incident.
2 is a diagram showing an example of calculation of the incident ion energy dependence of the Snow Ivy ratio for e and tungsten W.

ところで、入射イオンのエネルギーはリミタ板表面の位
置によって異なりリミタ板中央部でi keV〜数ke
Vとなり、端部に向うに従い除々に入射エネルギーは低
い値となっている。とくにリミタ板端部は周辺プラズマ
層でも外側の領域に位置し炉心プラズマから離れている
ためプラズマ温度が低く、従って入射エネルギーも低く
その値は数十乃至数百eVとなる。このエネルギー範囲
では第5図のベリリウムの例に示したように一般に低2
材料のスパッタ比は非常に太きい。さらに、リミタ板端
部では前述のごとく入射粒子束の低減も期待できない。
By the way, the energy of incident ions varies depending on the position on the limiter plate surface, and ranges from i keV to several ke at the center of the limiter plate.
V, and the incident energy gradually decreases toward the end. In particular, the end of the limiter plate is located in the outer region of the peripheral plasma layer and is away from the core plasma, so the plasma temperature is low, and therefore the incident energy is also low, ranging from tens to hundreds of eV. In this energy range, as shown in the example of beryllium in Figure 5, it is generally low
The material has a very high sputtering ratio. Furthermore, as mentioned above, the incident particle flux cannot be expected to be reduced at the end of the limiter plate.

従って、端部な自むリミタ板全体に低Z桐材を用いた場
合、この二つの相乗効果によって、リミタ端部での杓科
の損耗は極めて深刻なものとなる。その結果、炉心への
不純物の混入量が結局増大することになり、せっかく低
2材料を用いることの効果を十分に生かすことが不すカ
ヒになる。
Therefore, when low-Z paulownia wood is used for the entire limiter plate including the end portions, the synergistic effect of these two causes extremely serious wear and tear on the end portions of the limiter. As a result, the amount of impurities mixed into the core ends up increasing, making it difficult to fully utilize the effects of using low-2 materials.

一方、高2材料の場合は、第5図のタングステン(W)
の例に示したように、数十乃至百eVのエネルギー範囲
ではスパッタリングはほとんど起こらない。従って、リ
ミタ板端部にAZ材料を用いることにより端部での損耗
」4を十分に低減することが可能となる。また、その結
果不純物の混入Mも十分に低減することが可能となり、
中央部を含む他の部分に低Z材料を用いることによる効
果も十分に発揮することができる。
On the other hand, in the case of high 2 material, tungsten (W) in Figure 5
As shown in the example, sputtering hardly occurs in the energy range of several tens to one hundred eV. Therefore, by using the AZ material at the end of the limiter plate, it is possible to sufficiently reduce the wear and tear at the end. In addition, as a result, it is possible to sufficiently reduce the amount of impurities mixed in, M.
The effect of using a low Z material in other parts including the central part can also be fully exhibited.

[発明の実施例] 本発明の一実Ii[i例を図面を参照して説明する。[Embodiments of the invention] An example of the present invention will be described with reference to the drawings.

第6図は本発明、の一実施例の拡大断面図である。FIG. 6 is an enlarged sectional view of one embodiment of the present invention.

同図に示すように、本発明のリミタ板用に全体として湾
曲形状をなしており、その<汚hv、は前記弯曲形状と
同様な湾曲形状を有するリミタ板支持部110両端部分
に1QIZ材料よりなる端部12,12を設け、その中
央部分には低2材料よりなる中央部13を設けるように
一体に構成したものである。なお、4は炉心プラズマ、
7は周辺プラズマ層である。
As shown in the figure, the limiter plate of the present invention has a curved shape as a whole, and the limiter plate supporting portion 110 has a curved shape similar to the curved shape described above. The end portions 12, 12 are provided, and a central portion 13 made of a low-grade material is provided in the central portion thereof. In addition, 4 is core plasma,
7 is a peripheral plasma layer.

上記したようにリミタ板10を構成すると、既に説明し
たように低2材料のリミタ板中央部の入射エネルギーは
1 keV乃至数keVとなるが、高Z材料の’Jミタ
板端邪の入射エネルギーは数十乃至百eVと、J\さい
ので、この程度のエネルギー範囲ではスバッタリングI
rJ−1註とんど起らず、リミタ板端部での損hhiを
十分に低減することができる。従って、リミタ板端部で
の不純物の混入量も十分に低減することができ、リミタ
板の中央部を含むその端部以外の他の部分に低Z材料を
用いることの効果も十分に発揮することができる。
When the limiter plate 10 is configured as described above, the incident energy at the center of the limiter plate made of low Z material is 1 keV to several keV as described above, but the incident energy at the edge of the limiter plate made of high Z material is 1 keV to several keV. is several tens to 100 eV, J\, so in this energy range, sputtering I
rJ-1 Note: This hardly occurs, and the loss hhi at the end of the limiter plate can be sufficiently reduced. Therefore, the amount of impurities mixed in at the end of the limiter plate can be sufficiently reduced, and the effect of using the low-Z material in other parts other than the end including the center of the limiter plate can also be fully demonstrated. be able to.

[発明の効果] 以上説明したように、本発明によれは、リミタ板とくに
その端部での損耗黛を十分に低減することが可能となる
ので、核融合装置の保守性及び稼動率が向上する。筐た
、スパッタされたりリミタ材料の炉心への混入量も低減
さJ′シ、制動放射損失による炉心出力の低下も十分抑
えられるので核融合炉の経済的効果は非常に大きいもの
となる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to sufficiently reduce the wear and tear on the limiter plate, especially at its ends, thereby improving the maintainability and operating rate of the fusion device. do. The amount of limiter material that is sputtered into the reactor core is reduced, and the decrease in core power due to bremsstrahlung radiation loss is also sufficiently suppressed, so the economic effects of the fusion reactor are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のトカマク型核融合装置の概略断面図、第
2図id′第1ν1における炉心プラズマ及びリミタ板
部分を拡大しfc概略図、■3図は従来の湾曲形状リミ
タ板の概略断面図、第4図は第3図のリミタ板端部の拡
大図、第5図はリミタ材スパッタ比の入射イオンエネル
ギー依存特性を示す図、第6図は本発明の一実施例を示
す概略断面図であるO 1・・・トロイダル磁場コイル 2・・・ボロイダル磁場コイル 3・・・真空容器 4・・・炉心プラズマ5.8.10
・・・リミタ板 6・・・排気ダクト7・・・周辺プラ
ズマ層 代理人 弁理士 猪 股 祥 晃(はか1名)第 1 
図 第 2 図 第 33図
Figure 1 is a schematic cross-sectional view of a conventional tokamak-type fusion device, Figure 2 is an enlarged fc schematic diagram of the core plasma and limiter plate portions in id' 1v1, and Figure 3 is a schematic cross-section of a conventional curved limiter plate. 4 is an enlarged view of the end of the limiter plate in FIG. 3, FIG. 5 is a diagram showing the incident ion energy dependence of the limiter material sputtering ratio, and FIG. 6 is a schematic cross section showing an embodiment of the present invention. O in the figure 1... Toroidal magnetic field coil 2... Voloidal magnetic field coil 3... Vacuum vessel 4... Core plasma 5.8.10
...Limiter plate 6...Exhaust duct 7...Peripheral plasma layer Agent Patent attorney Yoshiaki Inomata (1 person) 1st
Figure 2 Figure 33

Claims (2)

【特許請求の範囲】[Claims] (1)トーラス形状の真空容器内部に配設されるリミタ
板を備えた核融合装置におけるリミタ装置において、前
記リミタ板のボロイダル方向断面の中央部を低原子量材
料で、またその端部を高原子量材料で構成することによ
り該リミタ板端部でのスパッタリングによる損耗を低減
するようにしたことを特徴とする核融合装置におけるリ
ミタ装置。
(1) In a limiter device in a nuclear fusion device equipped with a limiter plate disposed inside a torus-shaped vacuum vessel, the center portion of the cross section in the voloidal direction of the limiter plate is made of a low atomic weight material, and the end portion is made of a high atomic weight material. 1. A limiter device in a nuclear fusion device, characterized in that the limiter device is made of a material to reduce wear due to sputtering at the end of the limiter plate.
(2)低原子量材料はベリリウムまたはグラファイト、
島原子葉材料はタングステンである特許請求の範囲第1
項記載の核融合装置におけるリミタ装置。
(2) Low atomic weight materials are beryllium or graphite,
Claim 1: The island atomic leaf material is tungsten.
A limiter device in the nuclear fusion device described in .
JP58205758A 1983-11-04 1983-11-04 Limiter device in nuclear fusion device Pending JPS6098385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205758A JPS6098385A (en) 1983-11-04 1983-11-04 Limiter device in nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205758A JPS6098385A (en) 1983-11-04 1983-11-04 Limiter device in nuclear fusion device

Publications (1)

Publication Number Publication Date
JPS6098385A true JPS6098385A (en) 1985-06-01

Family

ID=16512172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205758A Pending JPS6098385A (en) 1983-11-04 1983-11-04 Limiter device in nuclear fusion device

Country Status (1)

Country Link
JP (1) JPS6098385A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289863A (en) * 1985-06-15 1986-12-19 Ikeuchi Tekkosho:Kk Processed food having shape of rod meat
JPH0714829A (en) * 1993-06-23 1995-01-17 Nec Corp Manufacture of oxide thin film
US6261648B1 (en) * 1994-02-15 2001-07-17 Japan Atomic Energy Research Institute Plasma facing components of nuclear fusion reactors employing tungsten materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289863A (en) * 1985-06-15 1986-12-19 Ikeuchi Tekkosho:Kk Processed food having shape of rod meat
JPH0714829A (en) * 1993-06-23 1995-01-17 Nec Corp Manufacture of oxide thin film
US6261648B1 (en) * 1994-02-15 2001-07-17 Japan Atomic Energy Research Institute Plasma facing components of nuclear fusion reactors employing tungsten materials
US6610375B2 (en) 1994-02-15 2003-08-26 Japan Atomic Energy Research Institute Plasma facing components of nuclear fusion reactors employing tungsten materials

Similar Documents

Publication Publication Date Title
Matzke et al. Ion-bombardment-induced radiation damage in some ceramics and ionic crystals: determined by electron diffraction and gas release measurements
Delbar et al. Elastic and inelastic scattering of alpha particles from Ca 4 0, 4 4 over a broad range of energies and angles
Booth et al. Tritium target for intense neutron source
Moxom et al. Threshold effects in positron scattering on noble gases
JPS6098385A (en) Limiter device in nuclear fusion device
Garner et al. Ion-induced spinodal-like decomposition of Fe-Ni-Cr invar alloys
Gelles et al. An experimental method to determine the role of helium in neutron-induced microstructural evolution
Hucks et al. Energy and angular distribution of gold and copper atoms sputtered with either 15-or 30-KeV H+, He+, and Ar+ ions
Van Nieuwenhove et al. Ion cyclotron resonance heating of a tokamak plasma using an antenna without a Faraday shield
Lim Meson production in the interactions of 26.7 GeV/c protons with emulsion nuclei
Bissinger et al. Directional correlation measurements in 24Mg (3He, pγ) 26Al
Brooks Self-consistent calculations of edge temperature and self-sputtering of the limiter surface for tokamak fusion reactors
Harima et al. An approximate transmission dose buildup factor for stratified slabs
Auciello et al. Further experimental evidence on the importance of tertiary effects in the evolution of pyramids on bombarded copper
Greenwald et al. Depletion of ripple-trapped particles in the Alcator tokamaks
Baranov et al. On the mechanism of the sputtering of fine-grained targets by heavy multicharged ions
Von Holtey Electron beam collimation at LEP energies
Oomura et al. Radiation streaming analysis for the beam ports of the laser fusion reactor, SENRI-I
Bauer et al. K-shell ionization of Si, Ti, Cu and Ag for incident protons, 4He and14N ions in the energy range of 0.17–2.0 MeV/amu
Behrisch Sputtering with neutrons
US2043387A (en) Metals and method of forming same
Zuhr et al. Deposition probe measurements of impurity and plasma fluxes near the wall in ISX-B
Perfilov et al. TERNARY FISSION OF PLUTONIUM
Toth et al. SINGLE-NUCLEON TRANSFER EXCITATION FUNCTIONS
Constantinescu et al. Radiation damage studies on stainless steel, Ni, Cu, Mo for nuclear fusion reactors