JPS6098130A - Fuel injection device - Google Patents

Fuel injection device

Info

Publication number
JPS6098130A
JPS6098130A JP58208018A JP20801883A JPS6098130A JP S6098130 A JPS6098130 A JP S6098130A JP 58208018 A JP58208018 A JP 58208018A JP 20801883 A JP20801883 A JP 20801883A JP S6098130 A JPS6098130 A JP S6098130A
Authority
JP
Japan
Prior art keywords
fuel injection
solenoid valve
overflow
spill
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58208018A
Other languages
Japanese (ja)
Inventor
Masahiko Miyamoto
宮本 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP58208018A priority Critical patent/JPS6098130A/en
Priority to US06/622,236 priority patent/US4562810A/en
Priority to DE19843423167 priority patent/DE3423167A1/en
Publication of JPS6098130A publication Critical patent/JPS6098130A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • F02M41/126Variably-timed valves controlling fuel passages valves being mechanically or electrically adjustable sleeves slidably mounted on rotary piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • F02D1/02Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered
    • F02D1/06Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered by means dependent on pressure of engine working fluid
    • F02D1/065Controlling fuel-injection pumps, e.g. of high pressure injection type not restricted to adjustment of injection timing, e.g. varying amount of fuel delivered by means dependent on pressure of engine working fluid of intake of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M41/00Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor
    • F02M41/08Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined
    • F02M41/10Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor
    • F02M41/12Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor
    • F02M41/123Fuel-injection apparatus with two or more injectors fed from a common pressure-source sequentially by means of a distributor the distributor and pumping elements being combined pump pistons acting as the distributor the pistons rotating to act as the distributor characterised by means for varying fuel delivery or injection timing
    • F02M41/125Variably-timed valves controlling fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To aim at safety in case of trouble happening in an overflow regulating solenoid valve, by installing a separate overflowing mechanism in addition to the overflow regulating solenoid valve. CONSTITUTION:An overflow regulating solenoid valve 20 is installed in a passage interconnecting a high pressure chamber 10 of a fuel-injection pump to the low pressure side, while as a separate overflowing mechanism, a spill port 51 and a spill ring 52 are installed in a plunger 8 and driven by an actuator 60. Thus even when trouble happens in the solenoid valve 20, this separate overflowing mechanism is operated whereby an injection quantity is limited to the specified value and any danger such as overrunning or the like is preventable from occurring.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関の燃料噴射装置に関するものであり、
特には電磁弁スピル調量システムのオーバーラン防止の
ための安全装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a fuel injection device for an internal combustion engine,
In particular, it relates to a safety device for preventing overruns in electromagnetic valve spill metering systems.

〔従来技術〕[Prior art]

従来、特公昭51−34936等に示されるように燃料
噴射ポンプのプランジャにより圧縮される高圧ポンプ室
と低圧側とを連通ずる通路中に電磁弁を設け、該電磁弁
の開閉弁を電磁回路にて制御して燃料噴射量調量を行う
所謂ffi 磁弁スピル調量式の燃料噴射ポンプが提案
され°ζいる。
Conventionally, as shown in Japanese Patent Publication No. 51-34936, etc., a solenoid valve is provided in a passage communicating between a high-pressure pump chamber compressed by a plunger of a fuel injection pump and a low-pressure side, and the on-off valve of the solenoid valve is connected to an electromagnetic circuit. A so-called ffi magnetic valve spill metering type fuel injection pump has been proposed, which controls the amount of fuel to be injected.

本発明について説明する前に、まずn11記従来の電磁
弁スピル調量方式の燃料噴射ポンプを公知のボッシュV
B型を基本とする分配型噴射ポンプに適用した場合を例
にとって第1図に従って説明する。
Before explaining the present invention, first of all, the conventional electromagnetic valve spill metering type fuel injection pump (n11) is compared to the well-known Bosch V
An example of application to a distribution type injection pump based on type B will be explained with reference to FIG.

ハウシング(1)に支承されたドライブシャフト(2)
は図示せぬエンジンによって回転駆動される。該シャフ
トにはキー(3)にて一体的に公知のベーン式フィード
ポンプ(4)が結合され、前記シャフトと同軸一体に回
転する。該フィードポンプの作用により燃料は図示せぬ
燃料タンクから、図示せぬフィルタ等を経て吸入口(5
)より吸い込まれ、レギュレートバルブ(16) (7
)設定する所定圧に加圧されてポンプハウジング室(6
)内に流入する。
Drive shaft (2) supported by housing (1)
is rotationally driven by an engine (not shown). A known vane type feed pump (4) is integrally connected to the shaft by a key (3) and rotates coaxially with the shaft. Due to the action of the feed pump, fuel flows from a fuel tank (not shown), through a filter (not shown), etc., to an inlet (5).
) from the regulator valve (16) (7
) The pump housing chamber (6
).

更に前記ドライブシャフト(2)には公知のフェイスカ
ム式圧送機構(7)を介して圧縮、分配プランジャ(8
)が同軸に、かつ回転方向には一体的に、軸方向には往
復動自在に結合されている。
Furthermore, a compression and distribution plunger (8) is connected to the drive shaft (2) via a known face cam type pressure feeding mechanism (7).
) are coupled coaxially and integrally in the rotational direction, and reciprocally movable in the axial direction.

前記したハウジング室内の燃料は、公知のカム機構によ
るプランジャ下降(図中左方への運動)時に吸入口(9
)より前記プランジャ(8)の端面に形成される高圧ポ
ンプ室(10)に吸入され、引き続き同じくカム機構に
よる圧縮行程時には、高圧に圧縮されつつ分配ボー)(
11)、通路(12) 、吐出弁(13)を経て図示せ
ぬノスルよりエンジンの燃焼室内に噴射される。
The fuel in the housing chamber described above flows into the suction port (9) when the plunger descends (moves to the left in the figure) by a known cam mechanism.
) into the high-pressure pump chamber (10) formed on the end face of the plunger (8), and during the compression stroke by the same cam mechanism, it is compressed to high pressure and the distribution bow () (
11), a passage (12), and a discharge valve (13) before being injected into the combustion chamber of the engine from a nostle (not shown).

ここでプランジャ(8)が所定の圧送ストロークに達す
る時点で電磁スピル弁(20)の:1イル(21)に電
流が通じられると、ステーク(22)に発生した磁力が
バネ(23)に打も勝ってニードル(24)を吸引しシ
ート部(25)を開放して前記高圧ポンプ室(10)内
の圧縮された燃料を通路(26)(27)を経て前記ハ
ウジング室(6)内に溢流させて噴射が終了する。
When the plunger (8) reaches a predetermined pressure stroke and current is applied to the first coil (21) of the electromagnetic spill valve (20), the magnetic force generated in the stake (22) impinges on the spring (23). The needle (24) is suctioned and the seat part (25) is opened to allow the compressed fuel in the high pressure pump chamber (10) to flow through the passages (26) and (27) into the housing chamber (6). The injection ends with overflow.

噴射時期は公知の油圧タイマ機構(30)によって前記
プランジャ(8)の回転に対する往復連動の位相を変化
させ°ζ制御する。
The injection timing is controlled by a known hydraulic timer mechanism (30) by changing the phase of the reciprocating movement relative to the rotation of the plunger (8).

(40)は前記電磁スピル弁(2o)の開弁時期を決定
する為のボ5ブ回転角信号を出力する。
(40) outputs a bob rotation angle signal for determining the opening timing of the electromagnetic spill valve (2o).

例えば公知の電磁ピックアップと多数突起を有する円盤
状部材とから成る回転センサである。
For example, it is a rotation sensor consisting of a known electromagnetic pickup and a disc-shaped member having a large number of protrusions.

以上説明した電磁弁スピル調量方式に於いては、以下に
述べる重大な欠点がある。
The electromagnetic valve spill metering system described above has the following serious drawbacks.

即ち本型式のポンプに於いて、万一前記電磁弁(20)
のコイルが断線したり、あるいは電磁弁駆動回路に故障
が生じたりして該電磁弁への通電が正常に為さず、該弁
が正しく開弁し得ない場合には、本燃料噴射ポンプの高
圧ポンプ室(JO)内で圧縮された燃料は他に何ら溢流
路が無いので常にフェイスカム機構の全圧送ストローク
にわたって噴射されてしまう。
In other words, in this type of pump, in the unlikely event that the solenoid valve (20)
If the coil of this fuel injection pump is disconnected or a failure occurs in the solenoid valve drive circuit and the solenoid valve is not energized normally and the valve cannot open correctly, the fuel injection pump The fuel compressed in the high pressure pump chamber (JO) is always injected over the entire pumping stroke of the face cam mechanism since there is no other overflow path.

従って正常な噴射量制御を行っている場合の最大噴射量
の1.5〜2倍に達する過剰な燃料が、運転者の意志と
は何らか関係なく噴射されることになり、異常な排気黒
煙を生じるのみならず、エンジンの出力制御が不可能と
なりエンジン回転数が異常な高回転数となるオーバラン
に至るという極めて重大な不具合を発生ずる。
Therefore, an excessive amount of fuel reaching 1.5 to 2 times the maximum injection amount under normal injection amount control is injected regardless of the driver's will, resulting in abnormal exhaust black. This not only produces smoke, but also causes an extremely serious problem in that it becomes impossible to control the engine output and the engine speed reaches an abnormally high speed, resulting in an overrun.

この様な重大な不具合を回避する為の手段として、従来
の噴射ポンプでは例えばエンジン吸気管に設けた吸気絞
り弁を閉じたり、あるいは燃料吸入通路中に設けられた
エンジン停止用の燃料遮断弁を閉じる等の方法が提案さ
れ、また実用化されてもいるが、前者は吸気を絞った」
二に最大噴射量以上の燃料を供給するので極端なtJ)
気黒煙を発するという問題点があり、また後省の方法で
は異常時には即座にエンジンが停止し゛ζ以後の走行が
不能となってしまい、異常発生現場の状況によっζは必
ずしも安全対策たり得ない恐れがあるという問題点があ
る。
As a means to avoid such serious problems, conventional injection pumps close the intake throttle valve installed in the engine intake pipe, or install a fuel cutoff valve installed in the fuel intake passage to stop the engine. Methods such as closing the valve have been proposed and have even been put into practical use, but the former restricts the intake air.
(2) Extreme tJ as it supplies more fuel than the maximum injection amount to
There is a problem that it emits dark smoke, and in the case of the method described later, the engine stops immediately in the event of an abnormality, making it impossible to drive beyond ζ. Depending on the situation at the site where the abnormality occurs, ζ may not necessarily be a safety measure The problem is that there is a possibility that it will not be possible.

〔発明の目的〕[Purpose of the invention]

本発明は以上の不具合に鑑みてなされたものである。 The present invention has been made in view of the above problems.

本発明のmlの目的は、電磁ブ「スピル調量方式の噴射
ポンプに於いて、該電磁スピル弁の断線等の故障時にも
、エンジンオーバランに至る様な異常な燃料噴射量増加
を回避することのできる安全装置を提供することにある
The purpose of the ml of the present invention is to avoid an abnormal increase in fuel injection amount that may lead to engine overrun even in the event of a failure such as disconnection of the electromagnetic spill valve in an injection pump using an electromagnetic valve spill metering method. The goal is to provide safety equipment that can

更に本発明のより好ましい実施形態に於いては、前記安
全装置の作動時にも、噴射ポンプの噴射量を零とはせず
、低速による回避走行程度は可能な少量の噴射量を維持
できることをも目的とする。
Furthermore, in a more preferred embodiment of the present invention, even when the safety device is activated, the injection amount of the injection pump is not reduced to zero, and the injection amount can be maintained at a small amount that is possible during low-speed evasive driving. purpose.

更に本発明の他の目的として、該安全装置機構を用いて
、極低温始動時等の電磁ブr駆動電圧の低下に伴い電磁
弁の作動が不正常となる場合の始動時黒煙発生の防止を
も併せて行うことをも可能とすることを目的とする。
Furthermore, another object of the present invention is to use the safety device mechanism to prevent the generation of black smoke at startup when the solenoid valve operates abnormally due to a drop in the electromagnetic brake drive voltage such as during cryogenic startup. The purpose is to make it possible to do both.

(発明の構成〕 本発明は溢流調量様の電磁弁の他に更に別の溢流機構を
設け、溢流調量用電磁弁に異常が発生した場合には別の
溢流機構を作動さゼて燃料噴射量を所定量に制限するこ
とを特徴とするものである。
(Structure of the Invention) The present invention provides another overflow mechanism in addition to the overflow regulating solenoid valve, and activates the other overflow mechanism when an abnormality occurs in the overflow regulating solenoid valve. Additionally, the fuel injection amount is limited to a predetermined amount.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溢流調量用電磁弁に異常が発生した場
合においても異常な排気黒煙の発生を防止できるのみな
らず、エンジンオーバーラン等の危険を防止でき、しか
も低速による回避走行程度は可能となる少量の燃料噴射
量を維持することも可能にできるという優れた効果が得
られる。
According to the present invention, even if an abnormality occurs in the overflow regulating solenoid valve, it is possible not only to prevent the generation of abnormal exhaust black smoke, but also to prevent dangers such as engine overrun, and moreover, avoidance driving at low speed. An excellent effect can be obtained in that it is possible to maintain a small amount of fuel injection.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例に従って説明する。 Hereinafter, the present invention will be explained according to embodiments shown in the drawings.

まず、第2図に従って本発明の第1実施例を説明する。First, a first embodiment of the present invention will be described with reference to FIG.

第2図は本発明の第1実施例の主要部分の構造を示す要
部断面図であり、他の部分の構造は第1図に示した従来
のものと同じであるため省略する。
FIG. 2 is a cross-sectional view showing the structure of the main parts of the first embodiment of the present invention, and the structure of other parts is omitted because they are the same as the conventional one shown in FIG.

第1図ですでに説明した電磁弁スピ)I−調量方式の噴
射ポンプの構成に加えて、本発明の第1実施例ではプラ
ンジャ(8)の外周に開1コシ、高圧J!ンプ室(10
)と連通ずる少なくとも1個のスピルボート (51)
と、前記プランジ4・ (8)と精密に嵌合するスピル
リング(52)とを設ける。
In addition to the structure of the injection pump of the solenoid valve (SPI) metering method already explained in FIG. pump room (10
) at least one spill boat communicating with (51)
and a spill ring (52) that precisely fits into the plunger 4 (8).

スピルリング(52)にはレノ(−(53)が係合し、
レバー(53)は支点(54)にて支承され回転自在に
構成されていて、しかも前記スピルリング(52)の他
端に於いてバネ(55)により図中時計回り方向に常に
付勢され、かつp:全装ff(60)のストッパ(61
)との当接により−(位置決めされる。
Leno (-(53)) is engaged with the spill ring (52),
The lever (53) is supported on a fulcrum (54) and is configured to be rotatable, and is always urged clockwise in the figure by a spring (55) at the other end of the spill ring (52). and p: stopper (61) of full ff (60)
) is positioned by -(positioning).

前記安全装置アクチュエータ(60)としては本実施例
ではソレノイドアクチュエータを用いており、前記スト
ッパ(61)には磁性体より成るコア(62)が一体的
に取付けられ、ストッパ(61)及びこれと一体のコア
(62)は、コイル(63)への通電時には電磁力によ
って吸引されて図中右方へ動き、非通電時にはバネ(6
4)によって図中左方へ押圧されている。(65)は前
記ストッパ(61)の往復動を妨げることなく燃料噴射
ポンプのハウジング室(6)内の軽油が流出するのをシ
ールするためのベローズである。
In this embodiment, a solenoid actuator is used as the safety device actuator (60), and a core (62) made of a magnetic material is integrally attached to the stopper (61). When the coil (63) is energized, the core (62) is attracted by electromagnetic force and moves to the right in the figure, and when the coil (63) is not energized, the core (62) moves to the right in the figure.
4) is pushed to the left in the figure. (65) is a bellows for sealing the light oil in the housing chamber (6) of the fuel injection pump from flowing out without interfering with the reciprocating movement of the stopper (61).

次に第1実施例の作動を説明する。電磁スピル弁(20
)の正常作動時には、安全装置(60)のコイル(63
)には電流が通電されず、バネ(64)の押圧力によっ
′ζストラッパ61)は図中左方で静止しておりバネ(
55)に打ちかつてレバー(53)はピン(54)を中
心にし°CC図中暗時δ1方向回って位置決めされる。
Next, the operation of the first embodiment will be explained. Electromagnetic spill valve (20
) of the safety device (60) during normal operation, the coil (63
) is not energized, and the ′ζ strapper 61) is stationary on the left side of the figure due to the pressing force of the spring (64), and the spring (
55), the lever (53) is positioned by turning around the pin (54) in the direction δ1 when it is dark in the °CC diagram.

レバー(53)と係合するスピルリング(52)はこの
結果図中右方の所定の位置で静止している。
As a result, the spill ring (52) that engages with the lever (53) is stationary at a predetermined position on the right side of the figure.

公知のVE型のスピル機構から容易に理解できる如く、
該スピルリング(52)は図中右方にあるほど噴射量の
増量例であるから前記安全装置(60)のストッパ(6
1)のコイル非3ffl m Mストロークを適当に決
めることによって該噴射ポンプの供給できる最大噴射量
を任意に設定することができる。
As can be easily understood from the known VE type spill mechanism,
The spill ring (52) is closer to the right in the figure, since the injection amount is increased, so the stopper (6) of the safety device (60)
The maximum injection amount that can be supplied by the injection pump can be arbitrarily set by appropriately determining the coil non-3ffl m M stroke of 1).

本実施例の安全装置としての目的だけを達するためには
該スピルリング(52)は十分右方にてセットし、正常
な電磁弁(20)による噴射量調量に影響を与えぬよう
十分多い最大噴射量を設定すれば良いが、より好ましく
は該最大噴射量レベルをエンジン始動時の要求最大噴射
量にセ・ノドしておけば、エンジンの極寒時における始
動等で)<ソテリ電圧が低下し前記電磁スピル弁(20
)が正常に開閉し得ない場合にも、該スピルリング(5
1)によって機械的な最大噴射量を行なわしめ、始動時
の異常な黒煙発生を回避できるとシ))副次的な効果を
期待できる。
In order to achieve only the purpose of this embodiment as a safety device, the spill ring (52) should be set far enough to the right and sufficiently large so as not to affect the injection amount adjustment by the normal solenoid valve (20). It is sufficient to set the maximum injection amount, but it is more preferable to set the maximum injection amount level to the required maximum injection amount when starting the engine. and said electromagnetic spill valve (20
) cannot open or close normally, the spill ring (5
If 1) enables the mechanical maximum injection amount and avoids the generation of abnormal black smoke at startup, secondary effects can be expected.

次に電磁スピル弁(20)又はその駆動回路等に異常が
検出された場合には、図示せぬ電子制御回路によって前
記安全装置(60)のコイル(63)に電流が通じられ
、ストッパ(61)及びコア(62)は図中右方に吸引
される。この結果レバー(53)を介してスピルリング
(52)は図中左方に移動して燃料を減量させる。
Next, when an abnormality is detected in the electromagnetic spill valve (20) or its drive circuit, current is passed through the coil (63) of the safety device (60) by an electronic control circuit (not shown), and the stopper (61) ) and the core (62) are attracted to the right in the figure. As a result, the spill ring (52) moves to the left in the figure via the lever (53) to reduce the amount of fuel.

この場合もストッパ(61)のストロ−クラ最適に決定
して、異常時には高圧ポンプ室(10)の燃料を全てス
ピルリング部より溢流させて全くの無噴射としエンジン
を停止させても良いが、より好ましくは異常発生の現場
から最寄りの修理工場までの回避走行程度は可能な微少
な噴射量を供給できるようにセントしであるのが望まし
い。
In this case as well, the stroker of the stopper (61) may be optimally determined, and in the event of an abnormality, all of the fuel in the high-pressure pump chamber (10) may overflow from the spill ring, causing no injection at all and stopping the engine. More preferably, the degree of evasive travel from the site of the abnormality occurrence to the nearest repair shop is desirably short so that the smallest possible injection amount can be supplied.

次に以上述べた安全装置を制御する電子制御回路(80
)の構成について説明する。
Next, the electronic control circuit (80
) configuration will be explained.

簡単な方法とし、ではエンジン回転数を常時監視し、エ
ンジン11j1転数がエンジンの定格最高回転数を越え
た場合には、前記安全装置(60)のソレノイド(63
)へ通電するように構成すれば良い。
As a simple method, the engine speed is constantly monitored, and if the engine 11j1 rotation speed exceeds the rated maximum engine speed, the solenoid (63) of the safety device (60) is activated.
).

更により好ましい方法とし°Cは、第3図に示す如く、
電磁スピル弁(20)への配線の一部分(例えば0部)
の電位を監視し、例えば第3図の場合前記スピル弁(2
0)のON時には0部の電位がバッテリ電圧からアース
レベルへ低下することを利用して、マイクロコンピュー
タ等より成る監視部(83)にての部の電位を例えば所
定の時間間隔(例えば5 ms)ごとでサンプリングし
、0部の電位が連続して所定の時間(例えば0.53の
間)高レベルのままであれば、スピル(f’(20)又
はスピル弁駆動段(81)、あるいはパワートランジス
タ(82)等に異常有と判定し゛C安全装置アクチュエ
ータ (60)のソレノイド(63)へ通電するように
構成すればよい。
In an even more preferred method, the temperature is as shown in FIG.
Part of the wiring to the electromagnetic spill valve (20) (for example, part 0)
For example, in the case of FIG. 3, the potential of the spill valve (2) is monitored.
When 0) is turned on, the potential of the 0 section drops from the battery voltage to the ground level. Taking advantage of this fact, the monitoring section (83) consisting of a microcomputer etc. adjusts the potential of the 0 section at a predetermined time interval (for example, 5 ms). ), and if the potential of the 0 part remains at a high level continuously for a predetermined period of time (for example, 0.53), the spill (f' (20) or the spill valve drive stage (81), or It may be configured to determine that there is an abnormality in the power transistor (82) or the like and energize the solenoid (63) of the safety device actuator (60).

なお本発明を適用する電磁弁スピル調量方式の燃料噴射
ポンプの噴射量制御にはもともとマイクロコンピュータ
を用いた電子制御回路を用いるのが普通であるから、第
3図に示した異常検出の為の構成は電子制御回路のソフ
トウェア及びバー1′ウエアの一部に組み込んでおけば
良い。
Note that since it is normal to use an electronic control circuit using a microcomputer to control the injection amount of the fuel injection pump of the electromagnetic valve spill metering method to which the present invention is applied, the abnormality detection shown in FIG. The configuration may be incorporated into the software of the electronic control circuit and part of the software of bar 1'.

次にm4図に従って本発明の第2実施例を説明する。第
2図で説明した第1実施例と異なるのは安全装置アクチ
ュエータ(70)の構成である。
Next, a second embodiment of the present invention will be described with reference to diagram m4. What differs from the first embodiment described in FIG. 2 is the configuration of the safety device actuator (70).

第4図の実施例ではストッパ(71)には一体的にダイ
ヤフラム(72)が取すイ」けられ、ダイヤフラム(7
2)の両側には左側室(73)には呼吸孔(74)を経
て常時大気圧が、右側室(75)にはパイプ(76)及
び配管(100)、3方電磁弁(101)を経て大気圧
又は例えば発電機に取付けたブレーキ倍力用のバキュー
ムポンプ■により作られる負圧が選択的に連通される。
In the embodiment of FIG. 4, a diaphragm (72) is integrally disposed on the stopper (71), and the diaphragm (7
2) On both sides, the left side chamber (73) is always supplied with atmospheric pressure through the breathing hole (74), and the right side chamber (75) is connected to the pipe (76), piping (100), and three-way solenoid valve (101). Atmospheric pressure or, for example, negative pressure created by a brake boosting vacuum pump (2) attached to a generator is selectively communicated through the generator.

制御回路(90)は、スピル電磁弁(20)の正常時に
は3方電磁弁(101)を大気側に開成しており、この
時ダイヤフラム(72)の両端はともに大気圧となって
ストッパ(71)はバネ(78)、(79)のみによっ
てつりあう位置に止まる。この状態で第1実施例で説明
したように、スピルリング(52)は最大噴射量に合う
ようにセットされているものとする。
The control circuit (90) opens the three-way solenoid valve (101) to the atmosphere when the spill solenoid valve (20) is normal, and at this time both ends of the diaphragm (72) are at atmospheric pressure and the stopper (71) is opened. ) are held in a balanced position only by springs (78) and (79). In this state, as explained in the first embodiment, it is assumed that the spill ring (52) is set to match the maximum injection amount.

更に好ましくは、最大噴射量は調整ねしく102)によ
り微調整可能としておけば良い。
More preferably, the maximum injection amount can be finely adjusted using the adjustment mechanism 102).

スピル電磁弁(20)に異常が発生すると、制御回路(
90)は前記3方電磁弁(101)をj!J圧倒に開成
する。この結果ダイヤフラム(72)の右側室(75)
に負圧が連通され、ストッパ(71)は図中右方へ移動
し、レバー(53)を介してスピルリング(52)は減
量側へ動いて安全装置として作動してエンジンのオーバ
ランを防ぐ。
If an abnormality occurs in the spill solenoid valve (20), the control circuit (
90) connects the three-way solenoid valve (101) to j! J is overwhelmingly developed. As a result, the right chamber (75) of the diaphragm (72)
Negative pressure is communicated to the stopper (71), and the stopper (71) moves to the right in the figure, and the spill ring (52) moves to the reduction side via the lever (53) and operates as a safety device to prevent engine overrun.

この場合も、安全装置作動時にも微少な噴射量を噴射で
きるようにセットしておけば、回避走行が可能である。
In this case as well, evasive driving is possible if settings are made so that a small amount of fuel can be injected even when the safety device is activated.

更に3方電磁弁(101)を負圧倒に開成する時間比率
をいわゆるデユティ比制御すれば、異常時のバックアッ
プ用の簡易なガバナとして使用することも可能である。
Furthermore, if the time ratio for opening the three-way solenoid valve (101) under negative pressure is controlled by so-called duty ratio, it can be used as a simple governor for backup in case of an abnormality.

更に本実施例に於いて安全装置の不作動時には、電圧低
下時の始動時噴射量を安全装置の構成部品であるスピル
リング(52)にて決定するものを示したが、最近の過
給等を受ける高性能エンジンでは、過給大の場合の中高
速最大噴射量が始動時噴射量を越えるものがあり、この
場合前記スピル機構が始動時最大噴射量以上の噴射を不
可能にしてしまう問題が生じる。これを対策するには、
第4図で3方電磁弁(101)の大気側に、大気圧に代
えて過給圧を接続しておけば、過給圧の上昇に応じて前
記安全装置のスピル機構が決定する最大噴射量上限も上
昇し、スピル電磁弁(20)の正常時の全エンジン運転
域の正常な燃料噴射量制御を阻害しない。
Furthermore, in this embodiment, when the safety device is not activated, the injection amount at startup in the event of voltage drop is determined by the spill ring (52), which is a component of the safety device, but recent supercharging etc. In some high-performance engines that undergo heavy supercharging, the maximum injection amount at medium and high speeds exceeds the injection amount at startup, and in this case, the spill mechanism makes it impossible to inject more than the maximum injection amount at startup. occurs. To counter this,
In Fig. 4, if supercharging pressure is connected to the atmosphere side of the three-way solenoid valve (101) instead of atmospheric pressure, the spill mechanism of the safety device will determine the maximum injection according to the increase in supercharging pressure. The upper limit of the fuel injection amount also increases, so that the spill solenoid valve (20) does not inhibit normal fuel injection amount control over the entire engine operating range during normal operation.

更に第1、第2実施例に於いては、共にVE型燃料噴射
ポンプにおいて公知のスピルリング機構を用いて安全装
置を構成したが、要はプランジャの所定のストロークで
溢流を生じさせる溢流手段と該溢流手段により規制され
る燃料噴射量上限をスピルiI!磁弁の正常、異常に応
じて選択的に切り換える切換手段を有するものであれば
よい。
Furthermore, in both the first and second embodiments, the safety device was constructed using a well-known spill ring mechanism in the VE type fuel injection pump, but the point is that the overflow is caused by a predetermined stroke of the plunger. Spill the fuel injection amount upper limit regulated by the overflow means and the overflow means! Any device may be used as long as it has a switching means that selectively switches depending on whether the magnetic valve is normal or abnormal.

また安全装置のアクチュエータも、実施例で開示したソ
レノイドや負圧サーボ機構に限定されず、例えばDCモ
ータ、リニアソレノイド等の任意のアクチュエータが使
用可能である。
Further, the actuator of the safety device is not limited to the solenoid or negative pressure servo mechanism disclosed in the embodiments, and any actuator such as a DC motor or a linear solenoid can be used.

更に第5図は、本発明の最も簡便な実施例である第3実
施例であって、リリーフ弁(100)を単純なスプール
式電磁弁とし、該電磁弁を、常時高圧ポンプ室(10)
と連通ずる燃料通路(105)、(103)に臨ませ、
異常時にリリーフ弁(100)のコイル(102)に通
電するとスプール(101)が図中右方へ動き、通路(
103)と(104)とを導通さ・けることにより無噴
射又は微少噴射量とするよう構成しCいる。
Furthermore, FIG. 5 shows a third embodiment, which is the simplest embodiment of the present invention, in which the relief valve (100) is a simple spool-type solenoid valve, and the solenoid valve is always connected to the high-pressure pump chamber (10).
Facing the fuel passages (105) and (103) that communicate with
When the coil (102) of the relief valve (100) is energized in the event of an abnormality, the spool (101) moves to the right in the figure, causing the passage (
103) and (104) are electrically connected to each other so that no injection or a small amount of injection is made.

以上本発明の代表的な実施例について説明したが、本発
明はこれらの実施例に限られることはなく、種々の変形
が可能である。
Although typical embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の内燃機関の燃料噴射装置の改良に係る構
造を示す側面断面図、第2図は本発明の第1実施例の主
要部分の構造を示゛4要部断面図、第3図は第1実施例
の安全装置を制御Jる電子制御回路の回路図、第4図は
第2実施例の主要部分の構造を示す要部断面図、第5図
は第3実施例の主要部分の構造を示す要部断面図である
。 8、・・プランジャ、10・・・高圧ポンプ室、20・
・・溢流調量用電磁弁、51.52・・・別の溢流機構
をなずスピルボートおよびスピルリング、53・・・レ
バー、54・・・ピン、60.70・・・安全装置アク
チュエータ、100・・・別の溢流機構をなすリリーフ
弁。 代理人弁理士 岡 部 隆 fl’i 2図 第4図 1
Fig. 1 is a side sectional view showing a structure related to an improvement of a conventional fuel injection device for an internal combustion engine, and Fig. 2 shows a structure of main parts of a first embodiment of the present invention. The figure is a circuit diagram of the electronic control circuit that controls the safety device of the first embodiment, Figure 4 is a sectional view of the main parts of the second embodiment, and Figure 5 is the main part of the third embodiment. FIG. 3 is a cross-sectional view of the main part showing the structure of the part. 8. Plunger, 10. High pressure pump chamber, 20.
... Solenoid valve for overflow adjustment, 51.52 ... Spill boat and spill ring without separate overflow mechanism, 53 ... Lever, 54 ... Pin, 60.70 ... Safety device actuator , 100...Relief valve forming another overflow mechanism. Representative Patent Attorney Takashi Okabe fl'i Figure 2 Figure 4 Figure 1

Claims (1)

【特許請求の範囲】 (1)プランジャ(8)によって燃料が高圧に圧縮され
る高圧ポンプ室(10)と低圧側とを連通ずる通路中に
溢流調量用電磁弁(20)を配設し、該電磁弁(20)
を所定の時期に開弁して前記高圧ポンプ室(10)内の
高圧燃料を溢流させることにより燃料噴射を終了さセて
燃料噴射量を制御する電磁弁スピル方式の燃料噴射装置
において、前記溢流調量用電磁弁(20)の他に更に別
の溢流機構を設け、溢流調量用電磁弁(20ンに異常が
発生した場合には前記別の溢流機構を作動させて燃料噴
射量を所定量に制限することを特徴とする燃料噴射装置
。 +211iil記別の溢流機構は、前記溢流調量用電磁
弁(20)の正常時において燃料噴射量の上限を内燃機
関の始動時におIJる定格最大燃料噴射量と同程度又は
それよりやや多めの燃料噴射量に親制御る特許請求の範
囲第1項記載の燃料噴射装置。 (3)mI記溢流調量用電磁弁(20)の正常時におけ
る前記別の溢流機構が制限する最大燃料噴射量の上限値
を内燃機関の過給圧に応じて増加させる特a′[請求の
範囲第1項もしくは第2項のいずれかに記載の燃料噴射
装置。
[Claims] (1) An overflow regulating solenoid valve (20) is provided in a passage communicating between a high-pressure pump chamber (10) where fuel is compressed to high pressure by a plunger (8) and a low-pressure side. and the solenoid valve (20)
In the electromagnetic valve spill type fuel injection device, the solenoid valve spill type fuel injection device opens the valve at a predetermined time to cause the high pressure fuel in the high pressure pump chamber (10) to overflow, thereby ending the fuel injection and controlling the fuel injection amount. In addition to the overflow regulating solenoid valve (20), another overflow mechanism is provided, and when an abnormality occurs in the overflow regulating solenoid valve (20), the other overflow mechanism is activated. A fuel injection device characterized in that the fuel injection amount is limited to a predetermined amount. The fuel injection device according to claim 1, which controls the fuel injection amount to be equal to or slightly larger than the rated maximum fuel injection amount at IJ when starting. (3) For mI overflow adjustment. Feature a' [Claim 1 or 2] for increasing the upper limit of the maximum fuel injection amount limited by the separate overflow mechanism when the solenoid valve (20) is normal; 3. The fuel injection device according to any one of paragraphs.
JP58208018A 1983-06-23 1983-11-04 Fuel injection device Pending JPS6098130A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58208018A JPS6098130A (en) 1983-11-04 1983-11-04 Fuel injection device
US06/622,236 US4562810A (en) 1983-06-23 1984-06-19 Fuel injection pump
DE19843423167 DE3423167A1 (en) 1983-06-23 1984-06-22 FUEL INJECTION PUMP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208018A JPS6098130A (en) 1983-11-04 1983-11-04 Fuel injection device

Publications (1)

Publication Number Publication Date
JPS6098130A true JPS6098130A (en) 1985-06-01

Family

ID=16549309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208018A Pending JPS6098130A (en) 1983-06-23 1983-11-04 Fuel injection device

Country Status (1)

Country Link
JP (1) JPS6098130A (en)

Similar Documents

Publication Publication Date Title
EP1519031B1 (en) Device for controlling the flow of a high-pressure pump in a common-rail fuel injection system of an internal combustion engine
US20070272217A1 (en) Fuel Supply Device
US3630177A (en) Speed control for internal combustion engine
US6948480B2 (en) Injection system with an emergency operation function and an associated emergency operation method
US4545353A (en) Fuel injection system
JPH02140435A (en) Electronically controlled throttle valve for internal combustion engine
US7458362B2 (en) Fuel supply system for internal combustion engine
US4402290A (en) Fuel injection pump
US4393842A (en) Air/fuel ratio control system for internal combustion engines, having atmospheric pressure compensating function
KR100282831B1 (en) Fuel injection timing control system of fuel injection pump for diesel engine
US4300515A (en) Apparatus for actuating an adjustment device acting upon a control apparatus for exhaust recirculation in internal combustion engines
US4520780A (en) Diesel fuel injection pump with fuel injection cutoff upon detection of excessive actual fuel combustion time
US4562810A (en) Fuel injection pump
KR0184317B1 (en) Exhaust brake system for a motor vehicle
SU1338786A3 (en) Device for feeding fuel to internal combustion engine
US7216669B2 (en) Pressure regulating valve for common rail fuel injection systems
US4426969A (en) Overspeed safety means for fuel injection pumps of internal combustion engines
JPS6098130A (en) Fuel injection device
US4733640A (en) Fuel injection pump
US20050022791A1 (en) Pressure regulating valve for common rail fuel injection systems
JPH0146708B2 (en)
JPH0243022B2 (en)
WO2008149384A1 (en) Variable pressure fuel injection system
JP2006316965A (en) Solenoid valve
JPH0614056Y2 (en) Negative pressure control valve in exhaust gas recirculation system