JPS6097289A - Apparatus for measuring absorption energy distribution - Google Patents

Apparatus for measuring absorption energy distribution

Info

Publication number
JPS6097289A
JPS6097289A JP20534983A JP20534983A JPS6097289A JP S6097289 A JPS6097289 A JP S6097289A JP 20534983 A JP20534983 A JP 20534983A JP 20534983 A JP20534983 A JP 20534983A JP S6097289 A JPS6097289 A JP S6097289A
Authority
JP
Japan
Prior art keywords
liquid
radiation
film
isolation film
energy distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20534983A
Other languages
Japanese (ja)
Other versions
JPH0415916B2 (en
Inventor
Takio Tomimasu
富増 多喜夫
Tomohisa Misumi
三角 智久
Tetsuo Yamazaki
山崎 鉄夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20534983A priority Critical patent/JPS6097289A/en
Publication of JPS6097289A publication Critical patent/JPS6097289A/en
Publication of JPH0415916B2 publication Critical patent/JPH0415916B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/12Calorimetric dosimeters

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To make it possible to measure an absorption dose or absorption energy distribution with high accuracy without being affected by radioactive rays or an electromagnetic wave, by surrounding a heat sensor by an isolation film. CONSTITUTION:A heat sensor 1 for detecting the rising in the temp. of a liquid is surrounded by an isolation film 2. This isolation film is one inferior to heat conductivity and withstanding heat such as a Kapton film and, at the same time, it is necessary to constitute said film 2 from a substance having radiation resistance stronger than that of said Kapton film and hot corroded even by a liquid. In addition in order to reduce the disturbance of a radiation field in a liquid caused by the presence of the isolation film, a substance near to a liquid in an effective atomic number and capable of being made thin as possible is desirably used.

Description

【発明の詳細な説明】 この発明は、物質に放射線または電′m、波が照射され
ることにj:す、物質内の任意位置における温度上昇を
BI測することによって、その物質の吸収エネルギーの
空間分布の測定ができるようにした吸収エネルギー分布
測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention is based on the fact that when a substance is irradiated with radiation, electric waves, or waves, the absorbed energy of the substance can be determined by measuring the temperature rise at an arbitrary position within the substance. This invention relates to an absorbed energy distribution measuring device that can measure the spatial distribution of .

放射線または電磁波を照射された物質の温度上昇からそ
の物質が吸収したエネルギーを知ろうとする熱量計によ
る方法は、放射線計測方法の中で最も歴史の古いものの
1つである。
The method using a calorimeter, which attempts to determine the energy absorbed by a material irradiated with radiation or electromagnetic waves from the temperature rise of that material, is one of the oldest radiation measurement methods.

ところで、この熱量計による方法には2つの欠点があっ
た。その第1の欠点は、被照射物質の温度上昇が極めて
僅かなことであり、測定精度の向上が期待できない点で
ある。第2の欠点は物質の得た熱エネルギーが熱伝導や
熱対流によって物質全体に拡散されるため平均化された
吸収エネルギーを測定する結果となり、吸収エネルギー
分布の測定が困難な点である。」二記第2の欠点はビー
ム状の放射線または電磁波を照射された物質のように1
位置によって吸収線量(エネルギー)に大きな相違があ
る場合には、単純に従来の熱量計による方法を採用でき
ないことを意味している。第1の欠点は充分な量の放射
線を照射することによって物質の温度上昇を数℃程度に
すれば現在の熱センサの感度をもってすれば、0.1%
以下の測定精度が期待できるとともに、加速装置等によ
り大強度放射線を照射して数℃程度温度を上昇すること
は容易に実現できる。しかし、この場合にも上記第2の
欠点に対して考慮していなければ、あまり意味のある4
]1定とはならない。特に物質内の吸収エネルギー分布
を熱量計による方法で測定するためには第2の欠点を解
決することが不可欠であるにもかかわらず、現在までに
そのような熱量計は存在していない。
However, this method using a calorimeter had two drawbacks. The first drawback is that the temperature rise of the irradiated material is extremely small, and no improvement in measurement accuracy can be expected. The second drawback is that the thermal energy obtained by the material is diffused throughout the material by thermal conduction or convection, so the averaged absorbed energy is measured, making it difficult to measure the absorbed energy distribution. ”2 The second drawback is that materials irradiated with beam-like radiation or electromagnetic waves
If there is a large difference in absorbed dose (energy) depending on location, this simply means that the conventional method using a calorimeter cannot be used. The first drawback is that if a sufficient amount of radiation is irradiated and the temperature of the material is raised to a few degrees Celsius, the sensitivity of current thermal sensors would be 0.1%.
The following measurement accuracy can be expected, and it is easily possible to raise the temperature by several degrees Celsius by irradiating high-intensity radiation using an accelerator or the like. However, in this case as well, if we do not take into account the second drawback above, the 4.
] It is not constant. Although it is essential to overcome the second drawback, especially in order to measure the absorption energy distribution in a substance by calorimetric methods, no such calorimeters exist to date.

この発明は、上記の点にかんがみなされたもので、特に
放射線または電磁波が照射された流動性物質の吸収エネ
ルギーの空間分布を測定する際に重大な障害となる上記
第2の欠点を除去して、物質内の任意の位置での吸収エ
ネルギーの絶対値を得、これによって放射線がん治療、
あるいは加熱がん治療における吸収線量または吸収エネ
ルギーの計測精度の向上をはかったものである。以下こ
の発明について説明する。
This invention has been made in view of the above points, and eliminates the second drawback, which is a serious obstacle when measuring the spatial distribution of absorbed energy of a fluid material that has been irradiated with radiation or electromagnetic waves. , obtain the absolute value of absorbed energy at any position within the substance, and thereby radiation cancer treatment,
Alternatively, it aims to improve the measurement accuracy of absorbed dose or absorbed energy in thermal cancer treatment. This invention will be explained below.

第1図はこの発明の一実施例を示すもので、水等の液体
を被照射物質に選んだ場合を示す。この図において、1
は液体の温度上昇を検出する熱センサで、2は前記熱セ
ンサ1をとり囲む隔離膜である。この隔離膜2はカプト
ン膜のような熱伝導が悪く、熱に耐えるものであると同
時に、それ以上に耐放射線性が強く、さらに液体によっ
て腐蝕しない物質であることが必要である。、また、こ
の隔離膜2の存在による液体中の放射線場の擾乱をでき
るだけ小ごくするために、実効原子番号が液体に近く、
しかも充分に薄くできる物質を使用することが望ましい
。隔離膜2は第1図のように互いに密着させてハニカム
構造状に配置することもでき、また、第2図の他の実施
例に示すように適当な、例えば合成樹脂製の支持具3に
対してはしごの桟のような任意の間隔で配置することも
できる。
FIG. 1 shows an embodiment of the present invention, in which a liquid such as water is selected as the substance to be irradiated. In this figure, 1
2 is a thermal sensor that detects a rise in temperature of the liquid, and 2 is an isolation membrane surrounding the thermal sensor 1. The isolation membrane 2 needs to be made of a material that has poor thermal conductivity and is resistant to heat, such as a Kapton membrane, but also has stronger radiation resistance and is not corroded by liquid. In addition, in order to minimize the disturbance of the radiation field in the liquid due to the presence of the isolation membrane 2, the effective atomic number is close to that of the liquid.
Moreover, it is desirable to use a material that can be made sufficiently thin. The isolation membranes 2 can be arranged in close contact with each other in a honeycomb structure as shown in FIG. On the other hand, they can also be arranged at arbitrary intervals like the rungs of a ladder.

第1図、第2図の熱センサ1を用いて吸収エネルギー分
布を測定するには、隔離膜2を隔壁とするハニカム構造
体を水中に水平に置いて熱対流。
To measure the absorbed energy distribution using the thermal sensor 1 shown in FIGS. 1 and 2, a honeycomb structure having the isolation membrane 2 as a partition wall is placed horizontally in water, and heat convection occurs.

熱拡散を少なくする。熱センサ1は円筒内の水平方向、
すなわち矢印A方向の温度分布を測定する。
Reduce heat diffusion. Thermal sensor 1 is located in the horizontal direction inside the cylinder.
That is, the temperature distribution in the direction of arrow A is measured.

また、隔離膜2に対して垂直の方向から放射線または電
磁波Rを矢印B方向に入射させるばかりではなく、平行
方向あるいは隔離膜2と任意の角度で放射線または電磁
波Rを入射させることもできる。さらに、第1図、第2
図では隔離膜2を入射放射線または1L磁波の進行方向
に配着しているが、これを」1下方向に複数層積み重ね
て形成することもできる。
Further, the radiation or electromagnetic waves R can be made not only incident in the direction of arrow B from a direction perpendicular to the isolation membrane 2, but also in a parallel direction or at an arbitrary angle with respect to the isolation membrane 2. Furthermore, Figures 1 and 2
In the figure, the isolation film 2 is disposed in the direction of propagation of the incident radiation or the 1L magnetic wave, but it can also be formed by stacking a plurality of layers downward.

耐放射線性の隔#膜2で熱センサ1をとり囲む構造とし
ていることがこの発明の重要な点であり、これによって
液体の熱対流と熱拡散とを抑止できるため、熱センサ1
によりその位置での液体の温度上Aを知ることによって
吸収エネルギー分布を測定することができる。なお、実
際の使用に際しては、第1図、第2図に示したような装
置一式および被照射物質を、任意形状の容器に収納し、
外気と被照射物質との間の熱エネルギーの授受を極力抑
える必要がある。
An important point of this invention is that the thermal sensor 1 is surrounded by a radiation-resistant diaphragm 2, which prevents thermal convection and thermal diffusion of the liquid.
By knowing the temperature A of the liquid at that position, the absorbed energy distribution can be measured. In actual use, the complete set of equipment and the irradiated material as shown in Figures 1 and 2 are stored in a container of any shape.
It is necessary to suppress the exchange of thermal energy between the outside air and the irradiated material as much as possible.

以上説明したように、この発明は、隔離膜によって熱セ
ンサを囲むことで、囲まれた被照射物質の熱対流や熱拡
散を抑止するということ以外には、入射放射線の種類や
エネルギー、被照射物質の種類や量、隔離膜の材質や形
状1寸法、隔#:膜を有する熱センサの配置、熱センサ
と入射放射線または電磁波との幾何学的関係、さらに収
納容器の材質や形状などに限定されずに、被照射物質の
吸収エネルギー分布を測定できるという利点を有する。
As explained above, in addition to suppressing thermal convection and thermal diffusion of the surrounded irradiated material by surrounding the thermal sensor with an isolation film, the present invention is also applicable to the type and energy of incident radiation, Limited to the type and amount of the substance, the material and shape of the isolation membrane, its dimensions, the placement of the thermal sensor with the membrane, the geometrical relationship between the thermal sensor and the incident radiation or electromagnetic waves, and the material and shape of the storage container. It has the advantage of being able to measure the absorption energy distribution of the irradiated material without being exposed to radiation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す斜視図、第2図はこ
の発明の他の実施例を示す斜視図である。 図中、1は熱センサ、2は隔pI#膜、Rは放射線また
は電磁波である。
FIG. 1 is a perspective view showing one embodiment of the invention, and FIG. 2 is a perspective view showing another embodiment of the invention. In the figure, 1 is a thermal sensor, 2 is a partition pI# membrane, and R is radiation or electromagnetic waves.

Claims (1)

【特許請求の範囲】[Claims] 放射線に照射される任意量の任意の流動性物質を収納す
るための容器を有し、前記流動性物質が照射放射線また
は電磁波のエネルギーを吸収することによる温度上昇を
検出するために、熱対流と熱拡散を抑市するための薄い
層状の隔離物質でその周囲がとり囲まれている1個また
はそれ以上の熱センサを前記容器内の任意の位置に設置
したことを特徴とする吸収エネルギー分布測定装置。
a container for containing an arbitrary amount of any fluid material that is irradiated with radiation, and a container for detecting a temperature increase due to absorption of energy of the irradiated radiation or electromagnetic waves by the fluid material; Absorbed energy distribution measurement characterized in that one or more thermal sensors surrounded by a thin layer of isolating material for suppressing heat diffusion are installed at any position within the container. Device.
JP20534983A 1983-11-01 1983-11-01 Apparatus for measuring absorption energy distribution Granted JPS6097289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20534983A JPS6097289A (en) 1983-11-01 1983-11-01 Apparatus for measuring absorption energy distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20534983A JPS6097289A (en) 1983-11-01 1983-11-01 Apparatus for measuring absorption energy distribution

Publications (2)

Publication Number Publication Date
JPS6097289A true JPS6097289A (en) 1985-05-31
JPH0415916B2 JPH0415916B2 (en) 1992-03-19

Family

ID=16505407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20534983A Granted JPS6097289A (en) 1983-11-01 1983-11-01 Apparatus for measuring absorption energy distribution

Country Status (1)

Country Link
JP (1) JPS6097289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042218A (en) * 2007-06-19 2009-02-26 Commissariat A L'energie Atomique Device and method for counting elementary particles emitted by fluid in line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042218A (en) * 2007-06-19 2009-02-26 Commissariat A L'energie Atomique Device and method for counting elementary particles emitted by fluid in line

Also Published As

Publication number Publication date
JPH0415916B2 (en) 1992-03-19

Similar Documents

Publication Publication Date Title
Domen Absorbed dose water calorimeter
Domen An absorbed dose water calorimeter: theory, design, and performance
US3267727A (en) Thermopile and radiometer including same and method of producing thermopile
JPS6097289A (en) Apparatus for measuring absorption energy distribution
Aldebert et al. Neutron scattering evidence for fast ionic oxygen diffusion in the high temperature phases of La2O3
CN108956688B (en) A kind of measuring system and method for building material surface combined radiation absorption coefficient
Keene et al. A Determination of the G-value of Ferrous Sulphate for 60Co Radiation using Calorimetric Dosimetry
JPH0530232B2 (en)
JPS5529794A (en) Temperature detector for deep-part temperature measurement
JPS5234777A (en) Low temperature storage tank provided with leakage detection device
SU1012167A1 (en) Microcalorimeter for measuring ionization radiation flux
CN204439217U (en) A kind of temperature measuring equipment and Intelligent milk bottle cover
Hankins FACTORS AFFECTING THE DESIGN OF ALBEDO-NEUTRON DOSIMETERS CONTAINING LITHIUM FLUORIDE THERMOLUMINESCENT DOSIMETERS.
SU366366A1 (en) CALORIMETER
JPH0718828B2 (en) Specific heat measurement method
Ali et al. Development of real-time low energy electron calorimeter
US3826921A (en) Monitor for radiation-induced heating
US11971312B2 (en) Measurement core for measuring nuclear heating in a nuclear reactor and calorimetric sensor incorporating such a measurement core
CN109357755B (en) System and method for testing solar radiation transmission of glass
Roos A water calorimetric determination of absorbed dose to water
Ho et al. Studies of non-isothermal flow in saturated and partially saturated porous media
JPH0743643Y2 (en) Sample heating device for X-ray diffraction measurement
SU489027A1 (en) Device for calibration of heat meters
Berlman et al. The Determination of Photographic Film Exposure by Neutron Activation of Ag107
Noriah et al. Development of real-time low energy electron calorimeter