JPS6096764A - Plating method of copper and copper alloy - Google Patents

Plating method of copper and copper alloy

Info

Publication number
JPS6096764A
JPS6096764A JP58202387A JP20238783A JPS6096764A JP S6096764 A JPS6096764 A JP S6096764A JP 58202387 A JP58202387 A JP 58202387A JP 20238783 A JP20238783 A JP 20238783A JP S6096764 A JPS6096764 A JP S6096764A
Authority
JP
Japan
Prior art keywords
copper
plating
org
complex
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58202387A
Other languages
Japanese (ja)
Other versions
JPH0348269B2 (en
Inventor
Makoto Takakura
高倉 誠
Sei Kondo
近藤 生
Tatsuya Nogami
野上 達哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP58202387A priority Critical patent/JPS6096764A/en
Publication of JPS6096764A publication Critical patent/JPS6096764A/en
Publication of JPH0348269B2 publication Critical patent/JPH0348269B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To plate copper and copper alloy simply and rapidly without generating problems of toxicity at the time of plating and the contamination of a plating bath, by performing treatment by a solution containing an org. complex of a metal belonging to the Group VIII of the Periodic Table soluble in an org. solvent at a temp. equal to or less than the decomposition temp. of said complex. CONSTITUTION:An organometallic complex represented by formula MmLn [wherein (m) is an integer of 1-4 and (n) is an integer of 2-12] showing solubility to an org. solvent and liberating a metal under heating is prepared. In this case, the aforementioned metal M is one belonging to the Group VIII of the Periodic Table and, as the ligand L, for example, tertiary phosphine is designated. In addition, as the org. solvent, for example, 1,1,2-trichloroethane is used. Herein, plating is applied to copper or a copper alloy by using a plating bath comprising an org. solvent solution of the aforementioned organometallic complex in such a state that copper or the copper alloy is heated to the inherent decomposition temp. of the organometallic complex. The resulting plating is stabilized and closely adhesive strength of plating is extremely excellent.

Description

【発明の詳細な説明】 本発明は有機溶媒に可溶な周期律表第■族の有機金属錯
体を用い、有機金属錯体を含む溶液にて処理することに
より、銅及び銅合金をメッキする方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for plating copper and copper alloys by using an organometallic complex of Group Ⅰ of the periodic table that is soluble in an organic solvent and treating it with a solution containing the organometallic complex. It is related to.

銅及び銅合金、特に銅はその良好な電気伝導性、熱伝導
性により主として導電機能材料として近年その使用はま
すます盛んである。
Copper and copper alloys, especially copper, have been increasingly used in recent years mainly as conductive functional materials due to their good electrical and thermal conductivity.

即ち銅は樹脂基板上に銅箔回路を構成したプリント基板
や各種接点材料として多用されている。
That is, copper is widely used as printed circuit boards with copper foil circuits formed on resin substrates and various contact materials.

又各種銅粉末は、溶媒に溶解した熱硬化性樹脂、例えば
フェノール樹脂、エポキシ樹脂、ウレタン樹脂、メラミ
ン樹脂、不飽和ポリエステル樹脂等、又熱可塑性樹脂、
例えばアクリル樹脂等(以下バインダーと呼ぶ)に分散
配合して塗料化し、該塗料により金属板、セラミック板
、樹脂基板等の上に回路印刷後、焼成する事により導電
回路を形成するのに用いられている。
Various copper powders can also be used in thermosetting resins dissolved in solvents, such as phenol resins, epoxy resins, urethane resins, melamine resins, unsaturated polyester resins, etc., and thermoplastic resins.
For example, it is used to form a conductive circuit by dispersing it in an acrylic resin (hereinafter referred to as a binder) and making it into a paint, printing a circuit on a metal plate, ceramic plate, resin substrate, etc. using the paint, and then firing it. ing.

又同様に該塗料は、デジタル電子回路を含むハウジング
の電磁波シールド用塗料や導電接着剤としても用いられ
ている。
Similarly, the paint is also used as an electromagnetic shielding paint or a conductive adhesive for housings containing digital electronic circuits.

しかし銅は銀と同程度の優れた電気伝導性を有するが、
酸化安定性が悪く、常温でも空気による酸化を受けて銅
表面に酸化銅を生成し電気伝導性が大幅に低下する。 
かかる現象が生起する為、低価格でかつ良好な電気伝導
性を有しているにも拘わらず応用範囲が限定されてきた
However, although copper has excellent electrical conductivity comparable to silver,
It has poor oxidation stability and is oxidized by air even at room temperature, producing copper oxide on the copper surface, which significantly reduces electrical conductivity.
Because of this phenomenon, the range of applications has been limited, despite the low cost and good electrical conductivity.

銅粉末について言えば、板状物等に比し表面積が大とな
るため、更に酸化を受けやすくその安定性向上は極めて
重要となる。
As for copper powder, since its surface area is larger than that of plate-like materials, it is more susceptible to oxidation, so improving its stability is extremely important.

従来より銅粉末の安定化法に関しいくつかの提案がされ
ている。例えば銅粉と銀粉を機械的に接合する事により
銅−銀複合粉体を得る方法、銅粉を安定な金属で無電解
メッキする方法、同じく半田でメッキする方法、各種有
機物、例えば長鎖脂肪酸でコーチングする方法、ハロゲ
ン化炭化水素化合物で接触安定する方法等がある。
Several proposals have been made regarding methods for stabilizing copper powder. For example, a method of obtaining a copper-silver composite powder by mechanically joining copper powder and silver powder, a method of electroless plating of copper powder with a stable metal, a method of plating with solder, various organic substances, such as long chain fatty acids. There are methods such as coating with carbon dioxide, contact stabilization with halogenated hydrocarbon compounds, etc.

いずれの方法も有効なものではあるが完全なものではな
い。−例を挙げると無電解メッキ法、特にメッキ液にア
ルカリ金属シアノ化合物を用いた場合、作業環境におけ
る毒性の問題やメッキ時に水溶性メッキ液への銅イオン
の溶出が起こりメッキ浴の汚染の問題等を生ずる欠点が
ある。又バインダーとの分散配合時に金属の脱落が発生
する事もある。
Both methods are effective, but not perfect. - For example, electroless plating, especially when an alkali metal cyano compound is used in the plating solution, causes problems of toxicity in the working environment and contamination of the plating bath due to the elution of copper ions into the water-soluble plating solution during plating. There are drawbacks such as. Also, metal may fall off during dispersion and blending with a binder.

本発明者らは、かかる欠点を解決すべく鋭意努力し本発
明を完成したものである。
The present inventors have made earnest efforts to solve these drawbacks and have completed the present invention.

即ち本発明は有機溶媒に可溶な周期律第■族の有機金属
錯体を用い、該有機金属錯体を含む溶液を有機金属錯体
の分解温度以下に加熱し銅及び銅合金をメッキする方法
に関するものである。
That is, the present invention relates to a method of plating copper and copper alloys by using an organometallic complex of Group I of the Periodic Law that is soluble in an organic solvent, and heating a solution containing the organometallic complex to a temperature below the decomposition temperature of the organometallic complex. It is.

本発明によればメッキ時の毒性、メッキ浴の汚染等の問
題がなく極めて簡便に且つ迅速に銅及び銅合金をメッキ
、安定化出来るものであり、且つそのメッキの密着強度
は非常に優れている。
According to the present invention, copper and copper alloys can be plated and stabilized very easily and quickly without problems such as toxicity during plating or contamination of the plating bath, and the adhesion strength of the plating is extremely excellent. There is.

次に本発明の内容につき詳述する。Next, the content of the present invention will be explained in detail.

本発明に使用される有機金属錯体は有機溶媒に対し溶解
性を示し、且つ加熱により金属を遊離するものが選ばれ
、一般式MmLn (mは1〜4、nは2〜12までの
整数)で示される。
The organometallic complex used in the present invention is selected from one that exhibits solubility in organic solvents and releases metal upon heating, and has the general formula MmLn (m is an integer from 1 to 4, and n is an integer from 2 to 12). It is indicated by.

金属Mは周期律表第■族の金属が特に好ましく、配位子
しは一例を挙げると、三級ホスフィン、三級ホスファイ
ト、−酸化炭素、直鎖或いは環状オレフィン、共役オレ
フィン、アリール化合物、複素環化合物、有機シアン化
合物、有機イソニ) IJル化合物、有機メルカプト化
合物、又はアルキル基、ビニル基、アリル基、エチリジ
ン基、アシル基を有する化合物等の一種以上の組合せよ
り選ぶ事が出来、更にはハロゲン、酸素、水素、窒素等
でも良い。
The metal M is particularly preferably a metal of Group I of the periodic table, and examples of the ligand include tertiary phosphine, tertiary phosphite, -carbon oxide, linear or cyclic olefin, conjugated olefin, aryl compound, Heterocyclic compounds, organic cyanogen compounds, organic isonitrile compounds, organic mercapto compounds, or combinations of one or more of compounds having alkyl groups, vinyl groups, allyl groups, ethyridine groups, acyl groups, etc. may be halogen, oxygen, hydrogen, nitrogen, etc.

有機溶媒は有機金属錯体を溶解するものであれば制限は
ないが、毒性、異臭を持つ溶媒は避けるべきで100℃
以上の沸点の溶媒が好ましい。
There are no restrictions on the organic solvent as long as it dissolves the organometallic complex, but solvents that are toxic or have a strange odor should be avoided.
Solvents with boiling points above are preferred.

これらの溶媒としては、1.1.2−トリクロロエタン
、1.1.2.2−テトラクロロエタン等で代表される
ハロゲン化炭化水素系溶媒、キシレン、メシチレン、テ
トラリン等で代表される芳香族系溶媒、ジメチルホルム
アミド、ジメチルスルホキサイド等で代表される非プロ
トン性極性溶媒等が挙げられる。
These solvents include halogenated hydrocarbon solvents such as 1.1.2-trichloroethane and 1.1.2.2-tetrachloroethane, and aromatic solvents such as xylene, mesitylene, and tetralin. , dimethylformamide, dimethyl sulfoxide, and the like.

本発明の被メツキ金属としては、銅及び銅合金が特に推
奨される。銅合金には、銅−亜鉛、銅−錫、銅−ニソケ
ル、銅−アルミニウム、銅−銀、銅−カドミウム、銅−
クロム、銅−珪素、銅−鉛、銅−バリウム等が含まれる
Copper and copper alloys are particularly recommended as the metal to be plated in the present invention. Copper alloys include copper-zinc, copper-tin, copper-nisokel, copper-aluminum, copper-silver, copper-cadmium, copper-
It includes chromium, copper-silicon, copper-lead, copper-barium, etc.

銅及び銅合金の形状としては、特に限定する必要はなく
、板状、粉末状、パイプ状等いがなる形状の物にも適用
できる。
The shape of the copper and copper alloy is not particularly limited, and any shape such as a plate, powder, or pipe can be used.

部分メッキも勿論可能であり、例えば銅箔で構成された
回路よりなるエツチング済みプリント基板を本発明方法
によってメッキすれば、銅箔部分のみ選択的にメッキす
る事が出来る。
Of course, partial plating is also possible; for example, if an etched printed circuit board consisting of a circuit made of copper foil is plated by the method of the present invention, only the copper foil portion can be selectively plated.

メッキ時は、有機金属錯体を含む溶液を加熱する必要が
あるが、加熱温度を有機金属錯体本来の分解温度以下に
抑える事が本発明の大きな特徴の1つをなすものである
During plating, it is necessary to heat the solution containing the organometallic complex, and one of the major features of the present invention is to keep the heating temperature below the original decomposition temperature of the organometallic complex.

従来より有機溶媒中の有機金属錯体をその熱分解温度以
上に加熱する事により分解し、被メ・ツキ金属の上に該
金属を析出、堆積させる事によりメッキする方法は知ら
れているが、この方法によると被メツキ金属上に金属が
主として粉状乃至樹脂状に析出し連続的で均一なメッキ
を得る事が困難であった。
Conventionally, a method of plating is known in which an organometallic complex in an organic solvent is decomposed by heating it to a temperature higher than its thermal decomposition temperature, and the metal is precipitated and deposited on the metal to be plated. According to this method, the metal mainly precipitates in the form of powder or resin on the metal to be plated, making it difficult to obtain continuous and uniform plating.

一般に有機金属錯体の分解温度は高温の為、高温下の処
理による種々のトラブルも多かった。
Generally, the decomposition temperature of organometallic complexes is high, so there were many problems associated with processing at high temperatures.

更に有機金属錯体を含むメ・7キ浴を用いてメ・ツキす
る場合、浸漬法では浴温を内部に含まれる有機金属錯体
の分解温度以上に加熱すると、一時に全量の有機金属錯
体が分解して金属が析出する為繰り返しの使用に耐えな
い。この場合被メツキ金属そのものを加熱すれば、かか
る問題は避けられるが温度管理が難しく、被メツキ金属
によっては高温に加熱する事が許されない場合がある。
Furthermore, when using a metal bath containing an organometallic complex, in the immersion method, if the bath temperature is heated above the decomposition temperature of the organometallic complex contained inside, the entire amount of the organometallic complex decomposes at once. It cannot withstand repeated use because metal precipitates. In this case, if the metal to be plated itself is heated, this problem can be avoided, but temperature control is difficult, and depending on the metal to be plated, heating to a high temperature may not be allowed.

本発明は、銅及び銅合金を有機金属錯体溶液を用い、有
機金R錯体の分解温度以下の温度に加熱し有機金属錯体
中の金属を析出させ、その分解発生期の金属により密着
強度が優れた均一メッキを行う方法に関するものである
The present invention uses an organometallic complex solution to heat copper and copper alloy to a temperature below the decomposition temperature of the organometallic complex to precipitate the metal in the organometallic complex. The present invention relates to a method for uniform plating.

従って本発明によれば、浸漬法でメッキする場合もメッ
キ浴中の有機金属錯体は全量一時に分解する事はなくメ
ッキに伴う減量骨を追加するのみで繰り返しの使用が可
能である。
Therefore, according to the present invention, even when plating is performed by dipping, the entire amount of the organometallic complex in the plating bath does not decompose at once, and it can be used repeatedly by simply adding the bone that has been reduced due to plating.

本発明による銅及び銅合金のメッキ方法は浸漬法のみで
なく、刷毛塗り、印刷、スプレー等通常の方法を用いる
事ができる。
The method of plating copper and copper alloys according to the present invention is not limited to the dipping method, but may also include conventional methods such as brush coating, printing, and spraying.

又本発明により得られたメッキ銅及び銅合金は、更に別
の金属により本発明方法を使用しメッキを行う事が出来
るし、更には無電解メッキ、電解メッキ、蒸着、スパツ
タリング、イオンプレーチング等の方法でメッキする事
をなんら妨げない。
Furthermore, the plated copper and copper alloy obtained by the present invention can be further plated with another metal using the method of the present invention, and further can be plated by electroless plating, electrolytic plating, vapor deposition, sputtering, ion plating, etc. There is no hindrance to plating using this method.

以下に本発明を実施例で詳細に説明する。The present invention will be explained in detail below using Examples.

実施例1゜ ジ−μmクロロ−ビス (η−2−メ9−)レア1ノル
)二パラジウム(II)をキシレンに溶解し、0.1w
t%の溶液とした。この錯体溶液を120°C4こ加熱
しリン青銅板を5分間浸漬後引き上番シ′ると、&昔体
溶液に浸漬されていた部分のみ白銀色金属)■沢を示す
バラジウムメ・7キがなされた。この様して得られたパ
ラジウムメッキリン青銅板を走査型電子顕微鏡−エネル
ギー分散型X線マイクロ了り一ライザーにより表面観察
すると、表面は)<ラジウムにより均一に覆われていた
Example 1 Di-μm chloro-bis(η-2-me9-)rea-1-nor)dipalladium(II) was dissolved in xylene and 0.1w
It was made into a t% solution. When this complex solution was heated to 120°C4 and a phosphor bronze plate was immersed for 5 minutes, it was pulled out and exposed. It was done. When the surface of the palladium-plated phosphor bronze plate thus obtained was observed using a scanning electron microscope/energy dispersive X-ray micro riser, it was found that the surface was uniformly covered with radium.

該錯体メ・7キ浴は錯体溶液の黄色が消失し無色透明溶
液になるまで繰り返し使用が可能であり、更には適宜ジ
−μmクロロ−ビス(η−2−メチルアリル)二パラジ
ウム(I[)錯体を1惹カロ1−る事により長期連続使
用が出来た。
The complex solution bath can be used repeatedly until the yellow color of the complex solution disappears and it becomes a colorless and transparent solution. Continuous use for a long period of time was possible by adding 1 calorie of the complex.

得られたパラジウムメ・ツキリン青銅板L;!繰り返し
10回折り曲げてもメッキ層に剥離、クラ・2り等の発
生はなかった。
The obtained palladium bronze plate L;! Even after repeated bending 10 times, there was no peeling, cracking, cracking, etc. in the plating layer.

実施例2゜ 実施例1と同様に120℃に加熱されたジ−μmクロロ
ービス(η−2−メチルアリル)二パラジウム(II)
の0.1wt%キシレン溶液に黄銅板を5分間浸漬後引
き上げると、錯体溶液に浸漬されていた部分のみ白銀色
金属光沢を示すパラジウムメッキがなされていた。
Example 2゜Di-μm chlorobis(η-2-methylallyl)dipalladium(II) heated to 120°C in the same manner as in Example 1.
When the brass plate was immersed in a 0.1 wt % xylene solution for 5 minutes and then pulled up, only the part that had been immersed in the complex solution was plated with palladium showing a silvery metallic luster.

実施例3゜ トランス〔クロロ(ベンジル)ビス(トリフェニルホス
フィン)〕パラジウム(n)をキシレンに溶解し、0.
1wt%の錯体溶液とした。この錯体溶液を120℃に
加熱しリン青銅板を5分間浸漬後浴より引き上げると、
リン青銅板の錯体溶液に浸漬されていた部分のみ白銀色
金属光沢を示すパラジウムメッキがなされていた。
Example 3 Trans[chloro(benzyl)bis(triphenylphosphine)]palladium(n) was dissolved in xylene, and 0.
A 1 wt % complex solution was prepared. When this complex solution was heated to 120°C and the phosphor bronze plate was immersed for 5 minutes, it was removed from the bath.
Only the part of the phosphor bronze plate that had been immersed in the complex solution was plated with palladium, giving it a white silver metallic luster.

実施例4゜ ジーμmクロローテトラカルポニルニロジウム(I)を
溶解し、0.1wt%錯体溶液とした。この錯体溶液を
120℃に加熱しリン青銅板を5分間浸漬後浴より引き
上げると、リン青銅板の錯体溶液に浸漬されていた部分
のみ白銀色金属光沢を示すロジウムメッキがなされてい
た。
Example 4 °G μm chlorotetracarponyl nirodium (I) was dissolved to prepare a 0.1 wt % complex solution. This complex solution was heated to 120° C., and the phosphor bronze plate was immersed for 5 minutes, and then removed from the bath. Only the portion of the phosphor bronze plate that had been immersed in the complex solution was plated with rhodium, showing a white silvery metallic luster.

この様にして得られたロジウムメソキリン青銅板は走査
型電子顕微鏡−エネルギー分散型X線マイクロアナライ
ザー観察により表面はロジウムにより均一に覆われてい
る事が分かった。
The surface of the thus obtained rhodium mesokiline bronze plate was found to be uniformly covered with rhodium by scanning electron microscope/energy dispersive X-ray microanalyzer observation.

該メッキ浴は錯体溶液の黄橙色が消失し無色透明になる
まで繰り返し使用が可能であり、更には適宜ジーμmク
ロローテトラカルポニルニロジウム(I)錯体を添加す
る事により長期連続使用が出来た。
The plating bath can be used repeatedly until the yellow-orange color of the complex solution disappears and the solution becomes colorless and transparent, and furthermore, it can be used continuously for a long period of time by adding Gμm chlorotetracarponylnirodium (I) complex as appropriate. .

得られたメンキリン青銅板は、繰り返し10回折り曲げ
てもメッキ層に剥離、クラック等の発生はなかった。
Even when the obtained Menkirin bronze plate was repeatedly bent 10 times, no peeling or cracking occurred in the plating layer.

実施例5゜ ジ−μmクロロ−ビス(η−2−メチル了リル)二パラ
ジウム(n)2.05gをキシレン200gに熔解しパ
ラジウムメッキ浴とした。該メッキ浴に電解銅粉Log
を添加し室温で充分攪拌後、120℃に加熱し30分間
この温度で攪拌した。
Example 5 2.05 g of di-μm chloro-bis(η-2-methyllyryl)dipalladium (n) was dissolved in 200 g of xylene to prepare a palladium plating bath. Electrolytic copper powder Log in the plating bath
After stirring thoroughly at room temperature, the mixture was heated to 120°C and stirred at this temperature for 30 minutes.

メッキ浴は錯体溶液の黄色が消失し無色透明となり、銅
粉は黒色に変化した。この様にして得られたパラジウム
メッキ銅粉を濾別し充分に乾燥し、10%パラジウムメ
ッキ銅粉が得られた。
The yellow color of the complex solution disappeared and the plating bath became colorless and transparent, and the copper powder turned black. The palladium-plated copper powder thus obtained was filtered and thoroughly dried to obtain 10% palladium-plated copper powder.

得られた10%パラジウムメブキ銅粉を光学顕微鏡によ
り観察すると銅粒子表面は白銀色金属光沢を示し、走査
型電子顕微鏡−エネルギー分散型X線マイクロアナライ
ザー観察では表面は均一にパラジウム金属で被覆されて
いた。
When the obtained 10% palladium-mebuki copper powder was observed using an optical microscope, the surface of the copper particles showed a white silver metallic luster, and when observed using a scanning electron microscope and an energy dispersive X-ray microanalyzer, the surface was uniformly coated with palladium metal. was.

実施例6゜ 実施例5と同様にして銅粉10g、ジ−μmクロロ−ビ
ス(η−2−メチルアリル)二パラジウム(n)0.9
75gとから黒褐色の5%パラジウムメッキ銅粉が得ら
れた。
Example 6゜ 10 g of copper powder and 0.9 di-μm chloro-bis(η-2-methylallyl) dipalladium (n) were prepared in the same manner as in Example 5.
A blackish brown 5% palladium plated copper powder was obtained from 75 g.

実施例7゜ 実施例5と同様にして銅粉10g 、ジ−μmクロロ−
ビス(η−2−メチルアリル)二パラジウム(II)、
 0. 187gとから茶褐色の1%パラジウムメッキ
銅粉が得られた。
Example 7 In the same manner as in Example 5, 10 g of copper powder, di-μm chloro-
bis(η-2-methylallyl)dipalladium(II),
0. A brown 1% palladium-plated copper powder was obtained from 187 g.

特許出願人 日産化学工業株式会社Patent applicant: Nissan Chemical Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 有機溶媒に可溶な周期律表第■族の有機金属錯体を用い
該錯体の分解温度以下にて、銅及び銅合金をメッキする
方法
A method of plating copper and copper alloys using an organometallic complex of group Ⅰ of the periodic table that is soluble in an organic solvent at a temperature below the decomposition temperature of the complex.
JP58202387A 1983-10-28 1983-10-28 Plating method of copper and copper alloy Granted JPS6096764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58202387A JPS6096764A (en) 1983-10-28 1983-10-28 Plating method of copper and copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58202387A JPS6096764A (en) 1983-10-28 1983-10-28 Plating method of copper and copper alloy

Publications (2)

Publication Number Publication Date
JPS6096764A true JPS6096764A (en) 1985-05-30
JPH0348269B2 JPH0348269B2 (en) 1991-07-23

Family

ID=16456646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58202387A Granted JPS6096764A (en) 1983-10-28 1983-10-28 Plating method of copper and copper alloy

Country Status (1)

Country Link
JP (1) JPS6096764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114979A (en) * 1986-05-19 1988-05-19 Harima Chem Inc Formation of metallic film on surface of metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114979A (en) * 1986-05-19 1988-05-19 Harima Chem Inc Formation of metallic film on surface of metal

Also Published As

Publication number Publication date
JPH0348269B2 (en) 1991-07-23

Similar Documents

Publication Publication Date Title
US3937857A (en) Catalyst for electroless deposition of metals
US4006047A (en) Catalysts for electroless deposition of metals on comparatively low-temperature polyolefin and polyester substrates
EP0243794B1 (en) Electroless plating method
US3928670A (en) Selective plating on non-metallic surfaces
JPS601890A (en) Aditive method of printed circuit manufacture
DE3631011A1 (en) FLEXIBLE CIRCUITS
JPS612202A (en) Soldable electroconductive composition, method of producing same, method of treating substrate applied with said composition, method of coating metal and article applied with same composition
CN106538076A (en) Printed wiring board and method for manufacturing same
JPS6096764A (en) Plating method of copper and copper alloy
US2851380A (en) Conductive ink and article coated therewith
US20180332713A1 (en) Patterning of electroless metals by selective deactivation of catalysts
EP4056365A1 (en) Structure with conductive pattern and method for manufacturing same
CA1224276A (en) Process for producing printed circuits
GB2026250A (en) Printed circuit boards
JP3675091B2 (en) Method for forming conductive film on polyimide resin surface
JP7455993B2 (en) Method for manufacturing structure with conductive pattern
EP0298345B1 (en) Method for preparing substrates for subsequent electroless metallization
JPH07243085A (en) Production of metal-clad polyimide substrate
CN109937189A (en) Cuprous oxide particle, its manufacturing method, light slug type composition, using the light slug type composition conductive film forming method and cuprous oxide particle paste
JPH10147884A (en) Electroless gold plating method
KR100297187B1 (en) Non-Current Metal Coating of Non-Conductive Conductors
AU6772187A (en) Fabrication of electrical conductor by augmentation replacement process
GB2253415A (en) Selective process for printed circuit board manufacturing employing noble metal oxide catalyst.
WO1998029579A1 (en) Method of depositing a metallic film
JP2006291340A (en) Surface treated aluminum sheet, electric conductor and heat sink using the surface treated aluminum sheet, and method for producing surface treated aluminum sheet