JPS6096555A - Fiber reinforced cement cured body and manufacture - Google Patents

Fiber reinforced cement cured body and manufacture

Info

Publication number
JPS6096555A
JPS6096555A JP58205061A JP20506183A JPS6096555A JP S6096555 A JPS6096555 A JP S6096555A JP 58205061 A JP58205061 A JP 58205061A JP 20506183 A JP20506183 A JP 20506183A JP S6096555 A JPS6096555 A JP S6096555A
Authority
JP
Japan
Prior art keywords
fiber
reinforced cement
silica
produced
hume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58205061A
Other languages
Japanese (ja)
Inventor
健一 松井
保 赤阪
曽田 孝
康志 沢田
裕之 瀧華
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP58205061A priority Critical patent/JPS6096555A/en
Publication of JPS6096555A publication Critical patent/JPS6096555A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、建材等として用いられる繊維強化セメント
硬化体とその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a hardened fiber-reinforced cement body used as a building material, etc., and a method for producing the same.

〔背景技術〕[Background technology]

数あるセメント系建材のうち、石綿が混入された繊維強
化セメント硬化体は、高品位かつ高強度であるため、従
来より広く使用されてきた。しかし、最近、石綿の発癌
性が社会問題としで取り上げられるようになり、脱石綿
化の傾向が望まれるようになった。そのため、石綿の代
替品として、バルブ、有機質繊維、および無機質繊維が
使用されるようになったが、石綿を混入した繊維強化セ
メント硬化体に較べて、強度が低く、特に吸水時の強度
低下が著しいのが現状である。
Among the many cement-based building materials, fiber-reinforced hardened cement mixed with asbestos has been widely used since it has high quality and high strength. However, recently, the carcinogenicity of asbestos has been brought up as a social issue, and a trend towards asbestos removal has become desirable. Therefore, bulbs, organic fibers, and inorganic fibers have come to be used as substitutes for asbestos, but they have lower strength than hardened fiber-reinforced cement containing asbestos, and are particularly susceptible to strength loss when water is absorbed. The current situation is remarkable.

〔発明の目的〕[Purpose of the invention]

この発明は、以上のような現状に鑑みて、石綿をまった
く含まなくても強度、とくに吸水時の強度および寸法安
定性にすぐれ、かつ安価に製造できる繊維強化セメント
硬化体とその製法を提供することを目的としている。
In view of the above-mentioned current situation, the present invention provides a fiber-reinforced cement cured body that does not contain asbestos at all, has excellent strength, especially strength and dimensional stability when absorbing water, and can be manufactured at low cost, and a method for manufacturing the same. The purpose is to

〔発明の開示」 発明者らは、前記の目的を達成するために鋭意検討をか
さね、ついに以下の発明を完成するにいたった。
[Disclosure of the Invention] In order to achieve the above object, the inventors have made extensive studies and have finally completed the following invention.

第一の発明は、水硬性セメントに補強繊維として石綿以
外の有機質繊維および/または無機細繊維を混合させて
製造される繊維強化セメント硬化体において、フェロシ
リコン製造時に副成されるシリカヒユームであって、平
均粒径が1ミクロン以下でかつ5iOz分組成が40重
量憾以上であるシリカヒユームが全固型分重量あたり5
〜30係含有されている繊維強化セメント硬化体を要旨
とし、このような硬化体をつくるべく、第二の発明は、
木質バルブを多量の水で離解して得られる繊維と水から
成るヌラリーに、フェロシリコン製造時に副成されるシ
リカヒユームで、平均粒径が1ミクロン以下でかつ5i
n2分組成が40重量係以上であるシリカヒユームを全
固型分重量あたり5〜30係添加し充分混合分散した後
に水硬性セメントを加え、ただちに抄造方式により板状
体を賦形し、養生して繊維強化セメント硬化時を製造す
る繊維強化セメント硬化体の製法を要旨とする。以下に
これらを詳しく説明する。
The first invention is a fiber-reinforced cement hardened body produced by mixing organic fibers other than asbestos and/or inorganic fine fibers as reinforcing fibers with hydraulic cement, and a silica fume which is produced as a by-product during the production of ferrosilicon. , silica hume with an average particle size of 1 micron or less and a 5iOz composition of 40% or more per total solid weight.
The gist of the second invention is a cured body of fiber reinforced cement containing 30% of carbon dioxide, and in order to produce such a cured body,
Silica hume, which is a by-product during the production of ferrosilicon, is added to the nurary made of fibers and water obtained by disintegrating wood bulbs with a large amount of water.
Add 5 to 30 parts of silica hume having an n2 content of 40 parts by weight or more based on the total solid weight, mix and disperse thoroughly, then add hydraulic cement, immediately form a plate-like body by a paper-making method, and cure it. The gist of this paper is a method for producing a cured fiber-reinforced cement product. These will be explained in detail below.

発明者らは、シリカセメントの製造に際して混入される
ポゾランに着目した。ポゾランは火山灰や凝灰岩などの
シリカ質混合拐で、石灰と化合しやすい物性を持つ。と
ころで、フェロシリコン製造時には、シリカヒユームと
よばれるほぼ球状の形態で、粒径が0.1ミクロンから
1ミクロンの超微粉末シリカ質物質が副成される。シリ
カヒユームは非晶質の5i(hを含み、セメント硬化時
に生成されるCa(OH)zともよく反応する。このよ
うなことから、発明者らは、シリカヒユームを超微粉ポ
ゾラン材料としてセメントに混入すれば、高品度で高強
度の無機質硬化体を得られると考えるにいたった。
The inventors focused their attention on pozzolan, which is mixed in during the production of silica cement. Pozzolan is a siliceous mixture of volcanic ash and tuff, and has physical properties that allow it to easily combine with lime. By the way, during the production of ferrosilicon, an ultrafine powder siliceous material called silica fume, which has a substantially spherical form and has a particle size of 0.1 micron to 1 micron, is produced as a by-product. Silica hume contains amorphous 5i(h) and reacts well with Ca(OH)z generated during cement hardening. For this reason, the inventors decided to mix silica hume into cement as an ultrafine pozzolanic material. In this way, we have come to believe that it is possible to obtain a high-quality, high-strength inorganic cured product.

そこで、各種水セメント比、砂セメント比に調合された
モルタルのみからなるか、またはこれにバルブや合成繊
維等の補強繊維を含めてなる繊維強化セメント硬化体用
組成物に、それぞれ前記のシリカヒユームを混入して強
度測定を行なった。
Therefore, the above-mentioned silica fume is added to a composition for a fiber-reinforced cement hardening body, which consists of only mortar mixed with various water-cement ratios and sand-cement ratios, or which includes reinforcing fibers such as bulbs and synthetic fibers. The strength was measured after mixing.

その結果、繊維強化セメント硬化体の供試体について、
シリカヒユームを15重量係混入したものは、常態放置
(25℃室温下)では、混入しないものに較べて50憾
の強度向上、飽水状態である24時間水中放置では、4
0チの強度向上が見い出された。一方、繊維を混入しな
いモルタルの供試体については、常態放置および24時
間水中放置のいずれの場合も、5係程度の強度向上がみ
とめられたにとどまった。つまり、繊維強化セメント硬
化体、とくに木質パルプおよび/または有機合成繊維が
混合されている繊維強化セメント硬化体は、シリカヒユ
ームが混入されると常態、飽水時を問わず、その強度が
著しく向上するのである。
As a result, regarding the fiber-reinforced cement hardened specimens,
When 15% of silica fume is mixed in, the strength is improved by 50% when left under normal conditions (at room temperature of 25°C) compared to the product without the addition, and when left in saturated water for 24 hours, the strength increases by 40%.
It was found that the strength was improved by 0. On the other hand, for mortar specimens without fibers mixed in, the strength was only improved by a factor of 5, both when left under normal conditions and when left in water for 24 hours. In other words, when silica fume is mixed into a fiber-reinforced hardened cement product, especially a fiber-reinforced hardened cement material mixed with wood pulp and/or organic synthetic fibers, its strength is significantly improved regardless of whether it is normal or saturated with water. It is.

シリカヒユームの混入量と曲げ強度の関係は第1図のと
おりであり、5重量係未満では繊維強化セメント硬化体
の曲は強度に著しい向1はみられず、20重量係までは
ほぼ添加量に比例して強度が向上し、30憾を越えても
強度はかわらない。
The relationship between the amount of silica hume mixed and the bending strength is shown in Figure 1. Below 5 weight ratio, the bending of the fiber-reinforced cement cured product does not significantly improve the strength, and up to 20 weight ratio, the added amount almost changes. The strength increases proportionally, and the strength does not change even if it exceeds 30 degrees.

そこで、シリカヒユームの混入量は、全固型物重量の5
〜30%とする。
Therefore, the amount of silica hume mixed is 5% of the total solid weight.
~30%.

S i02分組成が40重足係未満のシリカヒユームで
は、他の組成分であるカーボンやAl 203が多すぎ
るため、繊維強化セメント硬化体の性能が劣る傾向がみ
られる。従って、シリカヒユームのS io2分組成は
、40重祖俤以上、好ましくは80重甘せ以上である。
Silica fumes with a SiO2 composition of less than 40% have too much carbon and Al 203 as other components, so the performance of the cured fiber-reinforced cement tends to be poor. Therefore, the Sio2 composition of silica hume is 40 or more, preferably 80 or more.

この発明にかかる繊維強化セメント硬化体をつくるに当
たっては、普通ポルトランドセメントや高炉スラリ混入
のスラダセメント、あるいはアルミナセメント等の水硬
性セメントをバインダーとし、これに前記のごときシリ
カヒユームを前記の範囲で加えるとともに、補強繊維と
して木質パルプやビニロン、ポリプロピレン、ナイロン
、アクリル等の合成繊維を加え、必要とあらば、ウオラ
ストナイト、ロックウール、ガラスa維、 マイカ等の
無機質繊維を加え、これらが水と共に混合される。その
後、これを押し出し成形法、注型法あるいは抄造法等に
より適宜賦形して養生、硬化させる。
In producing the fiber-reinforced cement hardened body according to the present invention, a hydraulic cement such as ordinary Portland cement, slurry cement mixed with blast furnace slurry, or alumina cement is used as a binder, and the above-mentioned silica hume is added to this in the above-mentioned range, Synthetic fibers such as wood pulp, vinylon, polypropylene, nylon, and acrylic are added as reinforcing fibers, and if necessary, inorganic fibers such as wollastonite, rock wool, glass a-fiber, and mica are added, and these are mixed with water. Ru. Thereafter, this is appropriately shaped by an extrusion molding method, a casting method, a paper making method, etc., and is then cured and hardened.

この発明において、シリカヒユームを混入することによ
って強度が向上する度合は、賦形時に大量の水を必要と
する抄造法について特に著しい。
In this invention, the strength is improved by incorporating silica hume, which is particularly remarkable in papermaking methods that require a large amount of water during shaping.

また、m法の手1vLについては、次のようなことが言
える。すなわち、シリカヒユームを繊維と水とから成る
スラリーに添加して充分混合分数した後に水硬性セメン
トを加えると、シリカヒユームを水硬性セメントととも
にスラリーに混合する場合にくらべて、強度が高いと言
うことである。これは、シリカヒユームが超微粒子であ
るため、二次凝集しており、均一に最終粒子まで分散さ
せるVこは多量の水を必要とするためであると推測され
る。
Moreover, the following can be said about the m-method move 1vL. In other words, if silica hume is added to a slurry consisting of fibers and water and hydraulic cement is added after sufficient mixing, the strength is higher than when silica hume is mixed with hydraulic cement into the slurry. . This is presumed to be because silica hume is an ultrafine particle, which causes secondary agglomeration, and requires a large amount of water to uniformly disperse the final particles.

この発明においては、パルプや合成繊維を混入させた繊
維強化セメント硬化体が、シリカヒユームの混入に対し
て著しい強度向上を示す。その理由は、モルタルと比較
した電子顕微鏡写真から下記のように推察される。
In this invention, the fiber-reinforced cement hardened body mixed with pulp or synthetic fiber shows a remarkable improvement in strength when compared with the mixture of silica hume. The reason for this is inferred as follows from the electron micrographs compared with mortar.

シリカヒユームがセメントマトリックスの空隙を埋める
だけではなく、セメントマトリックス間にはさまれた繊
維の周辺に分散して、セメントマトリックスに微細な凹
凸をつくり、補強繊維の引き抜き力を増大させるためと
考えられる。
This is thought to be because silica fume not only fills the voids in the cement matrix, but also disperses around the fibers sandwiched between the cement matrices, creating fine irregularities in the cement matrix and increasing the pulling force of the reinforcing fibers.

シリカヒユームについては、通常行なわれている電気炉
でのフェロシリコン製造時に副成されるものであっても
、また熔鉱炉からのものであっても効果に大きな違いは
ないが、熔鉱炉から副成されたフェロシリコンについて
は、水に捕れたまま混入されるのが望ましい。
Regarding silica fume, there is no big difference in effectiveness whether it is produced as a by-product during the production of ferrosilicon in a conventional electric furnace or from a molten metal furnace. As for the sub-produced ferrosilicon, it is desirable that it be mixed in while remaining trapped in water.

次に、実施例を比較例と併せて説明する。Next, examples will be described together with comparative examples.

第1表に示されている原材料を使用し、同表に示されて
いる製法および製造条件を適用して、実施例1−10お
よび比較例1〜3の繊維強化セメント硬化体をつくった
Using the raw materials shown in Table 1 and applying the manufacturing method and manufacturing conditions shown in the same table, hardened fiber reinforced cement bodies of Examples 1-10 and Comparative Examples 1-3 were made.

(以 F 余 白) ハチニック抄造方弐忙ついては、所有のパイロットプラ
ントで以下のように実施した。まず、メーキングロール
で4層巻きとって、プレスで100kg/cd−3,5
秒の加圧条件で成形し、これを45℃−95*RHの条
件下で2週間養生後取り出し、25℃の空気中でさらに
1週間放置した。これを常態とし、水中24時間放置し
たものを飽水時とした。
(F Margin) The Hachinik papermaking method was implemented as follows at a pilot plant owned by the company. First, roll up 4 layers with a making roll and press to 100kg/cd-3.5
After being cured for 2 weeks under conditions of 45° C. and 95*RH, the molded product was molded under a pressure condition of 2 seconds, and then taken out and left in air at 25° C. for another week. This was defined as the normal state, and the state of being left in water for 24 hours was defined as the state of water saturation.

木質バルブは、NUKP (針葉樹未さらしクラフトバ
ルブ)ヲ、リファイナーでカナダ標準ろ水産(C5F)
で250 ccに叩解処理して使用した。
The wood valves are NUKP (coniferous unexposed craft valves) and Canadian standard filtration (C5F) in the refiner.
It was used after being beaten to 250 cc.

実施例2から実施例8までに使用したシリカヒユームは
、電気炉から副成された5i02組成分85重に支係の
ものであり、実施例1についてのみ熔鉱炉から副成され
た5tOa組成分46重量係のシリカヒユームを使用し
た。
The silica fume used in Examples 2 to 8 had a 5i02 composition produced as a by-product from an electric furnace, and only in Example 1 had a 5tOa composition produced as a by-product from a smelt furnace. 46 weight silica hume was used.

混合に際しては、まずバルブ+ビニロン+シリカヒユー
ムを混合して3分間撹拌し、その後水硬性セメントを投
入して3分間撹拌を行った。
During mixing, Bulb+Vinylon+Silica Hue were first mixed and stirred for 3 minutes, then hydraulic cement was added and stirred for 3 minutes.

実施例および比較例の硬化体の物性は、第1表に併記し
たとおりである。
The physical properties of the cured products of Examples and Comparative Examples are as listed in Table 1.

実施例1は実施例4と同じ成形、配合条件で熔鉱炉から
副成されたS iOz組成組成分4置カヒユームを使用
した例であるが、両者の硬化体物性に大きな違いはない
Example 1 is an example in which a SiOz composition 4-position kahium, which was produced as a by-product from a smelt furnace under the same molding and compounding conditions as Example 4, is used, but there is no major difference in the physical properties of the cured product between the two.

実施例2から実施例8まで,および比較例1は同じ成形
条件下で、シリカヒユームの混合量を30重MToまで
増加させたもの,およびまったく混合させないものであ
る。比較例1に較べて実施例2から実施例8までは、混
合量にはぼ比例して強度。
In Examples 2 to 8 and Comparative Example 1, under the same molding conditions, the amount of silica hume mixed was increased to 30 weight MTo, and the amount of silica hume was not mixed at all. Compared to Comparative Example 1, in Examples 2 to 8, the strength was approximately proportional to the amount of mixture.

寸法安定性ともに向上している。Both dimensional stability has been improved.

実施例9と比較例2は押し出し法でのシリカヒユーム混
合による物性の変化,実施例1Oと比較例3は注型法で
のシリカヒユーム混合による物性の変化を比較したもの
である。どちらの製法においても、シリカヒユームが混
合されると、強度とともに寸法安定性も向上した。
Example 9 and Comparative Example 2 compare changes in physical properties caused by mixing silica fume in an extrusion method, and Example 1O and Comparative Example 3 compare changes in physical properties caused by mixing silica fume in a casting method. In both manufacturing methods, when silica fume was mixed, both strength and dimensional stability improved.

〔発明の効果j この発明は、上記のように構成されているので、石綿を
含まなくても、高強度で寸法変化率の少ない繊維強化セ
メント硬化体を提供することができる。また、フェロシ
リコン製造時に副成されるシリカヒユームを使用するの
で、安価に製造できる。
[Effects of the Invention j] Since the present invention is configured as described above, it is possible to provide a fiber-reinforced cement hardened body that has high strength and a small dimensional change rate, even if it does not contain asbestos. Furthermore, since silica fume, which is produced as a by-product during the production of ferrosilicon, is used, it can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はシリカヒユーム混入量と曲げ強度との関係を示
す図である。各プロットはn=10の平均値で示されて
いる。 図中、黒丸.黒三角は熔鉱炉から副成されたシリカヒユ
ーム混入の場合r示す。 代理人 弁理士 松 本 武 彦 ★ 一ヒ 歓 茫 ! 羽 0 10 20 30 シリカヒユーム混入量 (重量’/.)第1図
FIG. 1 is a diagram showing the relationship between the amount of silica hume mixed and the bending strength. Each plot is shown as an average of n=10. In the figure, black circles. The black triangle indicates the case where silica fume, which is produced as a by-product from the melt furnace, is mixed. Agent: Takehiko Matsumoto, Patent Attorney ★ Welcome! Feather 0 10 20 30 Amount of silica hume mixed (weight'/.) Fig. 1

Claims (7)

【特許請求の範囲】[Claims] (1) 水硬性セメントに補強繊維として石綿以外の有
機質繊維および/または無機質繊維を混合させて製造さ
れる繊維強化セメント硬化体において、フェロシリコン
製造時に副成されるシリカヒユームであって、平均粒径
が1ミクロン以下でかつ5i02分組成が40重重量風
上であるシリカヒユームが全固型分重量あた妙5〜30
俤含有されている繊維強化セメント硬化体。
(1) In a fiber-reinforced cement hardened product produced by mixing organic fibers other than asbestos and/or inorganic fibers as reinforcing fibers with hydraulic cement, silica fume is produced as a by-product during the production of ferrosilicon, and has an average particle size. Silica hume with a diameter of 1 micron or less and a 5i02 composition of 40% by weight has a total solids weight of 5 to 30%.
Contains fiber reinforced cement hardened material.
(2) シリカヒユームが電気炉から副成されるもので
ある特許請求の範囲第1項記載の繊維強化セメント硬化
体。
(2) The fiber-reinforced cement hardened body according to claim 1, wherein the silica hume is produced as a by-product in an electric furnace.
(3) シリカヒユームが熔鉱炉から副成されるもので
ある特許請求の範囲第1項記載の繊維強化セメント硬化
体。
(3) The fiber-reinforced cement hardened body according to claim 1, wherein the silica hume is produced as a by-product from a melt furnace.
(4)有機質繊維が木質バルブおよび/または有機合成
繊維である特許請求の範囲第1項から第3項までのいず
れかに記載の繊維強化セメント硬化体。
(4) The fiber-reinforced cement hardened body according to any one of claims 1 to 3, wherein the organic fiber is a wood bulb and/or an organic synthetic fiber.
(5)木質パルプを多量の水で離解して得られる繊維と
水から成るスラリーに、フェロシリコン製造時に副成さ
れるシリカヒユームで、平均粒径が1ミクロン以下でか
つ5i02分組成が40重重量風上であるシリカヒユー
ムを全固型分重量あたり5〜30係添加し充分混合分散
した後に水硬性セメントを加え、ただちに抄造方式によ
り板状体を賦形し、養生して繊維強化セメント硬化体を
製造する繊維強化セメント硬化体のll!法。
(5) Silica hume, which is produced as a by-product during the production of ferrosilicon, is added to the slurry consisting of fibers and water obtained by disintegrating wood pulp with a large amount of water, and the average particle size is 1 micron or less and the 5i02 composition is 40% by weight. After adding 5 to 30 parts of silica hume per total solid weight and thoroughly mixing and dispersing, hydraulic cement is added, and a plate-shaped body is immediately formed using a papermaking method, and cured to form a hardened fiber-reinforced cement body. The fiber-reinforced cement hardened body to be manufactured! Law.
(6) シリカヒユームとして、電気炉から副成された
シリカヒユームを混入する特許請求の範囲第5項記載の
繊維強化セメント硬化体の製法。
(6) The method for manufacturing a fiber-reinforced cement hardened body according to claim 5, wherein silica hume produced as a by-product from an electric furnace is mixed as the silica hume.
(7) シリカヒユームとして、熔鉱炉から副成された
シリカヒユームを水に濡れたままで混入することを特徴
とする特許請求の範囲第5項記載の繊維強化セメント硬
化体の製法。
(7) The method for manufacturing a fiber-reinforced cement cured body according to claim 5, characterized in that silica hume, which is produced as a by-product from a melt furnace, is mixed in as the silica hume while wet with water.
JP58205061A 1983-10-31 1983-10-31 Fiber reinforced cement cured body and manufacture Pending JPS6096555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205061A JPS6096555A (en) 1983-10-31 1983-10-31 Fiber reinforced cement cured body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205061A JPS6096555A (en) 1983-10-31 1983-10-31 Fiber reinforced cement cured body and manufacture

Publications (1)

Publication Number Publication Date
JPS6096555A true JPS6096555A (en) 1985-05-30

Family

ID=16500784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205061A Pending JPS6096555A (en) 1983-10-31 1983-10-31 Fiber reinforced cement cured body and manufacture

Country Status (1)

Country Link
JP (1) JPS6096555A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168363A (en) * 1984-09-07 1986-04-08 株式会社小野田 Manufacture of polyamide fiber reinforced cement
JPS61106447A (en) * 1984-10-26 1986-05-24 株式会社小野田 Manufacture of polyacrylonitrile fiber-reinforced cement
JPS61174472A (en) * 1985-01-29 1986-08-06 エルケム・アクシエセルスカプ Increase of fiber reinforcing characteristics
JPS6442345A (en) * 1987-08-05 1989-02-14 Taisei Corp Slurry for producing fiber reinforced cement mortar or concrete and its production
FR2677295A1 (en) * 1991-06-05 1992-12-11 Ind Bois Stabilise PROCESS FOR TREATING WOOD IN DIVIDED FORM FOR CONCRETE LOAD.
US9964342B2 (en) 2014-11-25 2018-05-08 Mitsubishi Electric Corporation Outdoor unit for air-conditioning apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282930A (en) * 1975-12-29 1977-07-11 Kanebo Ltd Fiber glass reinforced cement products
JPS53127531A (en) * 1977-03-28 1978-11-07 Kanebo Ltd Light cement composition and method of its production
JPS5519911A (en) * 1978-07-28 1980-02-13 Dover Corp Rotary pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282930A (en) * 1975-12-29 1977-07-11 Kanebo Ltd Fiber glass reinforced cement products
JPS53127531A (en) * 1977-03-28 1978-11-07 Kanebo Ltd Light cement composition and method of its production
JPS5519911A (en) * 1978-07-28 1980-02-13 Dover Corp Rotary pump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168363A (en) * 1984-09-07 1986-04-08 株式会社小野田 Manufacture of polyamide fiber reinforced cement
JPS61106447A (en) * 1984-10-26 1986-05-24 株式会社小野田 Manufacture of polyacrylonitrile fiber-reinforced cement
JPS61174472A (en) * 1985-01-29 1986-08-06 エルケム・アクシエセルスカプ Increase of fiber reinforcing characteristics
JPS6442345A (en) * 1987-08-05 1989-02-14 Taisei Corp Slurry for producing fiber reinforced cement mortar or concrete and its production
FR2677295A1 (en) * 1991-06-05 1992-12-11 Ind Bois Stabilise PROCESS FOR TREATING WOOD IN DIVIDED FORM FOR CONCRETE LOAD.
US9964342B2 (en) 2014-11-25 2018-05-08 Mitsubishi Electric Corporation Outdoor unit for air-conditioning apparatus

Similar Documents

Publication Publication Date Title
US4310486A (en) Compositions of cementitious mortar, grout and concrete
DE2808101A1 (en) PLASTER PREPARATION
JPS62226875A (en) Lightweight heat insulating board and manufacture
JPH0135789B2 (en)
CN113896498B (en) Preparation method of calcium silicate board
CN114804765A (en) Concrete doped with bunched twisted basalt fibers and preparation method thereof
US5679149A (en) Short carbon fiber chopped strands and short carbon fiber reinforced hydraulic composite materials
JPS6096555A (en) Fiber reinforced cement cured body and manufacture
CN114315249A (en) Pervious concrete and preparation process thereof
CN115991589A (en) High-strength high-ductility cement-based composite material, preparation method thereof and application of nanocellulose in cement-based composite material
JPH04295072A (en) Extruded building material made of lightweight cement
CN114988784B (en) Calcium silicate board and preparation method thereof
JPS5988378A (en) Lightweight refractories and manufacture
JPH03112842A (en) Production of fiber cement board
CN113733353A (en) Production process of super-durable building concrete
JPH11207727A (en) Production of inorganic building material
CN116514477B (en) Corrosion-resistant composite cement and production process thereof
CN114195434B (en) Geopolymer-based high-ductility concrete for pressing, plastering and reinforcing and preparation method thereof
JPH0323248A (en) Manufacture of inorganic building material
JPS62265159A (en) High strength cement composition
JPS61117176A (en) Manufacture of construction board
JPH0214860A (en) Building material and production thereof
JPS58190856A (en) Manufacture of construction board
JP2000159560A (en) Production of inorganic board
AT345712B (en) FIRE-RESISTANT, SPACE-RESISTANT ASBESTOS CEMENT ELEMENT