JPS609615B2 - Early load loading soft ground compaction construction method - Google Patents

Early load loading soft ground compaction construction method

Info

Publication number
JPS609615B2
JPS609615B2 JP4374681A JP4374681A JPS609615B2 JP S609615 B2 JPS609615 B2 JP S609615B2 JP 4374681 A JP4374681 A JP 4374681A JP 4374681 A JP4374681 A JP 4374681A JP S609615 B2 JPS609615 B2 JP S609615B2
Authority
JP
Japan
Prior art keywords
load
water
soft ground
permeable fabric
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4374681A
Other languages
Japanese (ja)
Other versions
JPS57158414A (en
Inventor
一三 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4374681A priority Critical patent/JPS609615B2/en
Publication of JPS57158414A publication Critical patent/JPS57158414A/en
Publication of JPS609615B2 publication Critical patent/JPS609615B2/en
Expired legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【発明の詳細な説明】 本発明は、新規にして産業利用性多大な、前期荷重積載
軟弱地盤締固め建設法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel load-bearing soft ground compaction construction method which is novel and of great industrial applicability.

元来、河川の堤防,海岸岸壁等の土木構造物は、断面大
で重い構造物である関係上、軟弱地盤上に構築すること
は好ましくないが、土地利用が進んだ地域では、軟弱地
盤を避けて堤防,岸壁等の敷地を選定することは許され
ず、実際問題として、軟弱地盤上にこの種士木構造物の
築造を行わざるを得ない場合が極めて多い。
Originally, civil engineering structures such as river embankments and coastal quays are large and heavy structures, so it is not desirable to build them on soft ground. It is not permissible to select sites for embankments, quays, etc. to avoid such problems, and as a practical matter, it is extremely often necessary to construct these types of wooden structures on soft ground.

この場合において、経済的な基礎からの漏水,構造物の
沈下,周囲の隆起或は地震による構造物の亀裂,沈下等
の危険性を事前的に排除する工法を施工することが絶対
に必要であるにも拘わらず、従釆法は何れもかかる条件
を充足し得ないものである。
In this case, it is absolutely necessary to implement a construction method that eliminates in advance the risks of water leakage from the foundation, subsidence of the structure, cracks and subsidence of the structure due to surrounding uplift or earthquakes. Despite this, none of the dependent methods can satisfy these conditions.

即ち、従来この種工法の1として実施されてきたサンド
パイルは、その内容よりして超軟弱地盤を対象として実
施することは不可能であり、また施工可能な地盤におい
ても、当該地盤を十分に安定右し得ないことは、周知の
事実である。
In other words, sand piles, which have been conventionally implemented as one of this type of construction methods, cannot be implemented on extremely soft ground due to their nature, and even on the ground where construction is possible, the ground cannot be sufficiently It is a well-known fact that it cannot be stabilized.

次に、軟弱地盤の粘性士を掘削して砂質士に置換する工
法も行われているが、この工法では、砂質士に置換した
後、長期間放置して地盤が安定するのを待って、その後
初めて構造物の構築に着手せざるを得ないという大きな
欠点があり、更に水底軟弱地盤を対象とするときは、サ
ンドマットを投入し、粘性士の安定した後に捨石を行う
工法が多く行われているが、該工法も地盤の安定に長時
間を要するのみならず、捨石が軟弱地盤中に没入してし
まうことが多く、また捨石が安定地盤に衝接して之を櫨
拝し、支持力を減少せしめるという欠点があり、更に前
記の従来工法に共通して、多大の手間と経費とを要する
という問題点がある。
Another method is to excavate the viscous soil in soft ground and replace it with sandy soil, but in this method, after replacing it with sandy soil, it is left for a long period of time to wait for the ground to stabilize. The major drawback is that construction of the structure has to be started only after the construction has been completed.Furthermore, when dealing with soft underwater ground, many construction methods involve inserting sand mats and placing rubble after the viscosity has stabilized. However, this construction method not only takes a long time to stabilize the ground, but also the rubble often sinks into the soft ground, and the rubble collides with the stable ground and worships it. This method has the disadvantage of reducing the supporting force, and, in common with the above-mentioned conventional construction methods, it requires a great deal of effort and expense.

本発明法は、かかる従釆法の持つ問題点を完全に解決す
ることを目的とする。次に、本発明法の構成を、1実施
例を示す図面について具体的に説明する。
The purpose of the method of the present invention is to completely solve the problems of such conventional methods. Next, the configuration of the method of the present invention will be specifically explained with reference to the drawings showing one embodiment.

1・・・1は、本発明法に用いられる透水布再製袋体で
あって、方形平板状をなして表面部にコンクリート注入
孔2を開設して成るものとする。
1...1 is a water-permeable fabric re-bag body used in the method of the present invention, which is shaped like a rectangular plate and has a concrete injection hole 2 in its surface.

前記透水布再製袋体1・・・1の材質をなす透水布畠は
、天然繊維布,合成繊維布,不織布等の中から選宜選択
されるが、後述の水底沈設の場合における水中沈降に便
なる材質のものが望ましい。本発明方法においては「前
述の構成より成る透水布再製袋体11・・1の多数を、
施工対象位置軟弱地盤3を覆う如く隣接敷設し、然る後
ト地上又は運搬船4上に配設したコンクリートプラント
5より、該コンクリートプラント5の輸送管6に蓮通せ
しめた各袋体のコンクリート注入孔2を介して、順次各
透水布常製袋体1・・・1内に生コンクリートを注入・
充填せしめて一体として固化せしめ、以て、土の比重1
.6に対して2.4の比重を有するコンクリートを内包
するコンクリートブロック化せしめるものである。
The water-permeable cloth material forming the water-permeable cloth re-bag bodies 1...1 is selected from natural fiber cloth, synthetic fiber cloth, nonwoven fabric, etc. Preferably, it is made of a suitable material. In the method of the present invention, "a large number of water-permeable fabric re-bag bodies 11...1 having the above-mentioned configuration,
Concrete is poured into each bag, which is laid adjacent to cover the soft ground 3 at the construction target location, and then passed through the transport pipe 6 of the concrete plant 5 from the concrete plant 5 installed on the ground or on the carrier ship 4. Fresh concrete is injected into each permeable fabric regular bag body 1...1 through the hole 2.
The soil is filled and solidified as one, and the specific gravity of the soil is 1.
.. It is made into a concrete block containing concrete having a specific gravity of 2.4 to 6.

この場合において、第1図及び第2図に示す如く、透水
布精製袋体1,・・1を、周縁部に鉄製枠体7を周設し
「該鉄製枠体7の対向側面間を複数の枠保持鉄筋81・
08で以て連結し、而して該枠保持鉄筋81・−8の上
下位置が透水布再製袋体111・1内に縦横に渡設され
る如く構成すれば、前述の生コンクリートの注入・充填
により、透水布精製袋体1・〇・1は、鉄製枠体7及び
枠保持鉄筋81・・8により方形平板状に保形せられた
鉄筋コンクリートブロック化することとなり、当該透水
布畠製袋体1の強度及び圧密効果の増大を図り得るのみ
ならず、方形平板状上に保形せられた透水布再製袋体1
・・・1の多数が相互に隙間なく密接して、施工対象位
置の軟弱地盤3を完全に覆う透水布岳製袋体群を形成し
得て、本発明法の効果をより顕著ならしめる所以となり
、好適である。
In this case, as shown in FIGS. 1 and 2, the water-permeable fabric purification bags 1, . . . Frame holding reinforcing bar 81・
08, and if the frame holding reinforcing bars 81. By filling, the water-permeable cloth purification bags 1, 0, 1 become reinforced concrete blocks whose shape is maintained in a rectangular flat plate by the iron frame 7 and the frame holding reinforcing bars 81...8, and the water-permeable cloth purification bags 1, Not only can the strength and compaction effect of the body 1 be increased, but also the water-permeable fabric remade bag body 1 is shaped like a rectangular flat plate.
. . . The reason why a large number of 1 are closely connected to each other without any gaps to form a group of permeable cloth bags that completely covers the soft ground 3 at the construction target location, making the effect of the method of the present invention even more remarkable. Therefore, it is suitable.

なお、各透水布再製袋体1周綾部に周設せられた鉄製枠
体7の適宜位置に連結環9を付設し、連結ひも10を介
して隣接透水布再製袋体1,1の連結環9を第2図に示
す如く連結することにより一連の透水布再製袋体101
・1群を形成すれば、軟弱地盤3上への透水布再製袋体
11・・Iの積載が迅速且つ整然と行われる所以となり
、特に「本発明法が河川の堤防,海岸岸壁等の土木構造
物を軟弱地盤上に構築する方法に係るものであるが故に
、多く河川や海岸の水底に対して透水布再製袋体1・・
・1を順次迅速且つ整然と沈下させる必要があるのに鑑
みて、極めて効果的である。
In addition, a connecting ring 9 is attached to an appropriate position of the iron frame 7 provided around the circumference of each water-permeable fabric re-bag body, and the connecting ring of adjacent water-permeable fabric bag bodies 1, 1 is attached via a connecting string 10. 9 are connected as shown in FIG. 2 to form a series of water permeable fabric remade bags 101
・If one group is formed, the loading of the water-permeable fabric re-wrapped bodies 11...I onto the soft ground 3 can be carried out quickly and orderly. Since it is related to the method of constructing things on soft ground, many re-made water-permeable cloth bags are used for the bottom of rivers and coasts.
・It is extremely effective considering that it is necessary to sink 1 one after another quickly and orderly.

本発明方法においては、上述の如くしてコンクリートブ
ロック化した透水布常製袋体1・・・1群上に目的とす
る土木構造物11とほぼ同重量の荷重12を積載して、
軟弱地盤3を圧密し、次で該荷重12を除去したうえで
目的とする土木構造物11を構築するものとする。
In the method of the present invention, a load 12 of approximately the same weight as the target civil engineering structure 11 is loaded on one group of water-permeable fabric regular bags 1 made into concrete blocks as described above,
It is assumed that the soft ground 3 is consolidated, and then the load 12 is removed, and then the intended civil engineering structure 11 is constructed.

この場合において、荷重12の積載は、数段階に分割し
て「順次行われるのが望ましい。
In this case, it is desirable that the loading of the load 12 be carried out sequentially by dividing it into several stages.

元来「本発明者は、圧密先行荷重を受けていない自然沈
降のままの処女地盤(以下、これを非圧密地盤という。
Originally, ``the present inventor refers to virgin ground that is naturally settled and has not been subjected to pre-consolidation loads (hereinafter referred to as unconsolidated ground).

)と、過去に圧密先行荷重を受けた地盤(以下「 これ
を過圧密地盤という。)の沈降現象の相違にっも、て着
目し、慎重な比較実験を繰返した結果、非圧密地盤への
萩衛実験では、荷重強度の各段階とも、萩荷点の附近の
沈下が顕著に表れるのに対して、過圧密地盤への載荷実
験では、既庄密の荷重までは萩荷点附近の沈下は殆んど
なく、既圧密荷重以上の荷重によっても、沈下量が非圧
密地盤におけるよりも非常に減少することを発見し「以
て前述の如くしてコンクリートブロック化した透水布再
製袋体11・・1群上に目的とする土木構造物liとほ
ぼ同車量の荷重12を積載して軟弱地盤3を圧密した後
「該荷重12を除去して目的とする土木構造物11を透
水布再製袋体1・・・1群上に構築することを特徴とす
る本発明方法を完成したのである。いま、非圧密地盤及
び過圧密地盤に対する戦荷実験の実験例の概要を、次に
記す。
) and ground that has been subjected to preconsolidation loading in the past (hereinafter referred to as overconsolidated ground), and as a result of repeated careful comparative experiments, it was found that In the Hagiwei experiment, the subsidence near the Hagi loading point was noticeable at each stage of the load intensity, whereas in the loading experiment on overconsolidated ground, the subsidence near the Hagi loading point was observed up to the preconsolidated load. They found that the amount of settlement was much smaller than that in unconsolidated ground even when a load higher than the consolidated load was applied. After the load 12 of approximately the same amount as the target civil engineering structure li is loaded on the first group and the soft ground 3 is consolidated, the load 12 is removed and the target civil engineering structure 11 is covered with a permeable cloth. We have completed the method of the present invention, which is characterized in that it is constructed on a group of remade bags 1...1.The following is an outline of an example of a load experiment on unconsolidated ground and overconsolidated ground. .

実験例 滋賀県野洲川底部に堆積した汚泥を採取し、含水比を約
50%に調整したところの、次の表1に示す如き物理的
性質を有するものを試料として、該試料を、第6図に示
す如き、幅150cの,奥行き20c机の実験用土地槽
13内に高さ60cmまで容入して汚泥層14とし、更
に荷重を萩荷するために該汚泥層上部に5cの厚の砂層
15を設け、而して図示の如きダイヤルゲ−ジー6を配
設して成るものを実験槽となし、該実験槽2個を用意し
て、各実験糟について、非圧密地盤における萩荷実験(
以下、実験例1とする。
Experimental Example Sludge deposited at the bottom of the Yasu River in Shiga Prefecture was collected and the water content was adjusted to approximately 50%.The sample had the physical properties shown in Table 1 below. As shown in the figure, a sludge layer 14 is formed by filling the soil up to a height of 60 cm in an experimental land tank 13 with a width of 150 cm and a depth of 20 cm. A sand layer 15 is provided, and a dial gauge 6 as shown in the figure is provided as an experimental tank. Two of the experimental tanks are prepared, and each experimental tank is used for a Hagi load experiment on unconsolidated ground. (
Hereinafter, it will be referred to as Experimental Example 1.

)及び過圧密地盤における戦荷実験(以下、実験例2と
する。)を「表2に示す如き各段階毎の荷重強度にて行
なった。表 1注、%は、重量%を示す仏〆下、同じ)
) and a warload experiment (hereinafter referred to as Experimental Example 2) on overconsolidated ground was carried out at the load strength for each stage as shown in Table 2.Table 1 Note: % indicates weight %. Below, same)
.

表 2 即ち「実験例1においては、表2及び第6図に示す如く
、実験用士槽13内砂層15上部の中央部に、幅20c
mの局部等分布荷重を第1段階から24時間毎に第5段
階まで戦荷し、その後、膨潤を調べるために荷重を除去
し「48時間放置した。
Table 2 Namely, "In Experimental Example 1, as shown in Table 2 and FIG.
A locally uniformly distributed load of m was applied from the first stage to the fifth stage every 24 hours, after which the load was removed and left for 48 hours to examine swelling.

次に、実験例2においては、実験用士槽13内砂層15
上部全面に、実験例1の第3段階の荷重に相当する等分
荷重を戦荷し、8日間圧密して過圧密地盤を形成した。
そして等分布荷重を除荷し、その直後に、実験例1と同
様に、表2に示す如く第7段階まで戦荷実験を行ない、
膨潤を調べるために除荷し、4斑時間放置した。如上の
実験例1及び実験例2の各荷重段階終了時の実験用士槽
13上面の変位量を、次の表3一1〜表3一8及び第7
図,第8図に示す。
Next, in Experimental Example 2, the sand layer 15 in the experimental tank 13 is
An equal load corresponding to the third stage load of Experimental Example 1 was applied to the entire upper surface, and the ground was consolidated for 8 days to form overconsolidated ground.
Then, the uniformly distributed load was unloaded, and immediately after that, similarly to Experimental Example 1, the load experiment was conducted up to the 7th stage as shown in Table 2.
It was unloaded and left for 4 hours to check for swelling. The amount of displacement of the upper surface of the experimental tank 13 at the end of each load stage in Experimental Examples 1 and 2 above is shown in Tables 3-1 to 3-8 and Table 7 below.
As shown in Fig. 8.

表3−1 〔荷重段階1(荷重強度:0.024kgイ微)の変羊
立量〕表3−2〔荷重段階2(荷重強度:0.047k
gイ地)の変*正量〕表3−3〔荷重段階3(荷重強度
:0.071kgイ微)の変泣量)表3−4〔荷重段階
4(荷重勇戦度:0.094kgイ松)の変率立量〕3
−5〔荷重段階5(荷室蚕盛夏:0.118kgイ孫)
の変$立量表3−6〔荷重段階6(荷重蚕戦夏:0.1
41kgイ地)の変*立量〕表3川7〔荷重旨郭皆7(
荷室誼重疲弊:o.165kgイ地)の変乳立量〕表3
〜8〔荷重除去〕 上述の表3−1〜表3−8並びに非圧密地盤への戦荷実
験説明図及び圧密地盤への萩滴実験説明図をそれぞれ示
す第7図及び第8図に明かな如〈、実験例1では荷重強
度の増加に従って載荷点附近の沈下が大きく表われてい
るのに対して、実験例2では、第3段階(荷重強度:0
.071k9ノのまでは目立った変位がなく、爾後の段
階においても、沈下量の減少を示している。
Table 3-1 [Load stage 1 (Load strength: 0.024kg)] Table 3-2 [Load stage 2 (Load strength: 0.047K)
Table 3-3 [Load level 3 (Load intensity: 0.071 kg I slight) change * Positive amount] Table 3-4 [Load stage 4 (Load strength: 0.094 kg I) 3)
-5 [Load stage 5 (cargo room Silkworm Morika: 0.118kg Ison)
Table 3-6 [Load stage 6 (Load silkworm summer: 0.1
Table 3 River 7 [Load effect 7 (
Luggage space fatigue: o. Table 3
~8 [Load removal] Tables 3-1 to 3-8 above, as well as Figures 7 and 8, which illustrate an explanatory diagram of a load experiment on unconsolidated ground and an explanatory diagram of a clover droplet experiment on consolidated ground, respectively. In Experimental Example 1, the subsidence near the loading point increases as the load intensity increases, whereas in Experimental Example 2, the settlement at the third stage (load intensity: 0)
.. There was no noticeable displacement until 071k9, and the amount of subsidence decreased even in the subsequent stages.

この場合において、第3段階の荷重強度0.071kg
ノのは〜前述の如く過圧密地盤を作成するために表層に
等分布に載荷した圧密先行荷重に等しいことから「過圧
密地盤では「予め圧密に用いた先行荷重までは殆んど沈
下の傾向が表われず、先行荷重を超える荷重強度でも沈
下量は少し、が、荷重の増大に伴い漸次非圧密地盤と同
様の沈下量になってゆくものであるものと思われる。
In this case, the load strength of the third stage is 0.071 kg.
As mentioned above, it is equal to the pre-consolidation load applied evenly to the surface layer to create over-consolidated ground. It seems that the amount of settlement is small even if the load intensity exceeds the pre-load, but as the load increases, the amount of settlement gradually becomes similar to that of unconsolidated ground.

また、実験例192ともに、載荷点附近の沈下によって
載荷点周辺附近において上昇が見えられるものの、実験
例1の示す非圧密地盤においては第4段階(荷重強度:
0.094k9ノの)から戦荷点周辺の上昇が表われて
いるのに対して、実験例2の示す造圧密地盤においては
、第6段階(荷重強度:0.141k9ノの)から戦荷
点周辺附近の上昇が表われていることも注目される。本
発明方法においては「如上の実験例において本発明者に
より明かにされた前述の新知見に基き、コンクリートブ
ロック化した透水布再製袋体官8QQ亀群上に目的とす
る土木構造物11とほぼ同車量の荷重12を積載して軟
弱地盤3を圧密しも換言すれば、当該軟弱地盤3を目的
とする±木構造物量軍の荷重に対して殆んど沈下するこ
とのない過圧密地盤となし「 しかる後、該荷重92を
除去しても目的構造物1亀を、第5図に示す如く透水布
常製袋体l。
In addition, in both Experimental Example 192, although a rise can be seen in the vicinity of the loading point due to subsidence in the vicinity of the loading point, in the unconsolidated ground shown in Experimental Example 1, the fourth stage (load intensity:
On the other hand, in the compacted soil shown in Experimental Example 2, the load strength increases from the 6th stage (load strength: 0.141k9). It is also noteworthy that there is an increase in the area around the point. In the method of the present invention, ``Based on the above-mentioned new findings revealed by the present inventor in the above experimental example, the target civil engineering structure 11 is approximately Consolidating the soft ground 3 by loading the same amount of load 12, in other words, the soft ground 3 is an overconsolidated ground that hardly sinks under the load of the target ± wooden structure. After that, even if the load 92 is removed, the target structure 1 remains as a bag made of water-permeable cloth as shown in FIG.

GG1群上に構築するものである。なお「第5図は「本
発明方法による軟弱地盤Sの圧密による陥入部に砂質土
曜?を充填し〜該砂質士亀7上に更に透水布再製袋体亀
G。
It is constructed on the GG1 group. In addition, ``Figure 5'' shows that the invaginated part due to the consolidation of the soft ground S according to the method of the present invention is filled with sandy clay, and a water-permeable cloth re-bag body turtle G is further placed on top of the sandy soil.

0軍を戦層した態様を示す。This shows the state in which the 0th army is placed in battle.

本発明方法で用いられる荷重竃2はし萩荷作業の容易性
蔓負荷効果の顕著性,耐腐蝕性等の観点よりしても第4
図に示す如く1形鋼を使用するのが効果的である。
The loading oven 2 used in the method of the present invention is the 4th choice from the viewpoints of ease of loading, conspicuousness of load effect, corrosion resistance, etc.
It is effective to use 1-section steel as shown in the figure.

本発明方法の効果は、前述の本発明方法の構成8作用よ
りして明かな如く、次の諸点に存する。
The effects of the method of the present invention reside in the following points, as is clear from the aforementioned constitution 8 of the method of the present invention.

‘ai 工場で生産したコンクリートブロックを施工現
場に運搬して敷設するのではなく、前記構成を有する透
水布畠製袋体1・・・1を施工現場に運搬してこれを敷
設し、然る後各透水布再製袋体11・・1に生コンクリ
ートを充填すれば良いから、その点における工事の迅速
化・コストダウンに資するところ多大である。
'ai Instead of transporting concrete blocks produced at a factory to a construction site and laying them, the water-permeable cloth bag body 1...1 having the above configuration is transported to the construction site and laid. After that, it is only necessary to fill each permeable cloth re-bag body 11...1 with ready-mixed concrete, which greatly contributes to speeding up the construction work and reducing costs.

{b)目的とする±木構造物11の加重に対して殆んと
沈下しない過圧密地盤を極めて簡単・確実且つ迅速に形
成し、而してかかる過圧密地盤上を掩う如く酉己設せら
れた強固な方形平板状コンクリートブロック群乃至は方
形平板状鉄筋コンクリートブロック群の上に、換言すれ
ば過圧密地盤上に敷設された巨大なコンクリート版の上
に、土木構造物11を構築するものであるから、この点
における圧密効果の多大性,工期の迅速性,コストの低
兼性等の利点は実に多大で、軟弱地盤上士木構築法とし
て、従来にその比を見ない特段の効果を有する。
{b) To form an overconsolidated ground that hardly sinks under the load of the target ± wooden structure 11 very easily, reliably, and quickly, and to build the ground so as to cover the overconsolidated ground. The civil engineering structure 11 is constructed on a group of strong rectangular flat concrete blocks or a group of rectangular flat reinforced concrete blocks, in other words, on a huge concrete slab laid on overconsolidated ground. Therefore, the advantages in this respect, such as the great consolidation effect, quick construction period, and low cost, are truly great, and as a method of constructing shingle on soft ground, it has special effects that are unparalleled in the past. has.

{c} 透水布岳製袋体1・・・1の構成よりして、一
般的に施工の困難な水底施工の場合も、自重により水中
を逐次沈降せしめて透水布畠製袋体1・・・1群を構成
し、生コンクリートの連続的注入に備えることが出来、
この点においても甚だ効果的である。
{c} Due to the structure of the transparent cloth bags 1...1, even in the case of underwater construction, which is generally difficult to perform, the transparent cloth bags 1...・Can form one group and prepare for continuous pouring of fresh concrete,
It is extremely effective in this respect as well.

【d)土木構造物11が岸壁である場合において、隣接
敷設される透水布再製袋体11・・1群を岸壁前面海底
上にある程度延出せしめれば、洗掘防止効果,消波効果
が顕著で、岸壁前面に対するブロックの投入の必要性が
なくなり、その点における経済的効果は著大である。
[d) When the civil engineering structure 11 is a quay, if the first group of water-permeable fabric re-bags 11 laid adjacent to the quay are extended to some extent above the seabed in front of the quay, the scour prevention effect and wave dissipation effect can be improved. This is remarkable, as it eliminates the need to add blocks to the front of the quay, and the economic effect in that respect is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は何れも本発明方法の1実施例を示すも
のであって、第1図及び第2図は、それぞれ本発明方法
に使用する透水布精製袋体の斜視図及び相互連結した態
様を示す平面図、第3図は、透水布帯製袋体への生コン
クリート注入の態様を示す説明図、第4図は、透水布局
製袋体群に目的土木構造物とほぼ同重量の1字鋼を負荷
した態様を示す側面図、第5図は、本発明方法により土
木構築物を構築した態様を示す側面説明図、第6図は、
戦荷実験装置の説明図、第7図は、非圧密地盤への戦荷
実験説明図、第8図は、過圧密地盤への敦荷実験説明図
である。 図面中、1・・・1・…・・透水布再製袋体、2・・・
・・・コンクリート注入孔、3・・・・・・軟弱地盤、
7・・・・・・鉄製枠体「 8・・・8…・・・枠保持
鉄筋、11・・・・・・±木構造物、12・・…・荷重
である。 繁1図 繁2図 第3図 繁ム図 第5図 第6図 第7図 第8図
Figures 1 to 5 all show one embodiment of the method of the present invention, and Figures 1 and 2 are respectively a perspective view of a water-permeable fabric purification bag used in the method of the present invention and a mutual relationship. FIG. 3 is an explanatory diagram showing the mode of pouring ready-mixed concrete into the permeable fabric bag body; FIG. 4 is a plan view showing how the permeable fabric bags are connected; FIG. 5 is a side view showing an aspect in which a heavy single-shaped steel is loaded, FIG. 5 is a side explanatory view showing an aspect in which a civil engineering structure is constructed by the method of the present invention, and FIG.
FIG. 7 is an explanatory diagram of the loading experiment equipment; FIG. 7 is an explanatory diagram of the loading experiment on unconsolidated ground; and FIG. 8 is an explanatory diagram of the loading experiment on overconsolidated ground. In the drawings, 1...1... Water-permeable fabric remade bag body, 2...
...Concrete injection hole, 3...Soft ground,
7... Steel frame 8... 8... Frame holding reinforcing bars, 11... ± wooden structure, 12... Load. Fig. 1 Fig. 2 Figure 3 Traditional map Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1 方形平板状をなし、表面部にコンクリート注入孔2
を開設した透水布帛製袋体1…1の多数を、施工対象位
置の軟弱地盤3を覆う如く隣接敷設し、該透水布帛製袋
体1…1内部にコンクリート注入孔2を介して順次生コ
ンクリートを注入・充填した後、コンクリートブロツク
化した透水布帛製袋体1…1群上に目的土木構造物11
とほぼ同重量の荷重12を積載して軟弱地盤3を圧密し
、次で該荷重12を除去して目的とする土木構造物11
を透水布帛製袋体1…1群上に構築することを特徴とす
る、前期荷重積載軟弱地盤締固め建設法。 2 透水布帛製袋体1…1が、周縁部にそれぞれ鉄製枠
体7を周設すると共に、当該透水布帛製袋体1内におい
て、鉄製枠体7の対向側面間を連結する複数の枠保持鉄
筋8…8を縦横に渡設して成る、特許請求の範囲第1項
記載の前期荷重積載軟弱地盤締固め建設法。 3 荷重12が多数の1型鋼である、特許請求の範囲第
1項記載の前期荷重積載軟弱地盤締固め建設法。
[Claims] 1. Shape of a rectangular plate, with concrete injection holes 2 on the surface.
A large number of water-permeable fabric bags 1...1 that have been opened are laid adjacent to each other so as to cover the soft ground 3 at the construction target location, and fresh concrete is sequentially poured into the water-permeable fabric bags 1...1 through concrete injection holes 2. After injecting and filling, the target civil engineering structure 11 is placed on top of the water-permeable fabric bags 1...1 group, which are made into concrete blocks.
The soft ground 3 is consolidated by loading a load 12 of approximately the same weight as , and then the load 12 is removed to form the intended civil engineering structure 11.
An early load-bearing soft ground compaction construction method characterized by constructing on a group of water-permeable fabric bags 1...1. 2. Each of the water-permeable fabric bags 1...1 has an iron frame 7 around its peripheral edge, and within the water-permeable fabric bag 1, a plurality of frame holders connect the opposite sides of the iron frame 7. The early load-bearing soft ground compaction construction method according to claim 1, wherein reinforcing bars 8...8 are installed vertically and horizontally. 3. The early load carrying soft ground compaction construction method according to claim 1, wherein the load 12 is a large number of Type 1 steels.
JP4374681A 1981-03-24 1981-03-24 Early load loading soft ground compaction construction method Expired JPS609615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4374681A JPS609615B2 (en) 1981-03-24 1981-03-24 Early load loading soft ground compaction construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4374681A JPS609615B2 (en) 1981-03-24 1981-03-24 Early load loading soft ground compaction construction method

Publications (2)

Publication Number Publication Date
JPS57158414A JPS57158414A (en) 1982-09-30
JPS609615B2 true JPS609615B2 (en) 1985-03-12

Family

ID=12672318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4374681A Expired JPS609615B2 (en) 1981-03-24 1981-03-24 Early load loading soft ground compaction construction method

Country Status (1)

Country Link
JP (1) JPS609615B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679761B1 (en) * 1994-04-26 1999-06-16 Bridgestone Corporation Flat hoses for use in the compaction of soft ground and compaction method using the same
CN113089962B (en) * 2021-04-11 2022-12-23 南京泽舒居科技有限公司 Overhead system and installation device and construction method thereof

Also Published As

Publication number Publication date
JPS57158414A (en) 1982-09-30

Similar Documents

Publication Publication Date Title
CN107419630A (en) A kind of the soft soil foundation high-filled embankment and construction method of effectively control settlement after construction
CN109972469A (en) The weak subgrade processing unit and method of modular replacement stone pile composite foundation combination surcharge preloading
CN206902488U (en) A kind of soft soil foundation high-filled embankment of effectively control settlement after construction
CN110144783B (en) Roadbed construction method
CN106498923A (en) Consolidation sand filling bag composite pile system and its construction method from after draining
JPS6311710A (en) Earthquake-proofing and reinforcing work for existing structure
JPS609615B2 (en) Early load loading soft ground compaction construction method
JPH02504050A (en) Method for forming road and roadbed structures
CN109653223A (en) River anti-floating weighting board construction method
Indraratna et al. Laboratory evaluation of the load-deflection behaviour of clay beams reinforced with galvanised wire netting
CN110004876A (en) Low stake gravity type quay and its construction method suitable for soft soil foundation
CN212052139U (en) Steel reinforcement cage bamboo shoot pile in mountainous heavy hill area
CN206438495U (en) Sand filling bag composite pile system is consolidated from after draining
KR100612659B1 (en) Fill-up construction method in dredging reclaimed land by cohesive soil using surcharge water and sand
CN110438942A (en) A kind of sandy soil fill protective slope structure and its construction method
RU2376416C1 (en) Ground heterogeneous rock-fill dam
KR100475978B1 (en) System for enhancing bearing power of soft ground using hardening pile reinforced with public works textile pack and construction method thereof
CN110185048A (en) Deep narrow river valley ultra-deep foundation pit Muddy Bottoms excavate road construction protective slope structure and method
KR20010016170A (en) Anti-Scouring and Erosion Fabric Form
JPH08284126A (en) Repairing method of quay and quay structure
KR200316779Y1 (en) Reclaimed land formed in the soft ground of the seashore using dredged soil and sand so as to reinforce bearing power
JP3047268U (en) Landfill
CN218405501U (en) Fill out and receive fender soil sub-low bank structure in mud district
JPS609614B2 (en) How to build civil engineering structures on soft ground
CN219604278U (en) Natural revetment structure of grass slope income water