JPS6095465A - Developing device for electrostatic latent image - Google Patents

Developing device for electrostatic latent image

Info

Publication number
JPS6095465A
JPS6095465A JP58201915A JP20191583A JPS6095465A JP S6095465 A JPS6095465 A JP S6095465A JP 58201915 A JP58201915 A JP 58201915A JP 20191583 A JP20191583 A JP 20191583A JP S6095465 A JPS6095465 A JP S6095465A
Authority
JP
Japan
Prior art keywords
toner
toner concentration
detection means
detected
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58201915A
Other languages
Japanese (ja)
Other versions
JPH0578031B2 (en
Inventor
Masayuki Mizuno
水野 昌之
Satoshi Uemori
上森 敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP58201915A priority Critical patent/JPS6095465A/en
Publication of JPS6095465A publication Critical patent/JPS6095465A/en
Publication of JPH0578031B2 publication Critical patent/JPH0578031B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer
    • G03G15/0822Arrangements for preparing, mixing, supplying or dispensing developer
    • G03G15/0848Arrangements for testing or measuring developer properties or quality, e.g. charge, size, flowability
    • G03G15/0849Detection or control means for the developer concentration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

PURPOSE:To hold carrier particles and toner particles at a specific ratio by comparing the detected value of a toner density detecting means with a specific reference value and calculating the comparative relation between the both, and further calculating the variation state of the detected toner density value of this density detecting means. CONSTITUTION:A control means 58 compares the detected density value which is based upon the detection signal from the toner density detecting means and stored in a memory 60 with the specific reference value stored in a memory 64 to calculate the comparative relation between the both. Then, the detected toner density value based upon the detection signal from the toner density detecting means is compared with a detected toner density value which is stored in a memory 62 and based upon the toner density detection signal from the toner density detecting means before a specific period determined by a timing pulse generating means 68 to calculate the comparative relation between the both, calculating the variation state of the detected toner density value. Then, an operation signal for operating an electric motor 70 is generated on the bais of the comparative relation and variation state.

Description

【発明の詳細な説明】 本発明は、静電fH像現像装置、更に詳しくはキャリア
粒子及びトナー粒子から成る所謂二成分系現像剤が使用
される型の静電潜像現像装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrostatic fH image developing apparatus, and more particularly to an electrostatic latent image developing apparatus of the type in which a so-called two-component developer consisting of carrier particles and toner particles is used.

当業者には周知の如く、静電複写機等において4− は、静電潜像を現像するための現像装置として、キャリ
ア粒子及びトナー粒子から成る所謂二成分系現像剤が使
用される型の現像装置が従来から広く実用に供されてい
る。この型の現像装置は、一般に、現像剤を収容する現
像容器と、この現像容器内の現像剤の一部を表面に保持
して現像すべき静電潜像に適用する現像剤適用機構と、
トナー粒子を収容するトナー粒子収容器と、選択的に作
動されて上記トナー粒子収容器から上記現像容器内の現
像剤にトナー粒子を供給するトナー粒子供給手段とを具
備している。
As is well known to those skilled in the art, in electrostatic copying machines and the like, 4- is a type of developing device in which a so-called two-component developer consisting of carrier particles and toner particles is used as a developing device for developing an electrostatic latent image. Developing devices have been widely used in practical use. This type of developing device generally includes a developer container containing a developer, a developer application mechanism that holds a portion of the developer in the developer container on the surface and applies it to the electrostatic latent image to be developed.
The toner particle container includes a toner particle container for storing toner particles, and a toner particle supply means that is selectively operated to supply toner particles from the toner particle container to the developer in the developer container.

上記現像装置においてば、現像の遂行による現像剤中の
トナー粒子の消費に応じて、トナー粒子供給手段を適宜
に作動してトナー粒子収容器から現像容器内の現像剤に
トナー粒子を適宜に供給し、かくして現像容器内の現像
剤中のキャリア粒子とトナー粒子との割合を所要範囲に
維持することが重要である。この点について更に詳述す
ると、上記現像装置における現像剤適用機構は、その表
面にキャリア粒子及びトナー粒子から成る現像剤を保持
するが、当業者には周知の如く、静電潜像には本来的に
トナー粒子のみが付着され、従って現像の遂行に応じて
トナー粒子のみが消費され、キャリア粒子は実質−L消
費されない。それ故に、現像容器内の現像剤にトナー粒
子を供給することなく現11!を繰返し遂行すると、現
像剤中のトナー粒子の割合が過剰に低下する。そして、
かくすると、現像された顕像の現像濃度が低下し所謂現
像不足現象が発生する等の不都合が生ずる。他方、トナ
ー粒子収容器から現像容器内の現像剤に過剰のトナー粒
子が供給され1.現像剤中のトナー粒子の割合が過剰に
増大すると、現像された顕像に所謂地肌カプリ現象が発
生する等の不都合が生ずる。
In the above-mentioned developing device, the toner particle supply means is operated appropriately according to the consumption of toner particles in the developer due to the performance of development, and toner particles are appropriately supplied from the toner particle container to the developer in the developer container. Thus, it is important to maintain the ratio of carrier particles to toner particles in the developer in the developer container within the required range. To explain this point in more detail, the developer applying mechanism in the above-mentioned developing device retains the developer consisting of carrier particles and toner particles on its surface, but as is well known to those skilled in the art, the electrostatic latent image is Only the toner particles are deposited and therefore only the toner particles are consumed as development is carried out, and the carrier particles are not substantially consumed. Therefore, development is possible without supplying toner particles to the developer in the developer container! If performed repeatedly, the proportion of toner particles in the developer is reduced excessively. and,
This causes problems such as a decrease in the density of the developed image and the so-called under-development phenomenon. On the other hand, excess toner particles are supplied from the toner particle container to the developer in the developer container, and 1. If the proportion of toner particles in the developer increases excessively, problems such as the so-called background capri phenomenon occur in the developed image.

そこで、従来においても、現像容器内の現像剤中のキャ
リア粒子とトナー粒子との割合を種々の方式によって検
出し、かかる検出に基づいてトナー粒子供給手段の作動
(従ってトナー粒子収容器から現像容器内の現像剤への
トナー粒子の供給)を制御し、かくして現像容器内の現
像剤中のキャリア粒子とトナー粒子の割合を所要範囲に
維持している。
Therefore, in the past, the ratio of carrier particles to toner particles in the developer in the developer container is detected by various methods, and based on this detection, the toner particle supply means is activated (therefore, the ratio of carrier particles to toner particles in the developer in the developer container is activated). The supply of toner particles to the developer in the developer container is controlled, thus maintaining the ratio of carrier particles to toner particles in the developer in the developer container within a required range.

しかしながら、従来の現像装置は未だ充分に満足し得る
ものではす<、以下の欠点乃至問題を有している。即ち
、上述した通りの現像装置においては、現像容器内の現
像剤中のキャリア粒子とトナー粒子との割合を検出して
その検出信号に基づいてトナー粒子供給機構の作動を制
御しているが、その作動の制御が上記現像剤中のキャリ
ア粒子とトナー粒子との割合のみによって行なわれてい
る故に、キャリア粒子とトナー粒子との割合に比較的大
きな幅が生じ(即ち、良好なトナー像を得る7− ことができる所要の割合に対して比較的大きな幅をもっ
て現像容器内のキャリア粒子とトナー粒子との割合が制
御される)、かくして上記現像剤中のキャリア粒子とト
ナー粒子との割合を所要の範囲に正確に維持することが
できない。
However, the conventional developing device is still not fully satisfactory and has the following drawbacks and problems. That is, in the developing device as described above, the ratio of carrier particles to toner particles in the developer in the developer container is detected and the operation of the toner particle supply mechanism is controlled based on the detection signal. Since its operation is controlled only by the ratio of carrier particles to toner particles in the developer, there is a relatively wide range in the ratio of carrier particles to toner particles (i.e., it is difficult to obtain a good toner image). 7- The ratio of carrier particles to toner particles in the developer container is controlled over a relatively large range relative to the required ratio that can be achieved), thus controlling the ratio of carrier particles to toner particles in the developer to the required ratio. cannot be maintained accurately within the range.

本発明は上記事実に鑑みてなされたものであり、その目
的は、現像容器内の現像剤のキャリア粒子とトナー粒子
との割合を所要の割合に維持することができる改良され
た現像装置を提供することである。
The present invention has been made in view of the above facts, and an object of the present invention is to provide an improved developing device that can maintain the ratio of carrier particles and toner particles of developer in a developer container at a required ratio. It is to be.

本発明によれば、キャリア粒子及びトナー粒子から成る
現像剤を収容する現像容器と、該現像容器内の該現像剤
の一部を表面に保持して現像すべき静電a像に適用する
現像剤適用機構と、トナー粒子を収容するトナー粒子収
容器と、選択的に作動されて該トナー粒子収容器から該
現像容器内へトナー粒子を供給するトナー粒子供給手段
と、該8− 現像容器内の該現像剤におけるトナー濃度を検出するた
めのトナー濃度検出手段と、該トナー濃度検出手段の検
出トナー濃度値に基いて該トナー粒子供給手段の作動を
制御するための制御手段とを具備する静電潜像現像装置
において;該制御手段は、該トナー濃度検出手段の検出
トナー濃度値を所定基準値と比較して両者の比較関係を
算出すると共に、該トナー濃度検出手段の検出トナー濃
度値の変動状態を算出し、該比較関係と該変動状態とに
基いて該トナー粒子供給手動の作動を制御する、ことを
特徴とする静電潜像現像装置が提供される。
According to the present invention, there is provided a developing container containing a developer consisting of carrier particles and toner particles, and a developing device that retains a portion of the developer in the developer container on the surface and applies it to an electrostatic a image to be developed. a toner particle applying mechanism, a toner particle container for storing toner particles, a toner particle supply means that is selectively activated to supply toner particles from the toner particle container into the developer container, and 8- Inside the developer container. a toner concentration detection means for detecting the toner concentration in the developer; and a control means for controlling the operation of the toner particle supply means based on the toner concentration value detected by the toner concentration detection means. In the electrolatent image developing device; the control means compares the toner concentration value detected by the toner concentration detection means with a predetermined reference value to calculate a comparison relationship between the two, and also compares the toner concentration value detected by the toner concentration detection means with a predetermined reference value. An electrostatic latent image developing device is provided, characterized in that a fluctuation state is calculated, and the operation of the manual toner particle supply is controlled based on the comparison relationship and the fluctuation state.

以下、本発明に従って構成された静電ffN+象現像装
置の好適具体例を、添付図面を参照して更に詳細に説明
する。
Hereinafter, preferred embodiments of the electrostatic ffN+ image developing device constructed according to the present invention will be described in more detail with reference to the accompanying drawings.

第1図を参照して説明すると、全体を番号2で示す図示
の静電潜像現像装置は、非導電性材料から形成された皿
状下部プレート4と同様に非導電性材料から形成された
上部カバープレート6とを有する現像ハウジング8を備
えている。この現像ハウジング8の下部は、磁性キャリ
ア粒子及びトナー粒子から成る所謂二成分系現像剤10
を収容する現像容器12を構成する。現像ハウジング8
の前面には開口14が形成されており、また現像ハウジ
ング80頂面には開閉動自在な扉16によって閉じられ
る開口18が形成されている。
Referring to FIG. 1, the illustrated electrostatic latent image development device, generally designated by the numeral 2, includes a dish-shaped lower plate 4 formed from a non-conductive material as well as a dish-shaped lower plate 4 formed from a non-conductive material. A developing housing 8 having an upper cover plate 6 is provided. A so-called two-component developer 10 consisting of magnetic carrier particles and toner particles is located in the lower part of the developer housing 8.
A developing container 12 that accommodates the. Developing housing 8
An opening 14 is formed in the front surface of the developing housing 80, and an opening 18 that is closed by a door 16 that can be opened and closed is formed in the top surface of the developing housing 80.

現像ハウジング8内には、現像剤適用機構20が配設さ
れている。また、現像ハウジング8内には、現像剤適用
機構20に関連せしめてその周囲に位置付けられた穂長
設定部材22、トナー粒子供給手段24が付設されたト
ナー粒子間容器26、剥離部材28及び回転攪拌機構3
0も配設されている。
A developer application mechanism 20 is disposed within the developer housing 8 . Further, inside the developer housing 8, a spike length setting member 22 positioned in relation to and around the developer application mechanism 20, a toner particle container 26 provided with a toner particle supply means 24, a peeling member 28, and a rotating Stirring mechanism 3
0 is also provided.

図示の具体例における現像剤適用機構20は、回転自在
に装着され矢印32で示す方向に回転駆動される回転ス
リーブ部材34と、この回転スリーブ部材34内に配設
された静止永久磁石36とを具備している。静止永久磁
石36はロール形状であり、その周縁部に周方向に間隔
を置いて位置する6個の磁極、即ち交互に位置する3個
のS極と3個のN極を有する。
The developer application mechanism 20 in the illustrated example includes a rotating sleeve member 34 that is rotatably mounted and rotationally driven in the direction indicated by an arrow 32, and a stationary permanent magnet 36 disposed within the rotating sleeve member 34. Equipped with The stationary permanent magnet 36 is roll-shaped and has six circumferentially spaced magnetic poles on its periphery, ie, three south poles and three north poles located alternately.

導電性材料から形成された穂長設定部材22は、番号2
2aで示す角部が回転スリーブ部材340表面に対して
0.5乃至3.Om程度であるのが好しい間隔を置いて
位置し、後に言及する如く、回転スリーブ部材34の表
面に保持される現像剤10の蓋即ち磁気ブラシ穂長を所
要値に設定する。かかる穂長設定部材22は、上記間隔
を必要に応じて微調整することができるように、例えば
第1図において左右方向の位置が微調整自在に現像ハウ
ジング8の所要位置、更に詳しくは下部グレート11− 4の前端部に装着されている。
The panicle length setting member 22 made of a conductive material is numbered 2.
The angle indicated by 2a is 0.5 to 3. The length of the lid or magnetic brush tip of the developer 10 held on the surface of the rotating sleeve member 34 is set to a required value, as will be described later. The panicle length setting member 22 is arranged at a desired position of the developing housing 8, more specifically, at a lower grate, so that the above-mentioned interval can be finely adjusted as needed. It is attached to the front end of 11-4.

トナー粒子38を収容するトナー粒子収容器26は、J
lit四にトナー粒子供給手段40を下面にトナー粒子
排出開口42を有する。そして、トナー粒子収容器26
のトナー粒子排出開口42にトナー粒子供給手段24が
配設されている。このトナー粒子供給手段24は周表面
には例えばローレット加工を施すことによって多数の四
部又は溝が形成されている、回転自在に装着されたロー
ラから構成されている。後に言及する如く、トナー粒子
供給手段24は選択的に作動されて矢印44で示す方向
に回転駆動さね、かくすると、トナー粒子供給手段24
の胸表面に存在する多数の凹部又は溝に収容された状態
でトナー粒子38がトナー粒子収容器26から搬出され
、次いでU転スリーブ部@340表面に向けて落下され
て現像容器12内の現像剤10に供給される。トナー粒
子収容器2612− 自体へのトナー粒子38の補光は、現像ハウジング8の
頂面に設けられている扉16を開け、開口18及びトナ
ー粒子補充開口40を通してトナー粒子収容器26内に
トナー粒子38を装填することによって遂行される。
The toner particle container 26 containing the toner particles 38 is J
It has a toner particle supply means 40 on the fourth side and a toner particle discharge opening 42 on the lower surface. And the toner particle container 26
A toner particle supply means 24 is disposed in the toner particle discharge opening 42 of the toner particle discharge opening 42 . The toner particle supply means 24 is constituted by a rotatably mounted roller, the circumferential surface of which is provided with a number of grooves or grooves, for example by knurling. As will be discussed below, the toner particle supply means 24 is selectively actuated to drive rotation in the direction indicated by arrow 44, thus causing the toner particle supply means 24 to rotate in the direction indicated by arrow 44.
The toner particles 38 are carried out from the toner particle container 26 while being accommodated in a large number of recesses or grooves present on the chest surface of the toner particle container 26 , and are then dropped toward the surface of the U-rolling sleeve part @ 340 to be developed in the developer container 12 . agent 10. Toner particle container 2612 - Toner particles 38 are supplied to the toner particle container 2612 by opening the door 16 provided on the top surface of the developer housing 8 and introducing the toner particles into the toner particle container 26 through the opening 18 and the toner particle replenishment opening 40. This is accomplished by loading particles 38.

現像ハウジング8内の所定位置に固定されている剥離部
材28は、回転スリーブ部材340表面に接触又は近接
する先端28aを有し、後に言及する如く、先端28a
が回転スリーブ部材340表面に存在する現像剤10に
作用することによって、回転スリーブ部材340表面か
ら現像剤10を確実に剥離せしめる。
The peeling member 28 fixed at a predetermined position within the developer housing 8 has a tip 28a that contacts or approaches the surface of the rotating sleeve member 340, and as will be described later,
acts on the developer 10 present on the surface of the rotating sleeve member 340, thereby reliably separating the developer 10 from the surface of the rotating sleeve member 340.

回転攪拌機構30は、回転自在に装着され矢印46で示
す方向に回転駆動される回転攪拌部材から構成されてい
る。
The rotary agitation mechanism 30 is comprised of a rotary agitation member that is rotatably mounted and rotationally driven in the direction indicated by an arrow 46 .

上記の通りの現像装置2は、例えば静電複写機ハウジン
グ(図示していない)内に回転自在に装着された回転ド
ラム48(その一部のみを図示する)のI^1表面に配
設された静電写真感光体50(同様にその一部のみ1図
示する)上に、それ自体は周知の適宜の方式によって形
成された静電潜像にトナー粒子を施してこれを顕像に現
像するだめの現像装置として利用される。この場合には
、現像装置2は、第1図に図示する如く、現像ハウジン
グ8の前面に形成されている開口14が感光体50に面
して位負するように装着される。そして、現像装置2k
i、回転スリーブ部材34の矢印32で示す方向への回
転に応じて、次の通りの作用を遂行する。最初に、符号
Pで示す現像剤汲み上げ域にて、永久磁石36の磁気吸
引力によって、現像容器12内に存在する現像剤10が
回転スIJ−ブ部材34の表向に吸引保持され、かくし
て回転スリーブ部材34の表面に現像剤10の磁気ブラ
シ52が形成される。次いで、かかる磁気ブラシ52は
、穂長設定部材220作用によって、その穂長が所要の
長さにせしめられる。しかる後に、符号りで示す現像域
にて、上記磁気ブラシ52が矢印54で示す方向に回転
せしめられている感光体500表面に接触せしめられ、
かくして感光体50上に形成されている静電潜像に磁気
ブラシ社中のトナー粒子が施され、静電潜像が顕像に現
像される。次いで、符号Rで示す現像剤剥離域にては、
この現像剤剥離域Rにおいては永久磁石36の磁極が存
在せず磁界は存在していても著しく小さいことに加えて
、剥離部材28が回転スリーブ部材34上の磁気ブラシ
52に作用することによって、回転スリーブ部材340
表面から磁気ブラシ52を形成している現像剤10が剥
離される。
The developing device 2 as described above is disposed on the I^1 surface of a rotary drum 48 (only a part of which is shown), which is rotatably mounted in, for example, an electrostatic copying machine housing (not shown). Toner particles are applied to an electrostatic latent image formed on an electrostatographic photoreceptor 50 (also only a portion of which is shown in FIG. 1) by any suitable method which is well known per se, and this is developed into a visible image. It is used as a waste developing device. In this case, the developing device 2 is mounted so that the opening 14 formed on the front surface of the developing housing 8 faces the photoreceptor 50, as shown in FIG. And developing device 2k
i. In response to the rotation of the rotating sleeve member 34 in the direction indicated by the arrow 32, the following actions are performed. First, in the developer drawing-up area indicated by the symbol P, the developer 10 present in the developer container 12 is attracted and held on the surface of the rotating IJ-stub member 34 by the magnetic attraction force of the permanent magnet 36. A magnetic brush 52 of the developer 10 is formed on the surface of the rotating sleeve member 34 . Next, the magnetic brush 52 is made to have a desired length by the action of the brush length setting member 220. After that, the magnetic brush 52 is brought into contact with the surface of the photoreceptor 500, which is being rotated in the direction shown by the arrow 54, in the developing area indicated by the symbol.
Toner particles manufactured by Magnetic Brush Co., Ltd. are applied to the electrostatic latent image thus formed on the photoreceptor 50, and the electrostatic latent image is developed into a visible image. Next, in the developer peeling area indicated by the symbol R,
In this developer stripping region R, the magnetic pole of the permanent magnet 36 is not present, and even if the magnetic field is present, it is extremely small. In addition, the stripping member 28 acts on the magnetic brush 52 on the rotating sleeve member 34, Rotating sleeve member 340
The developer 10 forming the magnetic brush 52 is peeled off from the surface.

剥離された現像剤10は、剥離部材2Bの上面に沿って
流下し、回転攪拌機構30に向って落下する。回転攪拌
機構30は、現像剤1oを攪拌して15− 現像剤10中のキャリア粒子とトナー粒子を均一に混合
せしめると共にトナー粒子を例えば負に摩擦帯電せしめ
る。
The peeled developer 10 flows down along the upper surface of the peeling member 2B and falls toward the rotating stirring mechanism 30. The rotary stirring mechanism 30 stirs the developer 1o to uniformly mix carrier particles and toner particles in the developer 10, and also triboelectrically charges the toner particles, for example, negatively.

而して、図示の現像装@2における上述した通シの構成
及び作用は、本発明に従って構成された現像装置の新規
な改良点を構成するものではなく、本発明が適用される
現像装置の率なる一例を示すものにすぎない。
Therefore, the above-described structure and operation of the through hole in the illustrated developing device @2 do not constitute a new improvement of the developing device configured according to the present invention, but are merely improvements in the developing device to which the present invention is applied. This is just one example.

第1図を参照してvit91を続けると、現像装置2に
は決偉容器12内の現像剤10の導電率(この導電率は
摩擦帯電による現像剤10中の電荷の影響も含む)を検
出してトナー濃度を検出するための検出手段が装備され
ている。図示の具体例においては、現像剤適用機構20
の回転スリーブ部材34と接地との間に電圧源56が電
気的に介在せしめられていると共に、導電性材料から形
成された上記穂長設定部材22が対向電極としても利用
されている。電圧源56は例えば200v程度で=16
− よい直流電圧を回転スリーブ部材34に印加する。
Continuing with vit91 with reference to FIG. 1, the developing device 2 detects the electrical conductivity of the developer 10 in the container 12 (this electrical conductivity also includes the influence of the electric charge in the developer 10 due to triboelectric charging). Detection means for detecting toner concentration is provided. In the illustrated embodiment, developer application mechanism 20
A voltage source 56 is electrically interposed between the rotating sleeve member 34 and ground, and the spike length setting member 22 made of a conductive material is also used as a counter electrode. For example, the voltage source 56 is about 200V = 16
- applying a good DC voltage to the rotating sleeve member 34;

そして、回転スリーブ部材34と穂長設定部材22との
間を両者間に存在する現像剤10を通って流れる電流を
検出することによって、現像容器12内の現像剤10の
導電率が検出される。
The electrical conductivity of the developer 10 in the developer container 12 is detected by detecting the current flowing between the rotating sleeve member 34 and the brush length setting member 22 through the developer 10 present therebetween. .

図示の具体例においては、導電性材料から形成されその
周表面に感光体50が配設されている回転ドラム48は
接地されている。それ故に、上記電圧源56は、現像容
器12内の現像剤10の導電率を検出するための電圧源
として機能すると共に、現像域りにおいて回転スリーブ
部材34と感光体50との間に、現像における所謂地肌
カブリの発生を防止するためのそれ自体は周知の現像バ
イアス電圧を印加する現像バイアス電圧源としても機能
する。
In the illustrated example, a rotating drum 48 made of a conductive material and having a photoreceptor 50 disposed on its circumferential surface is grounded. Therefore, the voltage source 56 functions as a voltage source for detecting the conductivity of the developer 10 in the developer container 12, and also provides a voltage source between the rotating sleeve member 34 and the photoreceptor 50 in the developing area. It also functions as a developing bias voltage source that applies a well-known developing bias voltage to prevent the occurrence of so-called background fog.

現像容器12内の現像剤1oを通って流れる電流を検出
するための対向電極は、上述した如く穂長設定部材22
から構成することに代えて、他の適宜の部材から構成す
ることもできる。例えば、現像容器12の底面を規定し
ている皿状下部プレート4の上向に導電性部劇を埋殺し
、かかる導電性部材によって対向t&を構成してもよい
。また、場合によっては、皿状下部プレート4自体を導
電性材料から形成し、皿状下部プレート4自体を対向電
極として利用することもできる。
The counter electrode for detecting the current flowing through the developer 1o in the developer container 12 is connected to the spike length setting member 22 as described above.
Instead of being made up of, it can also be made up of other appropriate members. For example, a conductive member may be buried above the dish-shaped lower plate 4 that defines the bottom surface of the developer container 12, and the opposing T& may be formed by such a conductive member. Further, depending on the case, the dish-shaped lower plate 4 itself may be formed from a conductive material, and the dish-shaped lower plate 4 itself may be used as a counter electrode.

上記具体例においては、穂長設定部材22から構成され
た対向電極は、例えは積分回路から構成することができ
るそれ自体は周知のノイズフィルタ(図示せず)を介し
て、以下に詳述する制御手段58に電気的に接続されて
いる。従って、上記トナー濃度検出手段によって検出さ
れた検出トナー濃度値に基づくトナー濃度検出信号は、
制御手段58に供給される。
In the above specific example, the counter electrode composed of the panicle length setting member 22 is connected to the counter electrode via a well-known noise filter (not shown), which can be composed of an integrating circuit, for example, as described in detail below. It is electrically connected to control means 58 . Therefore, the toner concentration detection signal based on the detected toner concentration value detected by the toner concentration detection means is as follows:
A control means 58 is supplied.

例エバマイクロプロセッサから構成される制御手段58
は、第1のメモリ手段60、第2のメモリ手段62、第
3のメモリ手段64、第4のメモリ手段66及びタイミ
ングパルス生成手段68を含んでいる。第1のメモリ手
R60には、上記トナー濃度検出手段から制御手段58
に供給されたトナー濃度検出信号に基づく検出トナー濃
度値が記憶される。第2のメモリ手段62には、後に詳
細に説明する如く、所定期間前のトナー検出手段によっ
て検出された検出トナー濃度値が記憶される。
Control means 58 consisting of an example Eva microprocessor
includes first memory means 60 , second memory means 62 , third memory means 64 , fourth memory means 66 and timing pulse generating means 68 . The first memory hand R60 includes the toner concentration detection means to the control means 58.
A detected toner density value based on the toner density detection signal supplied to the toner density detection signal is stored. The second memory means 62 stores the detected toner density value detected by the toner detecting means a predetermined period ago, as will be explained in detail later.

第3のメモリ手段64には、現像剤中のキャリア粒子と
トナー粒子との所要割合、即ちトナー濃度の所定基準値
が記憶されている。また、第4のメモリ手段66には、
上述したトナー粒子供給手段24を矢印44で示す方向
に回転させるための電動モータ70をPk要O通シに作
動させるだめの「高速」、「中速」及び「低速」のデー
タが記憶されている。更に、タイミングパルス生成手段
68は、所定間隔(例えば0.5秒乃至1秒間隔)のパ
ルス信号を生成する。かかるパルス信号は、上記トナ=
19− 一濃度検出手段からのトナー濃度検出信号f:所定期間
ごとに制御+股58に供給する作用をする。
The third memory means 64 stores a required ratio of carrier particles to toner particles in the developer, that is, a predetermined reference value of toner concentration. Further, the fourth memory means 66 includes:
Data of "high speed", "medium speed" and "low speed" for operating the electric motor 70 for rotating the above-mentioned toner particle supply means 24 in the direction shown by the arrow 44 in a Pk required period is stored. There is. Further, the timing pulse generation means 68 generates pulse signals at predetermined intervals (eg, 0.5 seconds to 1 second intervals). Such a pulse signal is generated when the above toner=
19- Toner concentration detection signal f from one concentration detection means: acts to supply to the control + crotch 58 at predetermined intervals.

上記制御手段58は、後に詳述する如く、トナー濃度検
出手段からのトナー濃度検出信号に基づく検出トナー濃
度値(具体例では、第1のメモリ手段60に記憶されて
いる検出トナー濃度値)と所定基準値(具体例では、第
3のメモリ手段64に記憶されているトナー濃度の所定
基準値)とを比較して両者の比較関係ヲ箕出すると共に
、上記トナー濃度検出手段からのトナー濃度検出信号に
基づく検出トナー濃度値と所定期間(かかる所定期間は
、タイミングパルス生成手段68によって生成されるパ
ルス信号の間隔に対応する)前のトナー濃度検出手段か
らのトナー濃度検出信号に基づく検出トナー濃度値(具
体例では、第2のメモリ手段62に記憶されている検出
トナー濃度値)と比較して両者の比較関係を算出するこ
とによつ一2〇− てトナー濃度検出手段の検出トナー濃度値の変動状態を
算出し、上記比較関係と上記変動状態とに基づいて後述
する如く上記電動モータ70を作動させるだめの作動信
号を生成する。即ち、上記比較関係と上記変動状態とに
基づいて第4のメモリ手段66から「高速」(又は「中
速j1「低速」)のデータが読み出されると、かかる「
高速」(又は「中速」、[低速])データに基づいて高
速作動信号(又は中速作動信号、低速作動信号)が生成
され、かかる高速作動信号(又は中速作動信号、低速作
動信号)が電動モータ70に送給される。
As will be described in detail later, the control means 58 controls the detected toner concentration value based on the toner concentration detection signal from the toner concentration detection means (in the specific example, the detected toner concentration value stored in the first memory means 60). A predetermined reference value (in a specific example, a predetermined reference value of toner concentration stored in the third memory means 64) is compared to find a comparative relationship between the two, and the toner concentration detected by the toner concentration detection means is The detected toner concentration value based on the detection signal and the detected toner based on the toner concentration detection signal from the toner concentration detection means before a predetermined period (the predetermined period corresponds to the interval of the pulse signal generated by the timing pulse generation means 68). By comparing the density value (in the specific example, the detected toner density value stored in the second memory means 62) and calculating the comparative relationship between the two, the detected toner of the toner density detecting means is The fluctuation state of the concentration value is calculated, and an operation signal for operating the electric motor 70 is generated as described later based on the comparison relationship and the fluctuation state. That is, when data of "high speed" (or "medium speed j1 "low speed") is read out from the fourth memory means 66 based on the above comparison relationship and the above fluctuation state, such "
A high speed activation signal (or medium speed activation signal, low speed activation signal) is generated based on the ``high speed'' (or ``medium speed'', [low speed]) data, and such high speed activation signal (or medium speed activation signal, low speed activation signal) is generated. is fed to the electric motor 70.

制御手段58から高速作動信号が送給されると、電動モ
ータ70は所定の高速で回転駆動され、かくしてトナー
粒子供給手段24は比較的高速で回転されて比較的多量
のトナー粒子を現像容器12内に供給する(多量供給状
態となる)。制御手段58から低速作動信号が送給され
ると、電動モー猶i惰1定の低速で回転駆動され、かく
してトナー粒子供給手段24け比較的低速で回転されて
比較的小倉のトナー粒子全現像容器12内に供給する(
小倉供給状態となる)。また、制御手段58から中速作
動信号が送給されると、電動モータ70は上記所定の高
速と上記所定の低速との間の所定の中速で回転駆動され
、かくしてトナー粒子供給手段24は中速で回転されて
比較的多音よりも少なく且つ比較的少量よりも多いトナ
ー粒子を現像容器12内に供給する(上記多量供給状態
におけるトナー粒子供給1よりも小さく且つ上記少量供
給状態におけるトナー粒子供給量よりも大きい量のトナ
ー粒子を供給する中間供給状態となる)。
When a high-speed operation signal is sent from the control means 58, the electric motor 70 is driven to rotate at a predetermined high speed, and the toner particle supply means 24 is thus rotated at a relatively high speed to supply a relatively large amount of toner particles to the developer container 12. (a large amount of supply occurs). When a low-speed operation signal is sent from the control means 58, the electric motor is rotated at a constant low speed, and thus the toner particle supply means 24 is rotated at a relatively low speed to completely develop a relatively small amount of toner particles. Supplied into the container 12 (
Kokura supply status). Further, when a medium speed operation signal is sent from the control means 58, the electric motor 70 is driven to rotate at a predetermined medium speed between the predetermined high speed and the predetermined low speed, and thus the toner particle supply means 24 is rotated. It is rotated at a medium speed to supply toner particles into the developer container 12 that are relatively smaller than the polyphonic speed and larger than the relatively small amount (the toner particles are smaller than the toner particle supply 1 in the above-mentioned large-volume supply state and the toner particles in the above-mentioned small-volume supply state). (This results in an intermediate supply state in which toner particles are supplied in an amount larger than the particle supply amount.)

次に主として第2図に示す表を参照して、トナー濃度検
出手段からの検出トナー濃度値(第1のメモリ手段60
に記憶されている検出トナー濃度値M1)とトナー濃度
の所定基準値(第3のメモリ手段64に記憶されている
所定基準値M5)との比較関係、及びトナー濃度検出手
段からの検出トナー濃度値(第1のメモリ手段60に記
憶されている検出トナー濃度値Ml )と所定期間前の
トナー濃度検出手段からの検出トナー濃度値(第2のメ
モリ手段64に記憶されている検出トナー一度値M2)
との比較関係を算出することによって得られるトナー濃
度検出手段の検出トナー濃度値の変動状態と、上記制御
手段58にて生成される作動信号によって作動される電
動モータ70の制御との関係を説明する。トナー濃度検
出手段の検出トナー濃度値(Ml)がトナー濃度の所定
基準値(M3)よりも大きい(Ml>M3 )とき、及
びトナー濃度検出手段の検出トナー濃度値(Ml)が上
記所定基準値(M5)と実質上等しく (M1=M3)
且つ上記所定期間のトナー濃度検出手段の検出トナー濃
度値(M2)よりも大きい(Ml>M2)又は上23− 9ij検出トナ一濃度値(M2)と実質上等しい(M1
=M2)ときには作動信号は生成されず、電動モータ7
0が非作動となってトナー粒子供給手段24は非作動状
態と力る(従って供給停止状態となる)。トナー濃度検
出手段の検出トナー濃度値(Ml)が上記所定基準M(
M5)と実質上等しく (M1=M5)且つ7′9丁定
期間@]1のトナー濃度検出手段の検出トナー濃度値(
M2)よりも小さい(Ml<M2)のとき、及びトナー
濃度検出手段の検出トナー濃度値(Ml)が上記所定基
準値(M5)よりも小さく (Ml<M5)且つ所定期
間前のトナー濃度検出手段の検出トナー濃度値(M2)
よりも大きい(Ml>M2)のときには、第4のメモリ
手段66から「低速」データが読み出されて制御手段5
8にて低迷作動信号が生成され、かくしてトナー粒子供
給手段24に′i上述した如く比較的低速で回転される
(従って、小倉供給状態となる)。また、トナー濃度検
出手段の24− 検出トナー濃度&(4)が上記所定基準値(M5)より
も小さく (Ml<、M3)且つ所定期間前のトナー濃
度検出手段の検出トナー濃度M、(M2)と実質上等し
い(M1=M2)ときには、第4のメモリ手段66から
「中速」データが読み出されて制御手段58にて中速作
動信号が生成され、かくしてトナー粒子供給手段24は
上述した如く中速で回転される(従って、中間供給状態
となる)。更に、トナー濃度検出手段の検出トナー濃度
値(Ml)が上記所定基準値(M5)よりも小さく (
Ml<M5)且つ剪定期間前のトナー濃度検出手段の検
出トナー濃度値(M2)よりも小さい(Ml<M2)と
きには、第4のメモリ手段66から「高速」データが読
み出されて制御手段58にて高速作動信号が生成され、
かくしてトナー粒子供給手段24は上述した如く比較的
高速で回転される(従って、多量供給状態となる)。
Next, with reference mainly to the table shown in FIG.
The comparison relationship between the detected toner concentration value M1) stored in the toner concentration and a predetermined reference value of toner concentration (predetermined reference value M5 stored in the third memory means 64), and the detected toner concentration from the toner concentration detection means (the detected toner concentration value Ml stored in the first memory means 60) and the detected toner concentration value from the toner concentration detecting means a predetermined period ago (the detected toner once value stored in the second memory means 64). M2)
The relationship between the fluctuation state of the toner concentration value detected by the toner concentration detection means obtained by calculating the comparison relationship with the toner concentration value and the control of the electric motor 70 operated by the operation signal generated by the control means 58 will be explained. do. When the toner concentration value (Ml) detected by the toner concentration detection means is larger than the predetermined reference value (M3) of toner concentration (Ml>M3), and the toner concentration value (Ml) detected by the toner concentration detection means is the predetermined reference value. (M5) is substantially equal to (M1=M3)
and is greater than the toner concentration value (M2) detected by the toner concentration detection means for the predetermined period (Ml>M2) or substantially equal to the toner concentration value (M2) detected by the toner concentration detection means for the predetermined period (M1
= M2), no actuation signal is generated and the electric motor 7
0 becomes inactive, and the toner particle supply means 24 becomes inactive (therefore, the supply is stopped). The toner concentration value (Ml) detected by the toner concentration detection means meets the predetermined standard M(
M5) is substantially equal to (M1=M5) and the detected toner concentration value (
M2) (Ml<M2), and the toner density value (Ml) detected by the toner density detection means is smaller than the predetermined reference value (M5) (Ml<M5), and the toner density is detected before a predetermined period of time. Detected toner density value of means (M2)
(Ml>M2), the "low speed" data is read out from the fourth memory means 66 and sent to the control means 5.
A sluggish activation signal is generated at 8, thus causing the toner particle supply means 24 to rotate at a relatively low speed as described above (thereby providing a small supply condition). Further, the toner concentration detected by the toner concentration detection means 24-(4) is smaller than the predetermined reference value (M5) (Ml<, M3) and the toner concentration detected by the toner concentration detection means M, (M2) before the predetermined period. ) is substantially equal (M1=M2), the "medium speed" data is read from the fourth memory means 66 and a medium speed actuation signal is generated in the control means 58, thus causing the toner particle supply means 24 to operate as described above. It is rotated at a medium speed as shown in FIG. Furthermore, the toner concentration value (Ml) detected by the toner concentration detection means is smaller than the predetermined reference value (M5) (
Ml<M5) and smaller than the toner density value (M2) detected by the toner density detection means before the pruning period (Ml<M2), the "high speed" data is read out from the fourth memory means 66 and the control means 58 A high-speed actuation signal is generated at
Thus, the toner particle supply means 24 is rotated at a relatively high speed (therefore, a large quantity is supplied) as described above.

次に、−E記制a4n4t58の制御のフローチャート
全ηくず#143図を参照して、更に説明する。1ず、
ステップn−1において、トナー濃度検出手段からのト
ナー嬢度検出伯号が制御手段58に入力される。かかる
(M号の入力は、上述した如く、タイミングパルス生成
手段68によって生成されるパルス信号に同期して、従
って具体例においては0.5乃至1秒間隔に行なわれる
。トナー濃度検出信号か入力されると、ステップn−2
に移り、上記トナー濃度検出信弓に基づく検出トナー濃
度値が第1のメモリ手段60に記憶される。次いで、ス
テップn−3に移り、上記第1のメモリ手段60に記憶
された検出トナー濃度価(Ml)と第3のメモリ手段6
4に記憶されているHr足基準値(M5)とが比較判v
1される。上記ステップn−aにおいて第1のメモリ手
段60の検出トナー濃度値(Mt )が第3のメモリ手
段64の所定基準値(M5)よりも太きい(Ml>M5
) と比較判断された場合には、ステップn−4に移り
、制御手段58にて電動モータ70を作動させるための
作動信号が生成されず、ステップn−5において電動モ
ータ70は非作動と碌る(かくして、トナー粒子供給手
段24は供給停止状態となる)。
Next, further explanation will be given with reference to the flowchart of the control of -E notation a4n4t58, all η scraps #143. 1st,
At step n-1, the toner density detection number from the toner density detection means is input to the control means 58. As described above, the input of the number M is performed in synchronization with the pulse signal generated by the timing pulse generation means 68, and thus is performed at intervals of 0.5 to 1 second in the specific example. If so, step n-2
Then, the detected toner density value based on the toner density detection signal is stored in the first memory means 60. Next, the process moves to step n-3, where the detected toner concentration value (Ml) stored in the first memory means 60 and the third memory means 6 are stored.
4 is compared with the Hr standard value (M5) stored in
1 will be given. In step na above, the detected toner concentration value (Mt) of the first memory means 60 is larger than the predetermined reference value (M5) of the third memory means 64 (Ml>M5).
), the process moves to step n-4, where the control means 58 does not generate an activation signal for activating the electric motor 70, and in step n-5, the electric motor 70 is determined to be inactive. (Thus, the toner particle supply means 24 is in a supply stop state).

上記ステップn−3において第1のメモリ手段60の検
出トナー濃度値(Ml)が第3のメモリ手段640所定
基準値(M3)と実質上等しい(M1=M3 )と比較
判断された場合には、ステップn−6に移り、第1のメ
モリ手段60に記憶された検出トナー濃度値(Ml)と
第2のメモリ手段62に記憶されている検出トナー濃度
値(Ml > (かかる検出トナー濃度値は、上述した
如く、所定期間前のトナー濃度検出手段によって検出さ
れた検出トナー濃度値である)とが比較判断される(か
く比較判断することによって、トナー濃度検出手段の検
出トナー27− 濃度値の変動状態を算出する)。ステップn−6におい
て第1のメモリ手段60の検出トナー濃度値(Ml)が
第2のメモリ手段62の検出トナー濃度値(Ml)より
も小さい(Ml<Ml)と比較判断された場合には、ス
テップn−7に移り、ステップn−7において第4のメ
モリ手段66に記憶されている「高速」、「中速」及び
「低速」データのうち「低速」データが読み出される。
If it is determined in step n-3 that the detected toner concentration value (Ml) of the first memory means 60 is substantially equal to the predetermined reference value (M3) of the third memory means 640 (M1=M3), , the process moves to step n-6, and the detected toner density value (Ml) stored in the first memory means 60 and the detected toner density value (Ml > (such detected toner density value) stored in the second memory means 62 are determined. As described above, is the detected toner density value detected by the toner density detecting means a predetermined period ago). In step n-6, the toner concentration value (Ml) detected by the first memory means 60 is smaller than the toner concentration value (Ml) detected by the second memory means 62 (Ml<Ml). If it is determined by comparison, the process moves to step n-7, and in step n-7, among the "high speed", "medium speed" and "low speed" data stored in the fourth memory means 66, "low speed" is selected. Data is read.

「低速」データが絖み出されると、ステップn−8に移
り、制御手段58にて上記「低速」データに基づいて低
速作動信号が生成され、次いでステップn−9に移9、
かかる低速作動信号によって電動モータ70は所定の低
速で回転せしめられる(カくシて、トナー粒子供給手段
24は少1供給状態となる)。他方、上記ステップn−
6において上記第1のメモリ手段600検出トナ一濃度
値(Ml)が上記第2のメモリ手段62の検出トナー濃
度値(Ml)と実質上等28− しい(M1=M2 ) か又は上記検出トナー濃度値(
Ml)よりも大きい(Ml>Ml)と比較判断された場
合には、ステップn−10に移り、制御手段58にて電
動モータ70を作動させるための作動信号が生成されず
、ステップn−11において電動モータ70は非作動と
なる(かくして、トナー粒子供給手段24は供給停止状
態となる)。
When the "low speed" data is set out, the process moves to step n-8, where the control means 58 generates a low speed operation signal based on the "low speed" data, and then the process moves to step n-99.
The electric motor 70 is caused to rotate at a predetermined low speed by this low speed operation signal (the toner particle supply means 24 is in a state of supplying only a small amount of toner particles). On the other hand, the above step n-
6, the toner density value (Ml) detected by the first memory means 600 is substantially equal to the toner density value (Ml) detected by the second memory means 62 (M1=M2), or the detected toner density value (Ml) is substantially equal to the toner density value (Ml) detected by the second memory means 62. Concentration value (
Ml) (Ml>Ml), the process moves to step n-10, where the control means 58 does not generate an actuation signal for actuating the electric motor 70, and the process proceeds to step n-11. At this point, the electric motor 70 is inactive (thus, the toner particle supply means 24 is in a non-supply state).

また、上述したステップn−3において第1のメモリ手
段60の検出トナー濃度値(Ml)が第3のメモリ手段
640所定基準値(M5)よりも小さい(Ml<M5)
と比較判断された場合には、ステップn−12に移り、
第1のメモリ手段60に記憶された検出トナー濃度値(
Ml)と第2のメモリ手段62に記憶されている検出ト
ナー濃度値(Ml)とが比較判断される(かく比較判断
することによって、トナー濃度検出手段の検出トナー濃
度値の変動状態を算出する)。ステップn−12におい
て第1のメモリ手段60の検出トナー濃度値(Ml)が
第2のメモリ手段62の検出トナー濃度値(M2)より
も小さい(Ml<M2 )と比較判断された場合には、
ステップn−13に移り、ステップn−13において第
4のメモリ手段66に記憶されているデータのうち「高
速」データが読み出される。「高速」データが読み出さ
れると、ステップn−14に移91制御手段58にて上
記1−高速」データに基づいて高速作動信号が生成され
、次いでステップn−15に移り、かかる高速作動信号
によって電動モータ70は所定の高速で回転せしめられ
る(かくして、トナー粒子供給手段24は多量供給状態
となる)。
Further, in step n-3 described above, the detected toner concentration value (Ml) of the first memory means 60 is smaller than the predetermined reference value (M5) of the third memory means 640 (Ml<M5).
If it is determined by comparison, move to step n-12,
The detected toner density value (
Ml) and the detected toner density value (Ml) stored in the second memory means 62 are compared and determined (by performing this comparative judgment, the fluctuation state of the toner density value detected by the toner density detecting means is calculated). ). If it is determined in step n-12 that the toner concentration value (Ml) detected by the first memory means 60 is smaller than the toner concentration value (M2) detected by the second memory means 62 (Ml<M2), ,
Moving on to step n-13, "high speed" data among the data stored in the fourth memory means 66 is read out in step n-13. When the "high speed" data is read out, the process moves to step n-14, where the control means 58 generates a high speed operation signal based on the 1-high speed data, and then the process moves to step n-15, where the high speed operation signal is used to generate a high speed operation signal. The electric motor 70 is rotated at a predetermined high speed (thus, the toner particle supply means 24 is in a large quantity supply state).

上記ステップn−12において第1のメモリ手11R6
0の検出トナー濃度値(Ml)が第2のメモリ手段62
の検出トナー濃度1m(Mg)と実質上等しい(Mt=
M2)と比較判断された場合には、ステップn−16に
移り、ステップn−16において第4のメモリ手段66
に記憶されているデータのうち「中速」データが読み出
される。「中速」データが読み出されると、ステップn
−17に移り、制御手段58にて上記「中速」データに
基づいて中速作動信号が生成され、次いでステップn−
18に移シ、かかる中速作動信号によって電動モータ7
0は所定の中速で回転せしめられる(かくして、トナー
粒子供給手段24は中間供給状態となる)。また、上記
ステップn−12において第1のメモリ手段60の検出
トナー濃度値(Ml)が第2のメモリ手段62の検出ト
ナー濃度値(M2)よりも大きい(Ml>M2)と比較
判断された場合には、上述したステップn−7に移シ、
上述した如く、「低速」データが読み出される。「低速
」データが読み出されると、上述した如く、制御手段5
8にて低速作動信号が生成され、電動モータ70は所定
の低速で回転せしめられる(かくして、トナー粒子供給
手段2431− は少量供給状態となる)。
In step n-12 above, the first memory hand 11R6
The detected toner density value (Ml) of 0 is stored in the second memory means 62.
is substantially equal to the detected toner concentration of 1m (Mg) (Mt=
M2), the process moves to step n-16, and in step n-16, the fourth memory means 66
Among the data stored in , "medium speed" data is read out. When the “medium speed” data is read, step n
-17, the control means 58 generates a medium speed operation signal based on the "medium speed" data, and then in step n-
18, the medium speed operation signal causes the electric motor 7 to
0 is rotated at a predetermined medium speed (thus, the toner particle supply means 24 is in an intermediate supply state). Further, in step n-12, it is determined that the toner concentration value (Ml) detected by the first memory means 60 is larger than the toner concentration value (M2) detected by the second memory means 62 (Ml>M2). If so, proceed to step n-7 described above;
As mentioned above, "slow" data is read. When the "low speed" data is read, the control means 5
At 8, a low speed activation signal is generated, causing the electric motor 70 to rotate at a predetermined low speed (thus, the toner particle supply means 2431- is in a small supply state).

上述した如くしてステップn−5及びステップn−11
において電動モータ70が非作動状態となった後、ステ
ップn−9において電動モータ70が低速回転状態とな
った後、ステップn−18において電動モータ70が中
速回転状態となった後、或いはステップn−15におい
て電動モータ70が高速回転状態となった後は、次にス
テップn−19に移p1第1のメモリ手段60の検出ト
ナー濃度値(Ml)が第2のメモリ手段62に記憶され
る。このとき、第2のメモリ手段62には、以前に記憶
されていた検出トナー濃度値(M2)が消去されて、新
たに第1のメモリ手段60の検出トナー濃度値(Ml)
が記憶される。第1のメモリ手段60の検出トナー濃度
値(Ml)が第2のメモリ手段62に記憶されると元に
戻り、かくして、上述した通りの制御が所定の間隔(0
,5乃至1秒の間隔)をも32− って繰返して遂行される。
Step n-5 and step n-11 as described above.
After the electric motor 70 is in a non-operating state in step n-9, after the electric motor 70 is in a low-speed rotation state in step n-18, or after the electric motor 70 is in a medium-speed rotation state in step n-18, or After the electric motor 70 enters the high-speed rotation state in step n-15, the process moves to step n-19, in which the detected toner concentration value (Ml) of the first memory means 60 is stored in the second memory means 62. Ru. At this time, the detected toner density value (M2) previously stored in the second memory means 62 is erased, and the detected toner density value (Ml) of the first memory means 60 is newly stored.
is memorized. When the detected toner concentration value (Ml) of the first memory means 60 is stored in the second memory means 62, it returns to the original state, and thus the control as described above is performed at a predetermined interval (0
, 5 to 1 second intervals) and is performed repeatedly for 32 seconds.

以上、本発明に従って構成された静電潜像現像装置の好
適具体例について説明したが、本発明の範囲を逸脱する
ことなく種々の変形乃至修正が可能である。
Although preferred specific examples of the electrostatic latent image developing device constructed according to the present invention have been described above, various modifications and modifications can be made without departing from the scope of the present invention.

例えば、図示の具体例においてはトナー粒子供給手段を
構成するローラの回転速度を3段階に切換えてトナー粒
子の供給状態を多量供給状態、中間供給状態及び少量供
給状態の3段階に設定しているが、所望ならば、これに
代えて、トナー粒子の供給状態を1段階、2段階或いは
4段階以上に設定することも可能でおる。トナー粒子の
供給状態を1段階に設定する場合には、第4図の表に示
す如くしてトナー粒子供給手段を回動させるだめの電動
モータを作動制御すれはよい。即ち、トナー濃度検出手
段の検出トナー濃度値(Ml)がトナー濃度の所定基準
値(M5)よりも大きい(Mx>Rh)のとき、及びト
ナー濃度検出手段の検出トナー濃度値(Ml)が上記所
定基準値(M5)と実質上等(−< (Ml=M5)且
つハ「定期間前のトナー濃度検出手段の検出I・ブー濃
度値(M2)よりも大きい(Ml〉M2)又は上記検出
トナー濃度値(M2)と実質上等しい(M1=M2)と
きには、制御手段にて作動信号は生成されず、電動モー
タ70は非作動とな!ll(従って、トナー粒子供給手
段は供給停止状態となる)、トナー濃度検出手段の検出
トナー濃度値(Ml)が上記所定基準値(M5)と実質
上等しく(M1=M5)且つ所定期間前のトナー濃度検
出手段の検出トナー濃度値(M2)よりも小さい(Ml
<M2)と良、及びトナー濃度検出手段の検出トナー濃
度値(Ml )が上記所定基準fiiI(M5)よりも
小さい(MlくM3)ときにtよ、制御手段にて作a信
号が生成されて電動モータ70が作動される(従って、
トナー粒子供給手段は供給状態となる)ように制御すれ
ばよい。
For example, in the illustrated example, the rotational speed of the roller constituting the toner particle supply means is switched in three stages, and the toner particle supply state is set in three stages: a large amount supply state, an intermediate supply state, and a small amount supply state. However, if desired, instead of this, it is also possible to set the toner particle supply state in one stage, two stages, or four stages or more. When the toner particle supply state is set to one level, the operation of the electric motor for rotating the toner particle supply means may be controlled as shown in the table of FIG. That is, when the toner concentration value (Ml) detected by the toner concentration detection means is larger than the predetermined reference value (M5) of toner concentration (Mx>Rh), and the toner concentration value (Ml) detected by the toner concentration detection means is Substantially equal to the predetermined reference value (M5) (-< (Ml=M5) and (Ml>M2) or the above detection When it is substantially equal to the toner concentration value (M2) (M1=M2), no actuation signal is generated by the control means, and the electric motor 70 is inactive (therefore, the toner particle supply means is in the supply stop state). ), the toner concentration value (Ml) detected by the toner concentration detection means is substantially equal to the predetermined reference value (M5) (M1=M5), and is greater than the toner concentration value (M2) detected by the toner concentration detection means a predetermined period before. is also small (Ml
<M2), and when the toner concentration value (Ml) detected by the toner density detection means is smaller than the predetermined reference value (M5) (M1<M3), the control means generates a signal. electric motor 70 is activated (therefore,
The toner particle supplying means may be controlled so as to be in a supplying state.

また、トナー粒子の供給状態を2段階(小量供給状態と
多量供給状態)に設定する場合には、第5図の表に示す
如くして上記電動モータを作動制御すればよい。即ち、
トナー濃度検出手段の検出トナー濃度値(Ml)がトナ
ー濃度の所定基準値(M3)よりも大きい(Ml>M5
)とき、及びトナー濃度検出手段の横用トナー濃度値(
Ml)が上記所定基準値(M5)と実質上等しく (M
1=M5)且つ所定期間前のトナー濃度検出手段の検出
トナー濃度値(M2)よりも大きい(M 1 )M 2
 )又は上記検出トナー濃度値(M2)と実質上等しい
(M1=M2)ときには、制御手段にて作動信号は生成
されず、電動モータは非作動となり(従って、トナー粒
子供給手段は供給停止状態となる)、トナー濃度検出手
段の検出トナー濃度値(Ml)が上記所定基準値(M5
)と実質上等しく (Mx=Ms)且つ所定期間前35
− のトナー濃度検出手段の検出トナー濃度値(M2)より
も小さい(Ml<M2)とき、及びトナー濃度検出手段
の検出トナー濃度値(Ml)が上記所定基準値(M5)
より小さく (Ml<M5)且つ所定期間前のトナー濃
度検出手段の検出トナー濃度値(M2)より大きい(M
l>M2)ときには、制御手段にて低速作動信号が生成
されて電動モータが低速で回転され(従って、トナー粒
子供給手段は比較的低速で回転されて小量供給状態とな
る)、またトナー濃度検出手段の検出トナー濃度値(M
l)が上記所定基準値(M5)より小さく (Ml<M
5)且つ所定期間前のトナー濃度検出手段の検出トナー
濃度値(M2)と実質上等しい(M1=M2)又は上記
検出トナー濃度fuk(M2)より小さい(Ml<M2
)ときには、制御手段にて^速作動信号が生成されて電
動モータが高速で回転される(従って、トナー粒子供給
手段は比較的高速で回転されて多量供給状態となる)3
6− ように制御すればよい。
Further, when the toner particle supply state is set in two stages (a small amount supply state and a large amount supply state), the operation of the electric motor may be controlled as shown in the table of FIG. That is,
The toner concentration value (Ml) detected by the toner concentration detection means is larger than the predetermined reference value (M3) of toner concentration (Ml>M5
), and the horizontal toner density value of the toner density detection means (
Ml) is substantially equal to the predetermined reference value (M5) (M
1=M5) and larger than the toner concentration value (M2) detected by the toner concentration detection means a predetermined period before (M 1 )M 2
) or substantially equal to the detected toner concentration value (M2) (M1=M2), the control means does not generate an activation signal and the electric motor is inactive (therefore, the toner particle supply means is in a supply stop state). ), and the toner concentration value (Ml) detected by the toner concentration detection means is equal to the predetermined reference value (M5).
) is substantially equal to (Mx=Ms) and 35 before the predetermined period
- When the toner concentration value (Ml) detected by the toner concentration detection means is smaller than the toner concentration value (M2) detected by the toner concentration detection means (Ml<M2), and the toner concentration value (Ml) detected by the toner concentration detection means is the predetermined reference value (M5).
smaller (Ml<M5) and larger (M
l>M2), the control means generates a low speed operation signal to rotate the electric motor at a low speed (therefore, the toner particle supply means is rotated at a relatively low speed and is in a small amount supply state), and the toner concentration is Toner concentration value detected by the detection means (M
l) is smaller than the above predetermined reference value (M5) (Ml<M
5) and is substantially equal to the toner concentration value (M2) detected by the toner concentration detection means before a predetermined period (M1=M2) or smaller than the detected toner concentration fuk (M2) (Ml<M2).
), the control means generates a speed activation signal to rotate the electric motor at a high speed (therefore, the toner particle supply means is rotated at a relatively high speed and is in a large quantity supply state)3.
6- It should be controlled as follows.

また、図示の具体例においては、トナー粒子供給手段を
ローラより構成してこのローラの回転速度を変化させる
ことによってトナー粒子の供給状態を3段階(多量供給
状態、中間供給状態、小量供給状態)に設定しているが
、これに代えて、以下に記載する如く構成することも可
能である。即ち、トナー粒子収容器内を小量供給部、多
量供給部及び中間供給部に区画し、小量供給部の底壁に
は比較的小径の複数個の孔を設け、多量供給部の底壁に
は比較的大径の複数個の孔を設け、中間供給部の底壁に
は比較的小径よシ大きく且つ比較的大径よシ小さい複数
個の孔を設け、トナー粒子供給手段を小量供給部の孔を
開閉する第1のシャッタ部材、多量供給部の孔を開閉す
る第2のシャッタ部材及び中間供給部の孔を開閉する第
3のシャッタ部材から構成することも可能である。かか
る場合には、第1のシャッタ部材を開にして小量供給部
の孔を開放すると、この孔を通して比較的小iのトナー
粒子が供給され(従って、小量供給状態となる)、第2
のシャッタ部材を開にして多音供給部の孔を開放すると
、この孔を通して比較的多音のトナー粒子が供給され(
多量供給状態となる)、また第3のシャッタ部材を開に
して中間供給部の孔を開放すると、比較的小倉より多く
且つ比較的多音より少ないトナー粒子が供給される(従
って、中間供給状繰となる)。
Further, in the illustrated example, the toner particle supply means is constituted by a roller, and the toner particle supply state is controlled in three stages (large amount supply state, intermediate supply state, small amount supply state) by changing the rotational speed of this roller. ), but instead of this, it is also possible to configure as described below. That is, the inside of the toner particle container is divided into a small amount supply section, a large amount supply section, and an intermediate supply section, and a plurality of relatively small diameter holes are provided in the bottom wall of the small amount supply section, and is provided with a plurality of holes having a relatively large diameter, and the bottom wall of the intermediate supply section is provided with a plurality of holes that are larger than the relatively small diameter and smaller than the relatively large diameter, and the toner particle supply means is provided in a small amount. It is also possible to include a first shutter member that opens and closes the hole in the supply section, a second shutter member that opens and closes the hole in the bulk supply section, and a third shutter member that opens and closes the hole in the intermediate supply section. In such a case, when the first shutter member is opened to open the hole of the small amount supply section, toner particles of relatively small i are supplied through this hole (therefore, a small amount supply state is established), and the second
When the shutter member of is opened to open the hole of the polyphonic supply section, relatively polyphonic toner particles are supplied through this hole (
When the third shutter member is opened to open the hole in the intermediate supply section, relatively more toner particles than Ogura and relatively less than Polyton are supplied (therefore, the intermediate supply state is (repeat).

また、具体例においては、トナー濃度検出手段として現
像剤の導電率を検出してトナー濃度を検出するものを用
いているが、これに代えて、それ自体公知の現像剤の光
の透過率又は透磁率を検出してトナー濃度を検出するも
の、或いは現像剤の体積1−[接又は間接的(例えば流
動量)に測定してトナー濃度を検出するものを用いるこ
とも可能である。
Further, in the specific example, a device that detects the toner concentration by detecting the conductivity of the developer is used as the toner concentration detection means, but instead of this, the light transmittance of the developer, which is known per se, or It is also possible to use a device that detects the toner concentration by detecting magnetic permeability, or a device that detects the toner concentration by measuring the developer volume 1-[directly or indirectly (eg, flow rate).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従って構成された静電潜像現像装置
及び回転ドラムの一部を示す簡略断面図。 第2図は、第1図の現像装置における電動モータの制御
を説明するだめの表。 第3図は、第1図の現像装置における制御手段の制御を
示すフローチャート。 第4図は、トナー粒子の供給状態が1段階の場合の電動
モータの制御を説明するための表。 第5図は、トナー粒子の供給状態が2段階の場合の電動
モータの制御を説明するための表。 2・・・静電潜像現像装置 10・・・現像剤 12・・・現像容器 20・・・現像剤適用機構 22・・・穂長設定部材 =39− 24・・・トナー粒子供給手段 26・・・トナー粒子収容器 34・・・回転スリーブ部材 56・・・電圧源 58・・・制御手段 70・・・電動モータ ー40= 手続補正書動刻 昭和59年2月10日 特許庁長官若杉和夫 殿 1、事件の表示 昭和58年特許願第201915号 2、発明の名称 静電潜像現像装置 3、補正をする者 事件との関係 特許出願人 住 所大阪市東区玉造1丁目2番28号名 称(615
)三田工業株式会社 (氏 名) 4、代理人〒105 住 所 氏 名 5゜補正命令の日付 昭和59年 1月31日(発送日
)説明の欄、並びに図面 (I) 明細書の発明の詳細な説明の欄及び図面の簡単
な説明の欄を以下の通りに訂正する。 (1)明細書第23頁第14行に「次に主として・・・
・・・・・・参照して、」とあるのを、r表■は、」 と訂正する。 (2)同第24頁第11行に「説明する。」とあるのを
、次の通り訂正する。 「示す。 表 I 次に主として上記表Iを参照して上述した関係を説明す
ると、」 (3)同第27頁第2行に「第3図」とあるのを、「第
2図」 と訂正する。 (4)同第34頁第13行に「第4図の表」とあるのを
、 「表1[」 と訂正する。 (5)同第34−第15行に[すればよい。即ち、」と
あるのを、次の通り訂正する。 rすればよ(・0 表 If 」二記表11を参照して更に詳細に説明すると、J (6)同第36頁第3行乃至第4行に「第5図の表」と
あるのを、 r表III J と訂正する。 (7)同第36頁第5行に「すればよい。即ち、」とあ
るのを次の通りに訂正する。 「すればよい。 表 ■ 上記表■を参照して更に詳しく説明 すると、j (8)同第40頁第5行乃至第6行に[第2図は、・・
・・・・・・・表。」とあるのを削除する。 (9)同第40頁第7行に「第3図」とあるのを、「第
2図」 と訂正する。 叫 同第40頁第9行乃至第12行に[第4図は、・・
・・・・・・・表。」とあるのを削除する。 曲 図面を以下の通りに訂正する。 (1)第2図、第4図及び第5図を削除する。 (2)添付参考図に朱書きして示す通り、「第3図」を
「第2図」に訂正する。 以上
FIG. 1 is a simplified sectional view showing a portion of an electrostatic latent image developing device and a rotating drum constructed according to the present invention. FIG. 2 is a table explaining the control of the electric motor in the developing device of FIG. 1. FIG. 3 is a flowchart showing the control of the control means in the developing device of FIG. 1. FIG. 4 is a table for explaining the control of the electric motor when the toner particle supply state is in one stage. FIG. 5 is a table for explaining the control of the electric motor when the toner particle supply state is in two stages. 2... Electrostatic latent image developing device 10... Developer 12... Developer container 20... Developer application mechanism 22... Panch length setting member = 39- 24... Toner particle supply means 26 . . . Toner particle container 34 . . Rotating sleeve member 56 . . Voltage source 58 . Kazuo Tono 1, Indication of the case Patent Application No. 201915 of 1982, Name of the invention Electrostatic latent image developing device 3, Person making the amendment Relationship to the case Patent applicant Address 1-2-28 Tamatsukuri, Higashi-ku, Osaka City Title name (615
) Mita Kogyo Co., Ltd. (Name) 4. Agent 105 Address Name 5゜Date of amendment order January 31, 1980 (shipment date) Explanation column and drawings (I) of the invention in the description The Detailed Description column and the Brief Description of Drawings column are corrected as follows. (1) On page 23, line 14 of the specification: “Next, mainly...
``Refer to ``...'' is corrected to ``Table r is ``. (2) On page 24, line 11 of the same page, the statement ``Explain.'' is corrected as follows. Table I Next, to explain the above relationship mainly with reference to Table I above, correct. (4) On page 34, line 13, the text "Table of Figure 4" is corrected to read "Table 1 ["]. (5) In lines 34-15 of the same page, [just do it]. ``In other words,'' should be corrected as follows. To explain in more detail with reference to Table 11, J (6) "Table in Figure 5" is written in lines 3 and 4 of page 36 of the same page. is corrected as rTable III J. (7) On page 36, line 5 of the same page, the text "You may do so. In other words," is corrected as follows. "You may do so. Table ■ The above table ■ To explain in more detail with reference to (8) page 40, lines 5 and 6, [Figure 2 shows...
·······table. ” will be deleted. (9) On page 40, line 7, the text "Figure 3" is corrected to "Figure 2." On page 40, lines 9 to 12, [Figure 4 shows...
·······table. ” will be deleted. Correct the drawing as follows. (1) Delete Figures 2, 4, and 5. (2) As shown in red on the attached reference diagram, "Figure 3" has been corrected to "Figure 2."that's all

Claims (1)

【特許請求の範囲】 1、キャリア粒子及びトナー粒子から成る現像剤を収容
する現像容器と、該現像容器内の該現像剤の一部を表面
に保持して現像すべき静電潜像に適用する現像剤適用機
構と、トナー粒子を収容するトナー粒子収容器と、選択
的に作動されて該トナー粒子収容器から該現像容器内へ
トナー粒子を供給するトナー粒子供給手段と、該現像容
器内の該現像剤におけるトナー濃度を検出するためのト
ナー濃度検出手段と、該トナー濃度検出手段の検出トナ
ー濃度値に基いて該トナー粒子供給手段の作動を制御す
るだめの制御手段とを具備する静電潜像現像装置におい
て;該制御手段は、該トナー濃度検出手段の検出トナー
濃度値を所定基準値と比較して両者の比較関係を算出す
ると共に、該トナー濃度検出手段の検出トナー濃度値の
変動状態を算出し、該比較関係と該変動状態とに基いて
該トナー粒子供給手段の作動を制御する、 ことを特徴とする静電潜像現像装置。 2、該トナー粒子供給手段は、比較的多量のトナー粒子
を該現像容器内に供給する多量供給状態と比較的小量の
トナー粒子を該現像容器内に供給する小量供給状態との
少なくとも2種の作動状態にせしめられ得るように構成
されている、特許請求の範囲第1項記載の静電着像装置
。 3、該制御手段は、該トナー濃度検出手段の検出トナー
濃度値を所定期間前の該トナー濃度検出手段の検出トナ
ー濃度値と比較して両者の比較関係を算出することによ
って該変動状態を特徴する特許請求の範囲第1項又は第
2項記載の静′N、潜像現像装置。 4.該トナー粒子供給手段は、該多量供給状態及び該小
社供給状態に加えて、該多量供給状態におけるトナー粒
子供給量よりも小さく、且つ該小計供給状態におけるト
ナー粒子供給量よりも大きい−のトナー粒子を該現像容
器内に供給する中間供給状態にもせしめられ得るように
構成されており、 該制御手段は、該トナー濃度検出手段の検出トナー濃度
値が該所定基準値よりも大きい時、及び該トナー濃度検
出手段の検出トナー濃度値が該所定基準値と実質上等し
く且つ該所定期間前の該トナー濃度検出手段の検出トナ
ー濃度値よりも大きい又はそれと実質上等しい時には、
該トナー粒子供給手段を非作動状態にせしめ、該トナー
濃度検出手段の検出トナー濃度値が該所定基準値と実質
上等しく目、つ該所定期間前の該トナー濃度検出手段の
検出トナー濃度値よ)も小さい時、及び該トナー濃度検
出手段の検出トナー濃度値が該所定基準値よシも小さく
且つ該所定期間前の該トナー濃度検出手段の検出トナー
濃度値よりも大きい時には、該トナー粒子供給手段を該
小量供給状態にせしめ、該トナー濃度検出手段の検出ト
ナー濃度値が該所定基準値よりも小さく且つ該所定期間
前の該トナー濃度検出手段の検出トナー濃度と実質上等
しい時には、該トナー粒子供給手段を該中間供給状態に
せしめ、そして該トナー濃度検出手段の検出トナー濃度
値が該所定基準値よりも小さく印つ該所定期間前の該ト
ナー濃度検出手段の検出トナー濃度よりも小さい時には
、該トナー粒子供給手段を該多量供給状態にせしめる、
特許請求の範囲第3項記載の静電潜像現像装置。 5、該トナー粒子供給手段は、該トナー収容器に3− 形成されている排出開口に回転自在に装着されたローラ
から構成されており、該多量供給状態においては該ロー
ラが比較的高速で回転され、該小社供給状態においては
該ローラが比較的低速で回転され、該中間供給状態にお
いては該ローラが中間の速度で回転される、特許請求の
範囲第4項記載の静電潜像現像装置。 6、該トナー濃度検出手段は、該現像容器内の該現像剤
の導電率を検出することによってトナー濃度を特徴する
特許請求の範囲第1項から第5項までのいずれかに記載
の静電潜像現像装置。
[Claims] 1. Applicable to a developer container containing a developer consisting of carrier particles and toner particles, and an electrostatic latent image to be developed by holding a portion of the developer in the developer container on the surface. a developer application mechanism for storing toner particles; a toner particle container for storing toner particles; a toner particle supply means that is selectively operated to supply toner particles from the toner particle container into the developer container; a toner concentration detection means for detecting the toner concentration in the developer; and a control means for controlling the operation of the toner particle supply means based on the toner concentration value detected by the toner concentration detection means. In the electrolatent image developing device; the control means compares the toner concentration value detected by the toner concentration detection means with a predetermined reference value to calculate a comparison relationship between the two, and also compares the toner concentration value detected by the toner concentration detection means with a predetermined reference value. An electrostatic latent image developing device, comprising: calculating a fluctuation state, and controlling the operation of the toner particle supply means based on the comparison relationship and the fluctuation state. 2. The toner particle supply means has at least two states: a large supply state in which a relatively large amount of toner particles are supplied into the developer container and a small quantity supply state in which a relatively small amount of toner particles are supplied into the developer container. 2. An electrostatic imaging device as claimed in claim 1, wherein the electrostatic imaging device is configured to be able to be brought into an active state. 3. The control means characterizes the fluctuation state by comparing the toner concentration value detected by the toner concentration detection means with the toner concentration value detected by the toner concentration detection means a predetermined period before and calculating a comparison relationship between the two. A static latent image developing device according to claim 1 or 2. 4. In addition to the large amount supply state and the small supply state, the toner particle supply means also provides a supply of toner that is smaller than the toner particle supply amount in the large amount supply state and larger than the toner particle supply amount in the subtotal supply state. The control means is configured to be capable of causing an intermediate supply state in which particles are supplied into the developer container, and the control means is configured such that when the toner concentration value detected by the toner concentration detection means is larger than the predetermined reference value; When the toner concentration value detected by the toner concentration detection means is substantially equal to the predetermined reference value and is larger than or substantially equal to the toner concentration value detected by the toner concentration detection means before the predetermined period,
The toner particle supplying means is inactivated, and the toner concentration value detected by the toner concentration detection means is substantially equal to the predetermined reference value and is lower than the toner concentration value detected by the toner concentration detection means before the predetermined period. ) is also small, and when the toner concentration value detected by the toner concentration detection means is smaller than the predetermined reference value and larger than the toner concentration value detected by the toner concentration detection means before the predetermined period, the toner particle supply when the toner concentration value detected by the toner concentration detection means is smaller than the predetermined reference value and substantially equal to the toner concentration detected by the toner concentration detection means before the predetermined period; causing the toner particle supply means to be in the intermediate supply state, and the toner concentration value detected by the toner concentration detection means being smaller than the predetermined reference value is smaller than the toner concentration detected by the toner concentration detection means before the predetermined period; sometimes causing the toner particle supply means to be in the bulk supply state;
An electrostatic latent image developing device according to claim 3. 5. The toner particle supply means is composed of a roller rotatably attached to a discharge opening formed in the toner container, and in the large quantity supply state, the roller rotates at a relatively high speed. The electrostatic latent image developer according to claim 4, wherein the roller is rotated at a relatively low speed in the small supply state, and the roller is rotated at an intermediate speed in the intermediate supply state. Device. 6. The electrostatic device according to any one of claims 1 to 5, wherein the toner concentration detection means determines the toner concentration by detecting the conductivity of the developer in the developer container. Latent image developing device.
JP58201915A 1983-10-29 1983-10-29 Developing device for electrostatic latent image Granted JPS6095465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201915A JPS6095465A (en) 1983-10-29 1983-10-29 Developing device for electrostatic latent image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201915A JPS6095465A (en) 1983-10-29 1983-10-29 Developing device for electrostatic latent image

Publications (2)

Publication Number Publication Date
JPS6095465A true JPS6095465A (en) 1985-05-28
JPH0578031B2 JPH0578031B2 (en) 1993-10-27

Family

ID=16448909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201915A Granted JPS6095465A (en) 1983-10-29 1983-10-29 Developing device for electrostatic latent image

Country Status (1)

Country Link
JP (1) JPS6095465A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057874A (en) * 1983-09-10 1985-04-03 Ricoh Co Ltd Toner density controller

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057874A (en) * 1983-09-10 1985-04-03 Ricoh Co Ltd Toner density controller

Also Published As

Publication number Publication date
JPH0578031B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
US4538897A (en) Latent electrostatic image developing apparatus
US4197813A (en) Magnetic brush development apparatus with developer supply detecting means
US4405226A (en) Developing material supplying control device for electrostatic copying apparatus
US4423948A (en) Dual component developing material detecting device for electrostatic copying apparatus
JPS6095465A (en) Developing device for electrostatic latent image
JPS6237236Y2 (en)
JP2779627B2 (en) Toner density control method
JPS61198179A (en) Magnetic brush developing device
JP3466017B2 (en) Toner supply device
JPS602662B2 (en) Developing devices such as electrophotographic copying machines
JP3507276B2 (en) Image forming device
JP2002031954A (en) Developing device and image forming device
JPS6019501B2 (en) Toner concentration measurement method
JPS60115969A (en) Electrostatic latent image developing device
JPS5834468A (en) Dry-type developing device
JPS61262765A (en) Developing device
JP2893826B2 (en) Toner increase control method in image forming apparatus
JPH02116875A (en) Developing device
JPH0334760Y2 (en)
JPH02114284A (en) Developing device
JPH0611957A (en) Developing device
JPS61201270A (en) Developing device for color selectable monochromatic copying device
JPS59212861A (en) Copying machine
JPS6266283A (en) Developing agent density control method for developing device
JPS5872967A (en) Developing device