JPS6095295A - Thermosetting resin pipe for transferring fluid - Google Patents
Thermosetting resin pipe for transferring fluidInfo
- Publication number
- JPS6095295A JPS6095295A JP58200744A JP20074483A JPS6095295A JP S6095295 A JPS6095295 A JP S6095295A JP 58200744 A JP58200744 A JP 58200744A JP 20074483 A JP20074483 A JP 20074483A JP S6095295 A JPS6095295 A JP S6095295A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- pipe
- thermosetting resin
- pipes
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Rigid Pipes And Flexible Pipes (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明は流体移送用熱硬化性樹脂管に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermosetting resin tube for fluid transfer.
従来、水、油その他の液状物質や、空気、ガス等の気体
を移送するための流体移送庁としては金属管やポリ塩化
ビニル等の熱可塑性樹脂管が使用されている。Conventionally, metal pipes and thermoplastic resin pipes such as polyvinyl chloride have been used as fluid transfer chambers for transferring water, oil, and other liquid substances, and air, gas, and other gases.
金IA−#は強固であるが重くて施工性に劣り、腐蝕性
などの問題があり、また耐熱性および1li(炎性には
ずぐれているものの断熱性に乏しく、火災の場合には管
内部の流体及び管の支持体或は周辺へ高熱を伝達し、火
災蔓延の原因となる恐れがある。Although gold IA-# is strong, it is heavy, has poor workability, and has problems such as corrosion.Although it has excellent heat resistance and flammability, it has poor insulation properties, and in the event of a fire, it can damage the inside of the pipe. may transfer high heat to the fluid and pipe supports or surroundings, potentially causing the spread of a fire.
また、熱可塑性樹脂管は、軽嘴で耐腐蝕性を有し、安価
でもちるが耐熱、耐炎性に劣ることは周知のことである
。Furthermore, it is well known that thermoplastic resin pipes are lightweight, have corrosion resistance, are inexpensive, and have poor heat resistance and flame resistance.
そこで訂1熱性、耐炎性、耐腐蝕性、断熱性等に富む熱
硬化性樹脂管をこの用途に堤供することが考えられるが
、従来の成形法では高価なものとケリ物は的にも間預が
あるためこの用途に【ま実用さJtでいない。Therefore, it is conceivable to use thermosetting resin pipes with high heat resistance, flame resistance, corrosion resistance, heat insulation properties, etc. for this purpose, but conventional molding methods can easily produce expensive and flimsy materials. Because of the reserve, it is not practical for this purpose.
即ち、熱硬化性樹脂の長尺管はプランジャー押出成形法
により成形されるのが一般的であるh″=、この成形法
に於ては金型部における押出圧力カー高く、しかも間欠
押出であるため均一な成形物を得ることが困・”唯であ
り、また生産性も低℃・0かかる事1青からダイスとス
クリュー叶出磯を)14いる成形法も開発されているが
、装置内における樹脂の滞留が起りやすく、従って局部
的に1萌イし)反応が進行したり、僅かな圧力や温j更
の変イヒで11史イし反応が急激に進行するなどの間頃
力ζあり、連、続して安定な成形を行なうことが困碓で
あった。また、前記したいずれの方法に於ても臂の円周
方向の寥;徂度が低いものしか得られず、その、結果内
外用に対して弱く且つ衝撃に対しては管の軸方向に割れ
やすい等の実用Eの問題があった。これは従来の押7出
省では、樹脂自体及び繊維状充填物などが押出方向、す
なわち管の軸方向に配置i:I]ずろためと考えられる
。In other words, long tubes of thermosetting resin are generally molded by plunger extrusion molding. Because of this, it is difficult to obtain a uniform molded product, and the productivity is also low at low degrees Celsius.A molding method has been developed that requires dies and screws. Resin tends to stagnate in the interior of the tank, so the reaction may progress locally, or a slight change in pressure or temperature may cause the reaction to proceed rapidly. ζ, it was difficult to perform stable molding continuously. In addition, in any of the above methods, only a material with low strength in the circumferential direction of the arm can be obtained, and as a result, it is weak for internal and external use and cracks in the axial direction of the tube against impact. There were problems with practical E, such as being easy to use. This is thought to be due to the fact that in conventional extrusion, the resin itself and the fibrous filler are disposed in the extrusion direction, that is, in the axial direction of the tube.
すなわち、溶5’Ji L/た樹弓旨が金を内へ導びか
れ金型内の流1硲に沿って8動する間に賦形および硬化
が進行するため、その間の樹脂の移動方向は押出方向、
すなわち管軸方向のみとなり樹脂及び繊維状充填物など
がその方向へ配向するためと考えられる。In other words, shaping and hardening progress while the melting resin guides the gold inside and moves along the flow in the mold, so the direction of movement of the resin during that time is the extrusion direction,
In other words, it is thought that this is because only the tube axis direction is used, and the resin, fibrous filler, etc. are oriented in that direction.
本発明者らは、これらの欠点を解決すると共に耐熱性、
耐炎性、銅腐蝕性を有し、軽噴かつ安画な流体移送用樹
脂管を堤供すべく種々検討を行なった結果、先端部に平
滑部を有するスクリューを使用し、平滑6じに於て押出
後自己杉状を保持できる程度にまで賦形することにより
この目的が達成されることを見出して本発明に到達した
。The present inventors have solved these shortcomings and also improved heat resistance and
As a result of various studies in order to provide a resin pipe for fluid transfer that has flame resistance, copper corrosion resistance, light jetting, and low profile, we decided to use a screw with a smooth part at the tip, The present invention was achieved by discovering that this object can be achieved by shaping the material to such an extent that it can retain its self-cedar shape after extrusion.
IJIIち本発明は先端部に平滑部を有するスクリュー
を使用し平滑部71こ於て押出後自己杉状を保持できる
程度にまで賦形することにより1戊形された流体移送用
熱硬化性樹脂管でちる。In other words, the present invention uses a screw having a smooth portion at the tip, and the smooth portion 71 is shaped to the extent that it can maintain a self-cedar shape after extrusion. Chill with a pipe.
本発明の熱硬化性樹脂管は、例えば特顆昭58−515
26に記載した方法により製造されるが、この製造法の
特徴は先端部に平滑部を有するスクリューを使用し平滑
部に於て1甲出後自己杉状を保持できる程度にまで賦形
便化させることにちり、この方法により従来押出成形が
1困・t((、で、ちった熱硬化性樹脂管を生産性曵く
安鋪に製・告することができる。The thermosetting resin pipe of the present invention is, for example,
It is manufactured by the method described in 26, but the feature of this manufacturing method is that it uses a screw with a smooth part at the tip, and the smooth part is shaped to the extent that it can maintain its own cedar shape after one shot. In fact, with this method, it is possible to produce small thermosetting resin tubes cheaply and with low productivity, while conventional extrusion molding is difficult.
ずなわち;(’iil出設内に投入された快便化性、”
>J脂41臼はスクリュー供給部から圧縮部を移行する
間に加熱溶1・独され計取部Y+経て計−置部のノライ
ト先端部よりラセン状で平滑部に移行し、そこでシリン
グ−内壁との摩擦抵抗により、スクリューフジイトによ
って生ずる間隙部分が狭められついには圧弛着される。Zunawachi; ('iil convenience introduced within the installation,
>J fat 41 mortar is heated and melted while moving from the screw supply section to the compression section, passes through the metering section Y+, and moves from the nolite tip of the metering section to a smooth section in a helical shape, where the silling-inner wall Due to the frictional resistance between the two screws, the gap created by the screw fugitate is narrowed and eventually the screw is compressed and loosened.
ついで樹脂は平滑部を;予行する1間に賦形便化されて
シリンダー先端より連光した管となって押出される。こ
の間、厨脂は供給部から割量部に至る間’4スクリコー
ー溝に沿った方向にせんi所を受けながら移動し、1@
脂自体および、・我維状充1真物等は管の押出方向に対
し特に定まった−)51i」」へQま配向することなく
不規μりな方向へ1記向し、平滑部しへ移行した後硬化
が進むためそのま〜の4大態力″−1司定され、その皓
果として樹脂自体および繊割L」大充填4勿等は管のl
1i111方向と日間方向′(ノクラ/ス東り1へ上向
され、得られる管の軸方向及び管軸に対して直角方向に
おける王縮血度の)くランスが良くへるものと考えられ
る。Next, the resin is shaped into a smooth part during one preliminary run, and is extruded from the tip of the cylinder into a continuous tube. During this time, the cooking fat moves in the direction along the 4-screw groove from the supply section to the weighing section while receiving the 1.
The fat itself and the fibrous material, etc., are oriented in an irregular direction without being oriented to the extrusion direction of the tube, and are oriented in an irregular direction to the smooth part. As the curing progresses after the transition, the four major physical forces are controlled as they are, and as a result, the resin itself and the fiber split L' large filling 4 Of course, the l of the pipe
It is considered that the clearance between the 1i111 direction and the day direction' (upwards to Nokura/Su East 1, the axial direction of the obtained tube and the degree of blood contraction in the direction perpendicular to the tube axis) is well reduced.
後述の第1表に管軸に対し直角方向の王縮i!、Li度
(A)と管軸方向の圧縮強度(13)及びA / Bσ
つ比並げに水圧試倹店墨を記載した。Table 1 below shows the angular contraction i! in the direction perpendicular to the tube axis. , Li degree (A) and compressive strength in the tube axis direction (13) and A/Bσ
Hydraulic pressure test shop ink was written on the same level as Tsuhi.
この表からもW%に埋・4されるとおり、従来法による
管はA/13の比が0.37と小さく、縦割iLを生じ
やすいの心比べ、本発明の蕾1.IA/Bのに’lZb
ζ0.4〜1.5と太きく縦別れを生ずることなく、内
圧に対しても向いことがわかる。From this table, as shown in W%, the conventional pipe has a small A/13 ratio of 0.37 and is more likely to cause vertical splitting, compared to the pipe of the present invention. IA/B'lZb
It can be seen that the thickness is ζ0.4 to 1.5, and is suitable for internal pressure without causing vertical separation.
本発明に於て・9軸方向の圧縮強度と(上、JIS−■
ぐ−6911の5.19.5項による試;険(圧縮”+
’J1度試験)を行1よい管が破I裏(亀裂が入った重
合も″含む)した時の強さを表わし、管軸に対し直角″
′)5向の圧縮部1硯とはJ’lS、K 6741の5
.6項による試験(へん平試験)を行なって2←\破°
:痕した(寺の強さを表わす。In the present invention, compressive strength in 9 axial directions (upper, JIS-■
Test according to Section 5.19.5 of Gu-6911
It represents the strength when a good pipe is broken (including polymerization with cracks) after it has been subjected to the J1 test), and is perpendicular to the pipe axis.
') 5-way compression part 1 inkstone is J'lS, K 6741-5
.. Performed the test according to Section 6 (Henpei test) and passed 2←\Failure°
: Traced (represents the strength of the temple).
本発明に使用される熱硬化性樹脂としてもま、フェノー
ル樹脂、メラミン)e411旨、キンレンI旨、尿素樹
l旨、不包和ポリエステル樹脂、エフ1fキシ;財■旨
、シリコン樹脂、アリル樹脂、アニリン可11旨等カ″
−羊げられ、特にフェノール樹脂、メラミン樹口旨、・
■ヅンン樹脂の使用が好適である。Thermosetting resins used in the present invention include porcelain, phenolic resin, melamine) E411, Kinren I, urea resin, non-enclosing polyester resin, F1F xy, silicone resin, allyl resin , Aniline available 11 effects, etc.''
- Sheep, especially phenolic resin, melamine bark,・
■It is preferable to use dunn resin.
本発明に用いられる熱硬化性樹脂に(i、心安に応じて
熱硬化性樹脂の1戊形に於て−・11支に11′! ’
、・ら」する充填剤、離型剤、増粘剤、着色剤、分君女
斉11、A[I。In the thermosetting resin used in the present invention (i, depending on your peace of mind, in one form of the thermosetting resin - 11 in 11'!'
Fillers, mold release agents, thickeners, colorants, Bunkun Mei 11, A [I.
燃剤、発泡剤、重合開始剤、硬化促1肖1]、取合禁止
剤1工どを添加することができる。また川にイ曳(重の
ポリマーあるいは有機または無機σ)1.aKイ#、イ
犬4勿、ρりえば硝子7、栽維等を加えることもで・き
る。A fuel, a foaming agent, a polymerization initiator, a curing accelerator, an incompatible agent, etc. can be added. Also dragged into the river (heavy polymer or organic or inorganic σ) 1. You can also add aK i #, i dog 4 course, ρriba glass 7, cultivation fiber, etc.
これら熱硬化性樹脂による流体移jA用・gcz、1I
ii+;熱性に1憂れると共に重油、ガソリン、ナ丁′
71J1等σ) 7+i類、アルコール、ケトン、エス
テル類、芳香族炭化水素等の有機溶剤、酸、アルカリな
どに対して耐性を有するのみならず、成形材料として特
にフェノール樹脂、メラミン樹脂、キシレン樹脂等を使
用することにより、火炎((すらされても延焼しない、
ドロッピングを起さない、原形なはg維持する、有毒ガ
スを発生しない等の優れた耐炎特性を有する。For fluid transfer using these thermosetting resins, gcz, 1I
ii+; I'm worried about the heat and heavy oil, gasoline, etc.
71J1 etc. σ) 7+I, alcohols, ketones, esters, aromatic hydrocarbons, organic solvents, acids, alkalis, etc. Not only is it resistant to phenolic resins, melamine resins, xylene resins, etc. as molding materials. By using a flame, it will not spread even if it is
It has excellent flame resistance properties, such as not causing dropping, maintaining its original shape, and not emitting toxic gas.
本発明の方法たより製造された管は、面1熱性、耐炎性
、1制腐蝕註、耐薬品性を有するのみならず、本製造方
法の特長として管の成形時に樹脂或は繊維状充填物が管
のIIII IJj方向と円周方向にバランス良く配向
するため、管の押出方向及びそれに垂直な方向の強度の
ベランスが良く、耐圧性に殴れたものとなり、流体移送
管に好適である。The tube manufactured by the method of the present invention not only has heat resistance, flame resistance, corrosion resistance, and chemical resistance, but also has the advantage that the tube is not filled with resin or fibrous filler during tube molding. Since the tube is oriented in a well-balanced manner in the III-IJj direction and the circumferential direction, the tube has good balance of strength in the extrusion direction and the direction perpendicular thereto, and has excellent pressure resistance, making it suitable for fluid transfer tubes.
本発明の熱硬化性樹脂管の用途を具体的に説明すれば、
液体移送用として一役住宅やビル、工場あるいは温泉な
どの給水管、給湯管、排水管(例えば風呂、湯沸し器、
クーラー、ソーラーシステム等の給排水管、一般排水管
等)、工場、車輌、船舶、航空)幾等の給排油管、薬品
移送管などが挙1−1′もれる。To specifically explain the uses of the thermosetting resin pipe of the present invention,
Water supply pipes, hot water supply pipes, and drainage pipes (e.g., baths, water heaters,
Water supply and drainage pipes for coolers, solar systems, etc., general drainage pipes, etc.), oil supply and drainage pipes (factories, vehicles, ships, aviation), chemical transfer pipes, etc. are leaking.
また気体移送用としては、一般住宅やビル、工場等の送
気管、通気管、排気管(例えば、ガスレンジ、スト−ブ
、内燃機関の送気管、排気管、一般通気管、一般送気管
、一般排気管等)、化学工場の気体(例えばチッソ、ア
ルゴン、ヘリウム等)の移送管などが挙げられる。In addition, for gas transfer, air pipes, ventilation pipes, exhaust pipes of general houses, buildings, factories, etc. (e.g. gas ranges, stoves, internal combustion engine air pipes, exhaust pipes, general ventilation pipes, general air pipes, Examples include general exhaust pipes, etc.), gas transfer pipes for chemical factories (for example, nitrogen, argon, helium, etc.).
以下、製・前例により本発明を更に説明する。The present invention will be further explained below with reference to examples.
製造列1
0径3’L++m、 L/D==22の押出機により、
スクリュー底部の径が25朋の計−機部IL続く先端部
に径が25 !11111長さが120 yrm (4
D )の平滑部を有する圧縮比が2.3のスクリューを
用い、成形材料としてフェノール樹脂(日本オイルシー
ル(株)製、商品名ロジャースRX−6684)を使用
してパイプを押出成形した。Production line 1 0 diameter 3'L++m, L/D==22 extruder,
The diameter of the bottom of the screw is 25 mm, and the diameter of the machine part IL is 25 mm at the tip! 11111 length is 120 yr (4
A pipe was extrusion-molded using a screw with a compression ratio of 2.3 having a smooth portion (D) and a phenol resin (manufactured by Nippon Oil Seal Co., Ltd., trade name: Rogers RX-6684) as a molding material.
シリンダー各部の温度は
Ct(o〜2D )・・・水冷
C4(3D〜10D)・・・80°C
C3(1,,1])〜18D)・・・100℃c4(1
,9D〜22D)・・・120°Cに設定し、スクリュ
ー回転数35 rpmの条件で押出成形を行なって外径
30 +1LII+、肉厚2.5;+++五〇ノくイブ
を得た。The temperature of each part of the cylinder is Ct(o~2D)...Water cooling C4(3D~10D)...80°C C3(1,,1])~18D)...100°Cc4(1
, 9D to 22D)... Extrusion molding was carried out at a temperature of 120° C. and a screw rotation speed of 35 rpm to obtain an outer diameter of 30 +1 LII+ and a wall thickness of 2.5; +++ 50 mm.
製造例2
製造例1と同じ押出装置を使用して成形材料としてフェ
ノール樹脂(松下電工(株)製、商品名CN−4610
)を用い、パイプを押出成形した。Production Example 2 Using the same extrusion device as Production Example 1, phenol resin (manufactured by Matsushita Electric Works Co., Ltd., product name CN-4610) was used as a molding material.
) was used to extrude the pipe.
シリンダー各部の温度はC,−水冷、CL= 80°C
1Cg=110°C,C4= 120°Cに設定し、ス
クリュー回転数35 rpmの条注で押出成形を行なっ
て、外径30mm、肉厚2.5韮のパイプを[得た。The temperature of each part of the cylinder is C, - water cooling, CL = 80°C
Extrusion molding was carried out at 1Cg = 110°C and C4 = 120°C with a screw rotation speed of 35 rpm to obtain a pipe with an outer diameter of 30 mm and a wall thickness of 2.5 mm.
製@例3
製造例1と同じ押出装置を用い、成形材料としてフェノ
ール樹脂(住友ベークライト(株)製、商品名PM−7
95J)を用いてパイプな押出成形した。Production@Example 3 Using the same extrusion equipment as Production Example 1, phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., product name PM-7) was used as the molding material.
95J) was used to extrude into a pipe.
シリンダー各部の温度はCI=水冷、CL= 75°C
1Cジ=105℃、C4−120°Cに設定し、スクリ
ュー回転数35 rpmで押出成形を行なって外径30
++++n、肉厚2.5ynmのパイプを得た。The temperature of each part of the cylinder is CI = water cooling, CL = 75°C
Extrusion molding was carried out at 1C di=105℃ and C4-120℃, and the screw rotation speed was 35 rpm to obtain an outer diameter of 30℃.
A pipe with a thickness of +++n and a wall thickness of 2.5 ynm was obtained.
製造例4
製・吉例1と同じ押出−′1斐;4を114い、I父杉
(第1ト4としてメラミン−フェノール樹脂(松下電工
(味)製、商品名1\4E−A)を使用してパイプな押
出成形した。シリンダー各部の温度はC1−水冷、c、
= 90’c、cジー120℃、Cクー130°Cに設
定し、スクリュー回転数35 rpmで押出成形を行な
って4径30mrn肉厚2.5mmのパイプを得た。Production Example 4 The same extrusion as Example 1 - '1'; 4 was extruded to 114; The temperature of each part of the cylinder was C1 - water cooling, c,
Extrusion molding was performed at a screw rotation speed of 35 rpm at a temperature of 120° C., 120° C., and 130° C. to obtain a pipe with a diameter of 4, 30 mrn, and a wall thickness of 2.5 mm.
各製造例にて得られたパイプの性能は第1表及び第2表
に示したとおりであった。これらの結果から、本発明の
熱硬化性樹脂管ば管・咄方向と管軸に直角な方向の強度
のバランスか1梃<内11:、に対し1Ji(且つ耐熱
性、耐燃性、1:ll]薬品性にも・憂れていることが
わかる。The performance of the pipes obtained in each production example was as shown in Tables 1 and 2. From these results, it was found that the thermosetting resin tube of the present invention has a balance of strength in the packing direction and in the direction perpendicular to the tube axis. ll] I can see that you are also worried about chemicals.
註3・・・長さ60crttの管を支点間路N(115
0cmの支持台の上に水平に置き180℃2時間放置し
た後の変化を観察した。Note 3: A pipe with a length of 60 crtt is connected to the fulcrum path N (115
It was placed horizontally on a 0 cm support stand and left at 180°C for 2 hours, and then changes were observed.
註4・・・長さ60鍜の管を支点間距離50CnLの支
持台の上に水平に置きその中央部に直下からブンゼンバ
ーナーの高さ約5ommの安定した青色炎の先端を3分
間接触させた後、変化を観察した。Note 4: A tube with a length of 60 mm was placed horizontally on a support stand with a distance between fulcrums of 50 CnL, and the tip of a stable blue flame of a Bunsen burner with a height of about 5 om was brought into contact with the center of the tube for 3 minutes from directly below. After that, we observed the changes.
註5・・・長さ5αnの管を試験液に浸漬し、下記の条
件で放置したのち変化を観察した。Note 5: A tube with a length of 5αn was immersed in the test liquid and left to stand under the following conditions, and changes were observed.
熱水=100°C×24時間
その他の試験液−常温×1週間
註6°゛・′1゛工業(株)、商品名1号(略称)、外
径30mm肉厚2.5m+a
特許出願人 三井東圧化学株式会社Hot water = 100°C x 24 hours Other test liquids - room temperature x 1 week Note 6°゛・'1゛ Kogyo Co., Ltd., product name No. 1 (abbreviation), outer diameter 30 mm, wall thickness 2.5 m + a Patent applicant Mitsui Toatsu Chemical Co., Ltd.
Claims (1)
て押出後自己形状を保持できる程度にまで賦形すること
により成形された流体多送用熱硬化性樹脂管。A thermosetting resin pipe for multiple fluid transport, which is formed by using a screw having a smooth portion at the tip and shaping the smooth portion to the extent that it can maintain its own shape after extrusion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58200744A JPS6095295A (en) | 1983-10-28 | 1983-10-28 | Thermosetting resin pipe for transferring fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58200744A JPS6095295A (en) | 1983-10-28 | 1983-10-28 | Thermosetting resin pipe for transferring fluid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6095295A true JPS6095295A (en) | 1985-05-28 |
JPH0451710B2 JPH0451710B2 (en) | 1992-08-19 |
Family
ID=16429446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58200744A Granted JPS6095295A (en) | 1983-10-28 | 1983-10-28 | Thermosetting resin pipe for transferring fluid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6095295A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016223525A (en) * | 2015-05-29 | 2016-12-28 | 積水化学工業株式会社 | Polyolefin resin multilayer pipe |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6095291A (en) * | 1983-10-27 | 1985-05-28 | 三井東圧化学株式会社 | Protective pipe made of thermosetting resin |
-
1983
- 1983-10-28 JP JP58200744A patent/JPS6095295A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6095291A (en) * | 1983-10-27 | 1985-05-28 | 三井東圧化学株式会社 | Protective pipe made of thermosetting resin |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016223525A (en) * | 2015-05-29 | 2016-12-28 | 積水化学工業株式会社 | Polyolefin resin multilayer pipe |
Also Published As
Publication number | Publication date |
---|---|
JPH0451710B2 (en) | 1992-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2618725C2 (en) | Method of filling the break in the coating of a pipeline with applicable coating, preferred by thermosolation coating | |
CN102367353A (en) | Low thermal conductivity composite thermal insulation paint and preparation method thereof | |
CA1229966A (en) | Method and apparatus for molding thermosetting resins | |
CN103727355A (en) | Deformable compound insulation plate and manufacturing method thereof | |
KR101493434B1 (en) | Flame retardant coating composition for expanded polystyrene | |
CN105566822A (en) | Material special for high-impact chlorinated polyvinyl chloride tubular product | |
Dhangar et al. | Emerging 3D printed thermal insulating materials for sustainable approach: A review and a way forward | |
CN105729747A (en) | Method for manufacturing fiber reinforced polyethylene composite double-layer pipe | |
US6365268B1 (en) | Deep sea insulation material | |
JPS6095295A (en) | Thermosetting resin pipe for transferring fluid | |
DK178345B1 (en) | A flexible tubular structure and a method of manufacturing a flexible tubular structure | |
CN104565681A (en) | Thermal insulation material, thermal insulation pipeline and production method of thermal insulation pipeline | |
CN105965923A (en) | Processing process for polytetrafluoroethylene steel wire composite pipe | |
CN104356606A (en) | Light heat-preservation heat-insulation material for marine deep water pipelines and preparation method thereof | |
CN110272587B (en) | Cold-resistant high-temperature-resistant flame-retardant composite material and preparation method thereof | |
CN109435374B (en) | A kind of benzoxazine resin Base Metal foil composite plate for building and preparation method thereof | |
CN108895248B (en) | Multilayer heat insulation pipe and device for processing multilayer heat insulation pipe | |
US4102972A (en) | Refractory pipe fittings and production thereof | |
CN107498967B (en) | Easily-processed heat-insulating composite material and preparation method thereof | |
JPS6095291A (en) | Protective pipe made of thermosetting resin | |
JPS6097839A (en) | Protective pipe made of thermosetting resin | |
CN105985610A (en) | Method for producing solid buoyancy material | |
EP1070906A1 (en) | Deep sea insulation material | |
CN206386619U (en) | A kind of glass fibre sleeve | |
CN105735495A (en) | Rock wool material and manufacturing method thereof |