JPS60947A - Cylindrical shape made of resin - Google Patents

Cylindrical shape made of resin

Info

Publication number
JPS60947A
JPS60947A JP58095802A JP9580283A JPS60947A JP S60947 A JPS60947 A JP S60947A JP 58095802 A JP58095802 A JP 58095802A JP 9580283 A JP9580283 A JP 9580283A JP S60947 A JPS60947 A JP S60947A
Authority
JP
Japan
Prior art keywords
frp
resin
layer
molded
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58095802A
Other languages
Japanese (ja)
Other versions
JPH0351581B2 (en
Inventor
川端 善周
修也 辻
山本 六郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Yamamoto Kogyo KK
Original Assignee
Yamamoto Kogyo KK
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Kogyo KK, Dainippon Ink and Chemicals Co Ltd filed Critical Yamamoto Kogyo KK
Priority to JP58095802A priority Critical patent/JPS60947A/en
Publication of JPS60947A publication Critical patent/JPS60947A/en
Publication of JPH0351581B2 publication Critical patent/JPH0351581B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は繊維強化熱硬化性樹脂(以下FRP)上層とF
RP下層との間にプラスチック発泡層を芯材とし、該上
下層がリプで連結されている樹脂M筒状成形物に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides fiber-reinforced thermosetting resin (hereinafter referred to as FRP) upper layer and FRP.
This relates to a resin M cylindrical molded product in which a plastic foam layer is used as a core material between the RP lower layer and the upper and lower layers are connected by a lip.

従来、プラスチック発泡層を芯材とするFRPサンドイ
ンチ構造の筒状成形物は保温性能、剛性の向上等を目的
として水タンク、サイロ、断熱パイプ、保温容器等に実
用化されている。
Conventionally, cylindrical molded products of FRP sandwich structure with a plastic foam layer as a core material have been put to practical use in water tanks, silos, insulated pipes, heat-retaining containers, etc. for the purpose of improving heat-retaining performance and rigidity.

その成形法として笑施されている方法は、ハンドレイア
ップ法、スプレーアップ法、フィラメントワインディン
グ法、遠心成形法、回転成形法等の各種成形手段により
、先づFRP筒状成形物を成形し、その後該成形体に各
種プラスチック発泡体を張付けあるいは成形し、更にF
IIP層を構成しFRPサンドインチ構造の筒状成形物
を得ている。
The molding method used is to first mold an FRP cylindrical product using various molding methods such as hand lay-up method, spray-up method, filament winding method, centrifugal molding method, and rotational molding method. After that, various plastic foams are attached or molded to the molded body, and further F
A cylindrical molded product with an FRP sandwich inch structure was obtained by forming the IIP layer.

こうして得られたサンドイッチ構造の筒状成形物はFR
P上層とFRP上層とがプラスチック発泡体自身の強度
あるいはFRP上、下層とプラスチック発泡体との接着
強度で支えられている。一般に用いられるプラスチック
発泡体はFRP上、下層と比較して強度が著しく劣るた
め大きな荷重が加わった場合にプラスチック発泡体が剪
断応力、座屈応力により破断される。又、局部荷重が加
わった場合も集中応力により破断される。更に、くり返
えして応力が極端に加わった場合にはプラスチック発泡
体は粉末状となり、発泡体の形状をとどめなくなる。
The sandwich-structured cylindrical molded product thus obtained is FR
The P upper layer and the FRP upper layer are supported by the strength of the plastic foam itself or by the adhesive strength between the FRP upper and lower layers and the plastic foam. Generally used plastic foams have significantly lower strength than the FRP upper and lower layers, so when a large load is applied, the plastic foams break due to shear stress and buckling stress. Also, if a local load is applied, the material will break due to concentrated stress. Furthermore, if excessive stress is repeatedly applied, the plastic foam becomes powdery and does not retain its shape.

こうした欠点をおぎなうために高強度芯材を高強度接着
剤でFRP上下層間に接着する方法がとられている。し
かし、一般に高強度芯材、例えば密度、熱伝導率が大き
いため4i!ff化及び保温性において欠点が出てくる
。又、一般に高強度芯材は定尺板の形状で販売されてお
り、筒状物を成形する場合にFRP上下層の曲率半径に
合致させて足尺高強度芯材を屈曲させて張付ける必要が
ある。その際高強度芯材は剛性が高いため、はね返り現
象が大きく、完全に曲率を一致させて接着することが困
難となる。そのため高強度芯材を張付ける場合は高強度
芯材を帯板状に切断して張付けなければならず、そのよ
うにしても円周方向の強度の不連続性が生じ筒状物の円
周方向の強度は必ずしも向上することにならない。
In order to overcome these drawbacks, a method has been adopted in which a high-strength core material is bonded between the upper and lower FRP layers using a high-strength adhesive. However, generally high-strength core materials, such as high density and thermal conductivity, make 4i! Disadvantages appear in FF and heat retention. In addition, high-strength core material is generally sold in the form of a fixed-length plate, and when forming a cylindrical object, it is necessary to bend and attach the high-strength core material to match the radius of curvature of the upper and lower FRP layers. There is. In this case, since the high-strength core material has high rigidity, the rebound phenomenon is large, making it difficult to adhere with perfectly matching curvatures. Therefore, when attaching a high-strength core material, it is necessary to cut the high-strength core material into strips and attach them. The strength in the direction does not necessarily improve.

本発明者等は、プラスチック発泡体を用い、高強度で保
温性に優れ、軽量化された構造を鋭意研究の結果、本発
明に到達した。
The inventors of the present invention have arrived at the present invention as a result of intensive research into a lightweight structure that uses plastic foam and has high strength and excellent heat retention.

即ち、本発明は繊維強化熱硬化性樹脂上層と繊維強化熱
硬化性樹脂下層との間にプラスチック発泡層を有する筒
状成形物に於いて、繊維強化熱硬化性樹脂上層と繊維強
化樹脂下層とがリプで連結されていることを特徴とする
樹脂製筒状成形物に関する。
That is, the present invention provides a cylindrical molded article having a plastic foam layer between the fiber-reinforced thermosetting resin upper layer and the fiber-reinforced thermosetting resin lower layer. The present invention relates to a cylindrical molded product made of resin, characterized in that the two are connected by a lip.

本発明では特に低密度プラスチック発泡体を用い、保温
性、軽量化を向上させ、しかも低密度プラスチック発泡
体の欠点である強度不足なFRP上層とFRPT層をリ
プで連結することにより補ない、必要により該リプな集
中荷重の加わる位置に設置して集中荷重による破壊を防
止することができる構造の筒状成形物を提供する。
In the present invention, especially low-density plastic foam is used to improve heat retention and weight reduction, and to compensate for the shortcomings of low-density plastic foam by connecting the FRP upper layer and FRPT layer with a lip. To provide a cylindrical molded article having a structure that can be installed in a position where a concentrated load is applied to prevent destruction due to the concentrated load.

本発明で言う筒状成形物とは断面が円、楕円、多角形及
び他の形状のものであり、平行、テーパー管状のもので
ある。
The cylindrical molded product referred to in the present invention is one having a circular, elliptical, polygonal, or other shape in cross section, and is parallel or tapered tubular.

本発明の樹脂製筒状成形物は、例えば(AIFRP下層
を成形する工程、(B)プラスチック発泡体を成形する
工程、(C)プラスチック発泡体を溝切削する工程、(
D) 17プな成形する工程、+l115FRP上層を
成形する工程の組合せによって製造される。即ち、リプ
の形態及び目的により、例えば(A)、(B)、tc)
、(D)、fE)の力員で成形されるもの、(A)、(
D)、(匂、(B)の順で成形されるもの、(A)、f
D)、(B)、(E)の順で成形されるもの、(A)、
(B)、(C)、(DJ、(B)、(勾の順で成形され
るもの、(N、(B)、(D)、(B)、(匂の順で成
形されるものを挙げることができる。
The resin cylindrical molded article of the present invention includes, for example, (a step of molding an AIFRP lower layer, (B) a step of molding a plastic foam, (C) a step of cutting a groove in the plastic foam, (
D) Manufactured by a combination of the steps of molding the 17-ply and molding the +l115 FRP upper layer. That is, depending on the form and purpose of the reply, for example (A), (B), tc)
, (D), fE), (A), (
D), (odor), molded in the order of (B), (A), f
D), (B), (E) molded in the order, (A),
(B), (C), (DJ, (B), (those molded in the order of gradient), (N, (B), (D), (B), (those molded in the order of scent) can be mentioned.

上記(A)及圀E)の工程に於ける成形法はハンドレイ
アップ法、スプレーアップ法、フィラメントワインディ
ング法、遠心成形法、回転成形法等の各種の成形法で良
く、その際(A)および匂の工程の成形法は異なっても
良い。
The molding method in the above steps (A) and E) may be various molding methods such as hand lay-up method, spray-up method, filament winding method, centrifugal molding method, rotational molding method, etc. The molding methods for the and odor steps may be different.

(B)の工程に於ける成形法は(A)、(B)、(C)
、(DJ、(匂の順、(AJ。
The molding method in step (B) is (A), (B), and (C).
, (DJ, (Smell order, (AJ.

(D)、(B)、(匂の順及び(At、 (B)、(C
)、(D)、(B)、(匂の順で成形される場合には各
種低密度プラスチック発泡体の定尺板を張付けても良く
、スプレー発泡成形によるものでも良い。又、(A)、
(D)、(匂、(B10順で成形される場合には注入発
泡成形により成形される。更に、(A)、(B)、(D
J、(Bl、(E)の順で成形される場合にはスプレー
発泡成形が適する。
(D), (B), (smell order and (At, (B), (C
), (D), (B), (When molded in the order of odor, a fixed length plate of various low-density plastic foams may be attached, or spray foam molding may be used. Also, (A) ,
(D), (odor), (B) When molded in the order of 10, it is molded by injection foam molding.Furthermore, (A), (B), (D
When molding is performed in the order of J, (Bl, and (E)), spray foam molding is suitable.

(C’lの工程はプラスチック発泡体切削機によりFR
PT層の上に成形されたプラスチック発泡体を円周方向
あるいは軸方向、螺旋方向、基盤目方向に必要に応じ溝
状に切削加工することにより行なわれる。溝の断面形状
は四角形、U字形、7字形、半円形等の任意の形状を選
択できる。
(The process of C'l is FR by a plastic foam cutting machine.
This is done by cutting the plastic foam molded on the PT layer into grooves in the circumferential direction, axial direction, spiral direction, or base grain direction as required. The cross-sectional shape of the groove can be selected from any shape such as a square, a U-shape, a 7-shape, or a semicircle.

(D)の工程に於ける成形法は(A)、(B)、(C)
、(D)、(匂の順で成形されるもののうち筒状型内面
で成形する場合にはハンドレイアップ法、スプレーアッ
プ法、遠心成形法、回転成形法等により成形され、又、
筒状型外面で成形する場合にはハンドレイアップ法、ス
プレーアップ法、フィラメントワインディング法等によ
り成形される。又、(N、(D)、(E)、(B)のj
IHで成形する場合にはコルゲート板等の二次曲面を持
つ板の片面に平板を接合したものを予備成形し、これを
FRPT層に張付は接合することにより行なわれる。(
Al。
The molding methods in step (D) are (A), (B), and (C).
, (D), (Among those molded in the order of odor, when molded on the inner surface of a cylindrical mold, it is molded by hand lay-up method, spray-up method, centrifugal molding method, rotational molding method, etc.
When molding is performed on the outer surface of a cylindrical mold, the molding is performed by a hand lay-up method, a spray-up method, a filament winding method, or the like. Also, j of (N, (D), (E), (B)
In the case of forming by IH, a plate having a quadratic curved surface such as a corrugated plate is preformed by bonding a flat plate to one side, and this is bonded to the FRPT layer. (
Al.

(D)、(B)、(匂の順で成形されるもののうち筒状
型内面で成形される場合にはハンドレイアップ法、スプ
レーアップ法、回転成形法等に成形され、又、筒状型外
面で成形される場合にはハンドレイアップ法、スプレー
アップ法、フィラメントワインディグ法等により成形さ
れる。(N、(B)、(Q、(D)、(B)、(E)の
順、(蜀、(B)、(DJ、(B)、(8の順で成形さ
れるもののうち筒状型内面で成形する場合にはハンドレ
イアップ法、スプレーアップ法、回転成形法等により成
形され、又、筒状型外面で成形する場合はハンドレイア
ップ法、スプレーアップ法等により成形される。
(D), (B), (For those molded in the order of smell, when molded on the inner surface of a cylindrical mold, it is molded by hand lay-up method, spray-up method, rotary molding method, etc. When molding is performed on the outside of the mold, it is molded by hand lay-up method, spray-up method, filament winding method, etc. (N, (B), (Q, (D), (B), (E)) (Shu, (B), (DJ, (B), (8) When molding on the inner surface of a cylindrical mold in the order of 8, hand lay-up method, spray-up method, rotational molding method, etc. When molding is performed on the outer surface of a cylindrical mold, it is molded by a hand lay-up method, a spray-up method, or the like.

繊維強化熱硬化性樹脂上下層に用いられる繊維強化相は
ガラス繊維、炭素繊維、アラミド繊維(デュポン社製、
ケブラー繊維)等の公知の繊維強化材を挙げることがで
き、特にガラス繊維が好ましい。かかる強化拐はマット
状、ロービング状、ロービングを適当な長さに切断した
チョップ状のもの等が使用され、それらの組合せで使用
することも可能である。又、かかる強化材の使用量は通
常、成形物中の10〜80重景%、好ましくは15〜6
0重量%、より好ましくは20〜50重量%となる量が
適当である。
The fiber-reinforced phase used in the upper and lower layers of fiber-reinforced thermosetting resin is glass fiber, carbon fiber, aramid fiber (manufactured by DuPont,
Known fiber reinforcing materials such as Kevlar fiber) can be mentioned, and glass fiber is particularly preferred. Such reinforcing fibers are used in the form of mats, rovings, chopped rovings cut into appropriate lengths, etc., and combinations thereof can also be used. The amount of reinforcing material used is usually 10 to 80 percent, preferably 15 to 6 percent, in the molded product.
A suitable amount is 0% by weight, more preferably 20 to 50% by weight.

又、繊維強化熱硬化性樹脂上下層に用いられる熱硬化性
樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂
、フェノール樹脂、ビニルエステル樹脂等の公知の液状
熱硬化性樹脂が挙げられ、特に液状不飽和ポリエステル
樹脂が好ましい。この不飽和ポリエステル樹脂を用いる
場合には、触媒として過酸化物等および硬化促進剤とし
て金属塩、アミン等を併用して硬化する方法が好ましい
。尚、かかる不飽和ポリエステル樹脂は紫外線硬化等の
他の硬化手段で硬化せしめてもよい。
The thermosetting resin used in the upper and lower fiber reinforced thermosetting resin layers includes known liquid thermosetting resins such as unsaturated polyester resin, epoxy resin, phenol resin, and vinyl ester resin. Saturated polyester resins are preferred. When using this unsaturated polyester resin, it is preferable to use a method of curing using a combination of a peroxide or the like as a catalyst and a metal salt, an amine, or the like as a curing accelerator. Incidentally, such unsaturated polyester resin may be cured by other curing means such as ultraviolet curing.

本発明で用いられるプラスチック発泡体は低密度のもの
が好抜しく、例えばウレタン樹脂、アクリル樹脂、ポリ
塩化ビニル樹脂、尿素樹脂、フェノール樹脂あるいはポ
リエチレン樹脂、ポリスチレン樹脂及びこれらの共重合
体等の一般公知の低密度プラスチック発泡体が挙げられ
る。又、プラスチック発泡体は足尺板を用いても良く、
スプレー発泡及び注入発泡成形したものでも良い。かか
るプラスチック発泡体の密度は0.01〜0.2 g/
crn”が好ましく、更に好ましくは0.01〜0.1
 E/crI?である。
The plastic foam used in the present invention is preferably one with a low density, such as general resins such as urethane resin, acrylic resin, polyvinyl chloride resin, urea resin, phenol resin, polyethylene resin, polystyrene resin, and copolymers thereof. Known low density plastic foams may be mentioned. Also, plastic foam may be used with footboards,
It may also be formed by spray foaming or injection foaming. The density of such plastic foam is 0.01-0.2 g/
crn” is preferred, more preferably 0.01 to 0.1
E/crI? It is.

本発明に於けるリブはFRP上層とFRPT層とを連結
する構造のものであれば良く、又、その方向は円周方向
、軸方向、あるいはこれらを組合わせた基盤目方向、螺
旋方向のいずれであっても良く、更にそのリブの寸法は
高さ5〜100zm、好ましくはi D 〜80mn、
厚さ0.5〜501RI11゜好ましくは0.5〜30
朋である。尚、リブの間隔はリブの寸法、リブの方向、
要求強度等により適宜選択される。
The ribs in the present invention may have any structure as long as they connect the FRP upper layer and the FRPT layer, and the ribs may be in any of the circumferential direction, axial direction, or a combination of these in the base grain direction or spiral direction. The rib may have a height of 5 to 100 zm, preferably i D to 80 m,
Thickness 0.5~501RI11゜preferably 0.5~30
It's my friend. In addition, the spacing between the ribs depends on the rib dimensions, rib direction,
It is selected as appropriate depending on the required strength, etc.

リブの材質は成形工程、構造上FRPが好ましいが、F
RP上層およびFRPT層との接着が可能で、かつそれ
自体の強度が用いられる芯材の強度の2倍以上、好まし
くは3倍以上の材料であれば良く、一般公知の羽村から
適宜選択される。
The material of the ribs is preferably FRP due to the molding process and structure, but FRP is preferable.
Any material may be used as long as it is capable of adhesion to the RP upper layer and the FRPT layer and has a strength of at least twice, preferably at least three times, that of the core material used, and is appropriately selected from commonly known Hamura materials. .

又、リブの成形はプラスチック発泡体の張ゆ伺は又は成
形の前であっても、後であっても良く、又、予備成形さ
れたものを接合したものを用いても良い。
Further, the ribs may be formed before or after the plastic foam is stretched or after the plastic foam is stretched, or preformed pieces may be bonded together.

この様にして成形された筒状成形物は表−1に示す如く
@景で保温性が高く、しかも高強度の物性を有し、従来
の低密度プラスチック発泡体を用いた筒状成形物と比較
して円筒たわみで%〜%の変形量となり局部圧縮では2
〜6倍の強度を有する。又、保温性についても同等もし
くは%の保温力があり、又、同一強度を有する高強度芯
材を用いた筒状成形物と比較すると3倍の保温力を有し
重量は1/1.8となる。
As shown in Table 1, the cylindrical molded product formed in this way has excellent heat retention and high strength physical properties, and is different from conventional cylindrical molded products using low-density plastic foam. In comparison, the amount of deformation due to cylindrical deflection is % to %, and the amount of deformation is 2% due to local compression.
~6 times stronger. In addition, it has the same or % of the heat retention ability, and compared to a cylindrical molded product using a high-strength core material with the same strength, it has three times the heat retention ability and weighs 1/1.8 becomes.

従がって、本発明の筒状成形物は強度、保温性、剛性、
軽量化等の性能が優れるため、保温タンク、水タンク、
サイロ、保温パイプ、スクラバー、豚舎等に幅広く利用
することができる。
Therefore, the cylindrical molded product of the present invention has good strength, heat retention, rigidity,
Due to its excellent performance such as weight reduction, it can be used for thermal tanks, water tanks,
It can be widely used in silos, heat insulation pipes, scrubbers, pig pens, etc.

次いで、本発明を実施例により詳しく述べる。Next, the present invention will be described in detail with reference to Examples.

実施例−1 第1図1−bに示す如き構造例の円周方向にリプを有す
る直径2m、長さ6mの筒状成形物を得た。
Example 1 A cylindrical molded article having a structure as shown in FIG. 1-b and having a lip in the circumferential direction and having a diameter of 2 m and a length of 6 m was obtained.

筒状型を周速22.5m/分で回転させ、その内壁面に
液状熱硬化性樹脂供給装置により不飽和ポリエステル樹
脂(ポリライ)FG−104、大日本インキ化学製)と
促進剤として6%ナフテン酸コバルト(犬日本インキ化
学製→0.4重量部及び触媒として55%メチルエチル
ケトンパーオキサイド(日本油脂M)1.Ojt量部を
混合して10に9/分で供給し、続いて繊維強化剤供給
装置によりガラス繊維(ガラスロービングS P−1、
旭7アイパー製)を長さ501mのチョツプドストラン
ド状に切断して5kg/分で供給した。
The cylindrical mold was rotated at a circumferential speed of 22.5 m/min, and an unsaturated polyester resin (Polylye FG-104, manufactured by Dainippon Ink Chemical Co., Ltd.) and 6% as an accelerator were applied to the inner wall surface of the mold using a liquid thermosetting resin supply device. Cobalt naphthenate (manufactured by Inu Nippon Ink Chemical Co., Ltd. → 0.4 parts by weight and 1.0 parts of 55% methyl ethyl ketone peroxide (NOF M) as a catalyst were mixed and fed at a rate of 10 to 9 minutes, followed by fiber reinforcement. Glass fiber (Glass roving S P-1,
Asahi 7 (manufactured by Iper) was cut into chopped strands with a length of 501 m and fed at a rate of 5 kg/min.

更にそれらの上を凹凸を持った自在に回転する鋼鉄製抑
圧ロール6本で押圧した。この抑圧ロールは直径15c
rrL、長さ60crrL、重さ10ゆであり、6本の
ロール間隔はそれぞれ10crrLとした。こうして得
られた厚さ6龍のFRP下層の上にウレタン樹脂スプレ
ー発泡装置ミニプロブラー(日本ランズバーグ製)を利
用してスプレー発泡作業を行なった。使用樹脂はポリオ
ール成分としてハイプロツクスRP−986C(大日本
インキ化学製)を使用し、ポリイソシアネート成分とし
てハイプロツクス5p−290(大日本インキ化学製)
を使用した。この時の吐出圧力は6kl?/cfで行な
った。こうして得られた発泡層は厚さ約40羽であった
が、表面が凹凸となったため発泡体切削機により厚さ6
0龍に切削した。尚、発泡体の密度は0.059/cr
n”であった。この後、発泡体切削機により深さ50g
m、幅40mrnの四角形の断面形状で円周方向に溝間
用’@ 500mtrtで溝を切削した。
Furthermore, they were pressed with six freely rotating steel pressing rolls with uneven surfaces. This suppression roll has a diameter of 15c.
rrL, length 60crrL, weight 10cm, and the interval between the six rolls was 10crrL each. Spray foaming was performed on the FRP lower layer with a thickness of 6 mm thus obtained using a urethane resin spray foaming device Mini Probler (manufactured by Nippon Ransburg). The resin used is Hyprox RP-986C (Dainippon Ink Chemical) as a polyol component, and Hyprox 5p-290 (Dainippon Ink Chemical) as a polyisocyanate component.
It was used. Is the discharge pressure at this time 6kl? /cf was used. The foam layer obtained in this way was approximately 40 pieces thick, but because the surface was uneven, a foam cutting machine was used to reduce the thickness to 6 pieces.
Cut to 0 dragon. In addition, the density of the foam is 0.059/cr
After this, the foam was cut to a depth of 50 g using a foam cutting machine.
A groove was cut in the circumferential direction with a groove width of 500 mtrt in a rectangular cross-sectional shape with a width of 40 mrn and a width of 40 mrn.

得られた溝に前述の不飽和ポリエステル樹脂混合物とガ
ラス繊m(チョップマットCM−455.旭ファイバー
製)によりハンドレイアップ法でFRP上下層を連結す
るリプを成形した。
In the resulting groove, a lip connecting the upper and lower FRP layers was formed using the above-mentioned unsaturated polyester resin mixture and glass fiber m (Chopmat CM-455, manufactured by Asahi Fiber) by hand lay-up method.

その後、前述のFRPT層と同様の成形法によりFRP
上層を厚さ6間で成形した。
After that, the FRP layer is formed using the same molding method as the FRPT layer described above.
The upper layer was molded to a thickness of 6 mm.

こうして得られた筒状成形物は直径2m、長さ6mのも
のであり、FRP下層の厚さ6朋、ウレタン発泡層の厚
さ30ii、FRp上層の厚さ6nであり、又、FRP
下層とFRP上層とを連結した高さ60間、幅40間の
FRP製リプを円周方向に500龍間隔で有するもので
ある。
The thus obtained cylindrical molded product has a diameter of 2 m and a length of 6 m, the thickness of the FRP lower layer is 6 mm, the thickness of the urethane foam layer is 30 ii, and the thickness of the FRp upper layer is 6 nm.
It has FRP ribs connecting the lower layer and the FRP upper layer with a height of 60 mm and a width of 40 mm at intervals of 500 mm in the circumferential direction.

実施例−2 第1図1−aに示す如き、構造例の円周方向にリプを有
する直径2m、長さ3mの筒状成形物を得た。
Example 2 A cylindrical molded article having a structure example and having a lip in the circumferential direction and having a diameter of 2 m and a length of 3 m was obtained as shown in FIG. 1-a.

実施例−1と同様の不飽和ポリエステル樹脂混合物とチ
ョップマットを用い、筒状型外面にハンドレイアップ法
により厚さ6間のFRP下層を成形し、この上に実施例
−1と同様の方法で厚さ60朋のポリウレタン発泡層を
得た。
Using the same unsaturated polyester resin mixture and chopped mat as in Example-1, an FRP lower layer with a thickness of 6 mm was molded on the outer surface of the cylindrical mold by the hand lay-up method, and on top of this, the same method as in Example-1 was applied. A polyurethane foam layer with a thickness of 60 mm was obtained.

又、同様の方法で高さ30朋、幅10mmの四角形の形
状で円周方向に500間の間隔で溝を切削し、該不飽和
ポリエステル樹脂混合物と実施例−1で使用したガラス
ロービング5P−3を用いフィラメントワインゲング法
にてリプの成形を行なった。
In addition, in the same manner, grooves were cut in a rectangular shape with a height of 30mm and a width of 10mm at intervals of 50mm in the circumferential direction, and the unsaturated polyester resin mixture and the glass roving 5P- used in Example-1 were cut. 3 was used to form a lip by the filament Weingeng method.

更に、この上にFRP下層と同様の成形法にて厚さ6門
のFRP上層を成形した。こうして得られた筒状成形物
は直径2m、長さ3mであり、FRP下層の厚さ3朋、
ウレタン発泡層の厚さ30mm、FRP上層の厚さ6朋
であり、又、FRP下層とFRP上層を連結した高さ6
0問、幅10mmのFRP製リブな円周方向に500間
間隔で有1−るものである。
Furthermore, an FRP upper layer having a thickness of 6 layers was molded on top of this using the same molding method as the FRP lower layer. The thus obtained cylindrical molded product has a diameter of 2 m, a length of 3 m, and a thickness of the FRP lower layer of 3 m.
The thickness of the urethane foam layer is 30 mm, the thickness of the FRP upper layer is 6 mm, and the height of the connection between the FRP lower layer and the FRP upper layer is 6 mm.
There are 10 FRP ribs with a width of 10 mm at intervals of 500 in the circumferential direction.

実施例−3 第2−a図に示す如き、構造例のコルゲート板状リプな
有する直径2m、長さ3mの筒状成形物を得た。
Example 3 As shown in Figure 2-a, a cylindrical molded product having a corrugated plate-like lip of the structural example and having a diameter of 2 m and a length of 3 m was obtained.

実施例−1と同様の方法で厚さ5vnのFRP下層を成
形し、第3図の3− aに示す如き構造のJIS−A−
5701のFRP製波板130波(厚さ1mm、谷の深
さ36閂、ピッチ130mm)を長さ方向で600朋に
切断したものの片面に厚さ1間、幅600mg、長さ約
2mのFRP平板に張付け、継ぎ合わせたものを予備成
形し、前述のFRP下層に波板側が設置するような方向
で円周方向に張り付けた。
An FRP lower layer with a thickness of 5vn was molded in the same manner as in Example-1, and a JIS-A-
A 5701 FRP corrugated plate with 130 waves (thickness 1 mm, valley depth 36 bars, pitch 130 mm) was cut into 600 mm in the length direction, and one side had FRP 1 mm thick, 600 mg wide, and about 2 m long. The pieces were pasted onto a flat plate, spliced together, preformed, and pasted in the circumferential direction in such a direction that the corrugated sheet side was installed on the FRP lower layer described above.

実施例−10FRP上層と同様の方法で厚さ3龍のFR
P上層を成形した。
Example-10 FR with a thickness of 3 dragons was made in the same way as the FRP upper layer.
A P upper layer was molded.

更に、コルゲート板状リプの空間にウレタン樹脂注入発
泡装置MS−203(ポリウレタンエンジニアリング社
)により注入発泡作業を行なった。
Further, injection and foaming work was performed in the space of the corrugated plate lip using a urethane resin injection and foaming device MS-203 (Polyurethane Engineering Co., Ltd.).

使用樹脂はポリオール成分としてハイプロツクスRP−
959(大日本インキ化学製)を使用し、ポリイソシア
ネート成分としてハイブロツクス5P−299(大日本
インキ化学製)を使用し、発泡剤としてフレオン12を
使用した。尚、得られた発泡体の密度はo、 o s 
&/ctrlであった。
The resin used is Hyprox RP- as a polyol component.
959 (manufactured by Dainippon Ink Chemicals), Hybrox 5P-299 (manufactured by Dainippon Ink Chemicals) was used as the polyisocyanate component, and Freon 12 was used as the blowing agent. In addition, the density of the obtained foam is o, o s
&/ctrl.

こうして得られた筒状成形物は直径2m、長さ3mであ
り、FRP下層の厚さ5mm、ウレタン発泡層の厚さ約
30y+m、FRP上層の厚さ3mmであり、又、厚さ
1間のコルゲート板状リプを有するものである。
The thus obtained cylindrical molded product has a diameter of 2 m and a length of 3 m, the FRP lower layer has a thickness of 5 mm, the urethane foam layer has a thickness of about 30 y + m, the FRP upper layer has a thickness of 3 mm, and the thickness is 1 m. It has a corrugated plate-like lip.

実施例−4 第1図1−aに示す如き構造例の円周方向にリプを有す
る直径2TIL、長さ6mの断面欠円形状の筒状成形物
を得た。
Example 4 A cylindrical molded article having a structure as shown in FIG. 1-a and having a lip in the circumferential direction, a diameter of 2 TIL, and a length of 6 m, having an occluded circular cross section was obtained.

実施例−2と同様の不飽和ポリエステル樹脂混合物とガ
ラス繊維を用い断面欠円形状筒状型にハンドレイアップ
法にて厚さ3朋のFRP下層を成形した。この上に厚さ
60mmのピオセランボード(積木化成品工業製)定尺
板を張付げ実施例−2と同様方法でF RP IJプ、
FRP上層を成形した。
Using the same unsaturated polyester resin mixture and glass fiber as in Example 2, an FRP lower layer with a thickness of 3 mm was molded into a cylindrical mold with an occluded cross section by a hand lay-up method. A 60 mm thick PIOCELAN board (manufactured by Miki Kaseihin Kogyo) was pasted on top of this, and FRP IJ was applied in the same manner as in Example-2.
The FRP upper layer was molded.

こうして得られた欠円形状の筒状成形物は直径2m、入
内部1TrL1長さ3mmであり、FRP下層の厚さ6
籠、ピオセランボート発泡体層の厚さ60朋、FRP上
層の厚さ6間であり、又、FRP下層とFRP上層を連
結した高さ30關、幅10朋のFRP製リプな円周方向
に500間間隔で有するものである。
The thus obtained truncated cylindrical molded product has a diameter of 2 m, an inner part of 1 TrL, and a length of 3 mm, and the thickness of the FRP lower layer is 6 m.
The basket is made of FRP with a thickness of 60 mm for the foam layer, 6 mm for the FRP upper layer, and 30 mm in height and 10 mm in width connecting the FRP lower layer and the FRP upper layer in the circumferential direction. 500 intervals.

比較例−1 比較のためFRP製リブを設置しない以外実施例−1と
同様の条件により従来構造のFRPサンドインチ筒状成
形注)※−に円筒たわみ 実施例−1,2,3及び比較例−1で成形した筒状成形
物を軸方向に長さ1mに切断し、これにioookgの
荷重を円筒頂部に圧縮荷重として加え円周の変位量を測
定したものである。
Comparative Example-1 For comparison, cylindrical deflection was performed on FRP sandwich inch cylindrical molding Note) *- under the same conditions as Example-1 except that FRP ribs were not installed.Example-1, 2, 3 and Comparative Example The cylindrical molded product molded in -1 was cut into a length of 1 m in the axial direction, and a load of ioookg was applied as a compressive load to the top of the cylinder, and the amount of circumferential displacement was measured.

※−2:リプ強度 比較例−1についてはリプを有しないため芯材の強度を
記載した。
*-2: Lip strength comparative example-1 has no lip, so the strength of the core material is listed.

※−6:リプ部局部圧縮 実施例−1,2,5では筒状成形物のリブ部を約30X
3[]crrLに切り出し、比較例−1では適当な箇所
で約3QX30cmに切り出した板を直径10朋の鋼製
円柱において局部圧縮荷重を加え破壊した時点の荷重を
鋼製円柱の断面積で除したものである。
*-6: In examples 1, 2, and 5 of local compression of the lip part, the rib part of the cylindrical molded product was compressed by approximately 30X.
3[] crrL, and in Comparative Example-1, a plate cut out to approximately 3Q x 30 cm at an appropriate location was applied a local compressive load to a steel cylinder with a diameter of 10 mm, and the load at the time of failure was divided by the cross-sectional area of the steel cylinder. This is what I did.

※−4:保温性 実施例−1,2,5及び比較例−1で成形した筒状成形
物を軸方向に長さ1mに切断し、これに胴部と同様の構
造の平板形状の鏡板を上下面に接合し、円柱形状のタン
クを作成した後、この中に1008Cの温水を入れ、水
温が80℃から6D℃になるまでの時間を測定した。尚
、成形物は床より高さ50crrLの剛製荷台に設置し
、温水はh馬力の電動機より攪拌し、又この時の外気温
は20℃±6℃であった。
*-4: Heat retention The cylindrical molded products molded in Examples 1, 2, and 5 and Comparative Example-1 were cut into 1 m length in the axial direction, and a flat end plate with the same structure as the body was attached to this. After joining the upper and lower surfaces to create a cylindrical tank, 1008C hot water was poured into the tank, and the time required for the water temperature to rise from 80°C to 6D°C was measured. The molded product was placed on a rigid platform at a height of 50 crrL above the floor, the hot water was stirred by an h horsepower electric motor, and the outside temperature at this time was 20°C ± 6°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2および4図は本発明の樹脂製筒状成形物の軸垂
直断面部分図である。又、第6図は本発すノの樹脂製筒
状成形物に用いられるコルゲート板状リブの断面部分図
である。 1・・・・・・FRP下層 2・・・・・・プラスチッ
ク発泡体3・・・・・・リプ 4・・・・・・FRP上
層5・・・・・・平板 6・・・・・・コルゲート板代
理人 弁理士 高 橋 勝 利
1.2 and 4 are partial sectional views perpendicular to the axis of the resin cylindrical molded product of the present invention. Further, FIG. 6 is a partial cross-sectional view of a corrugated plate-like rib used in the resin cylindrical molded article of the present invention. 1... FRP lower layer 2... Plastic foam 3... Lip 4... FRP upper layer 5... Flat plate 6...・Colgate Board Agent Patent Attorney Katsutoshi Takahashi

Claims (1)

【特許請求の範囲】[Claims] 繊維強化熱硬化性樹脂上層と繊維強化熱硬化性樹脂下層
との間にプラスチック発泡層を有する筒状成形物に於い
て、繊維強化熱硬化性樹脂上層と繊維強化樹脂下層とが
リプで連結されていることを特徴とする樹脂製筒状成形
物。
In a cylindrical molded article having a plastic foam layer between the fiber-reinforced thermosetting resin upper layer and the fiber-reinforced thermosetting resin lower layer, the fiber-reinforced thermosetting resin upper layer and the fiber-reinforced thermosetting resin lower layer are connected by a lip. A resin cylindrical molded product characterized by:
JP58095802A 1983-06-01 1983-06-01 Cylindrical shape made of resin Granted JPS60947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58095802A JPS60947A (en) 1983-06-01 1983-06-01 Cylindrical shape made of resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58095802A JPS60947A (en) 1983-06-01 1983-06-01 Cylindrical shape made of resin

Publications (2)

Publication Number Publication Date
JPS60947A true JPS60947A (en) 1985-01-07
JPH0351581B2 JPH0351581B2 (en) 1991-08-07

Family

ID=14147559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58095802A Granted JPS60947A (en) 1983-06-01 1983-06-01 Cylindrical shape made of resin

Country Status (1)

Country Link
JP (1) JPS60947A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264935A (en) * 1986-05-12 1987-11-17 Kawasaki Heavy Ind Ltd Fiber-reinforced structural member
JPS63123414A (en) * 1986-11-12 1988-05-27 Toyobo Co Ltd Fiber modified into electret and its manufacture
US6375886B1 (en) 1999-10-08 2002-04-23 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
US6397458B1 (en) 1998-07-02 2002-06-04 3M Innovative Properties Company Method of making an electret article by transferring fluorine to the article from a gaseous phase
US6406657B1 (en) 1999-10-08 2002-06-18 3M Innovative Properties Company Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US6454986B1 (en) 1999-10-08 2002-09-24 3M Innovative Properties Company Method of making a fibrous electret web using a nonaqueous polar liquid
US6743464B1 (en) 2000-04-13 2004-06-01 3M Innovative Properties Company Method of making electrets through vapor condensation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239108U (en) * 1975-09-11 1977-03-19
JPS5756246A (en) * 1980-09-19 1982-04-03 Mitsubishi Electric Corp Multiple cylinder body made of fiber reinforced resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239108U (en) * 1975-09-11 1977-03-19
JPS5756246A (en) * 1980-09-19 1982-04-03 Mitsubishi Electric Corp Multiple cylinder body made of fiber reinforced resin

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62264935A (en) * 1986-05-12 1987-11-17 Kawasaki Heavy Ind Ltd Fiber-reinforced structural member
JPS63123414A (en) * 1986-11-12 1988-05-27 Toyobo Co Ltd Fiber modified into electret and its manufacture
US6409806B1 (en) 1998-07-02 2002-06-25 3M Innovative Properties Company Fluorinated electret
US6397458B1 (en) 1998-07-02 2002-06-04 3M Innovative Properties Company Method of making an electret article by transferring fluorine to the article from a gaseous phase
US6398847B1 (en) 1998-07-02 2002-06-04 3M Innovative Properties Company Method of removing contaminants from an aerosol using a new electret article
US6432175B1 (en) 1998-07-02 2002-08-13 3M Innovative Properties Company Fluorinated electret
US6562112B2 (en) 1998-07-02 2003-05-13 3M Innovative Properties Company Fluorinated electret
US6660210B2 (en) 1998-07-02 2003-12-09 3M Innovative Properties Company Method of making fluorinated electrets
US6808551B2 (en) 1998-07-02 2004-10-26 3M Innovative Properties Company Method of using fluorinated electrets
US6406657B1 (en) 1999-10-08 2002-06-18 3M Innovative Properties Company Method and apparatus for making a fibrous electret web using a wetting liquid and an aqueous polar liquid
US6375886B1 (en) 1999-10-08 2002-04-23 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
US6454986B1 (en) 1999-10-08 2002-09-24 3M Innovative Properties Company Method of making a fibrous electret web using a nonaqueous polar liquid
US6824718B2 (en) 1999-10-08 2004-11-30 3M Innovative Properties Company Process of making a fibrous electret web
US6743464B1 (en) 2000-04-13 2004-06-01 3M Innovative Properties Company Method of making electrets through vapor condensation

Also Published As

Publication number Publication date
JPH0351581B2 (en) 1991-08-07

Similar Documents

Publication Publication Date Title
US6586110B1 (en) Contoured metal structural members and methods for making the same
US6821638B2 (en) Shaped contoured crushable structural members and methods for making the same
EP1301339A1 (en) Contoured crushable composite structural members and methods for making the same
US20020006523A1 (en) Structural members containing vibration damping mechanisms and methods for making the same
JP2017520440A (en) Reinforced composite structure
US4665678A (en) Lightweight constructions of increased strength and dimensional stability
US20020062546A1 (en) Coated contoured crushable structural members and methods for making the same
Marshall Sandwich construction
JPS60947A (en) Cylindrical shape made of resin
EP0293612A2 (en) Composite load-bearing structural element, particularly for vehicle bodies, and relative manufacturing process
EP0390535B1 (en) Method of making a rigid structure
EP0370147B1 (en) Tubular composite construction
EP1301337A1 (en) Cored contoured composite structural members and methods for making the same
JP2000141527A (en) Synthetic resin laminate and sleeper using the synthetic resin laminate
JPS5854999Y2 (en) Lightweight plate-like synthetic material
JP3847925B2 (en) Method for producing porous structure
JPH01166937A (en) Long-sized, light-weight and fiber-reinforced composite draw molding and its manufacture
JPH0542079Y2 (en)
JPH11141852A (en) Smoke control duct and its manufacture
JPS6224521Y2 (en)
JPS5973919A (en) Manufacture of cylindrical formed product made of fiber reinforced resin with foamed resin layer
JPS6049097B2 (en) Method for producing fiber-reinforced foam molded product covered with synthetic resin film
JPH055003Y2 (en)
JP2513625Y2 (en) Composite structure
Weatherhead Designing in FRP