JPS6093941A - Material strength testing apparatus - Google Patents
Material strength testing apparatusInfo
- Publication number
- JPS6093941A JPS6093941A JP20092783A JP20092783A JPS6093941A JP S6093941 A JPS6093941 A JP S6093941A JP 20092783 A JP20092783 A JP 20092783A JP 20092783 A JP20092783 A JP 20092783A JP S6093941 A JPS6093941 A JP S6093941A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- piston
- pressure chamber
- test piece
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は高圧水環境下で材料の強度試験が行うことがで
きる特殊環境生材料強度試験装置に係り、特に、高温高
圧水環境で疲労試験もしくは定荷重試験するためのオー
トクレーブ付材料強度試験装置に好適である。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a special environment raw material strength testing device that can perform strength testing of materials in a high-pressure water environment, and in particular, to a fatigue test or Suitable for material strength testing equipment with autoclave for constant load testing.
試験片を高圧水中におき、この高圧水を試験片への荷重
負加のための駆動源とする従来の材料強(1)
度試験装置の欠点について第1図〜第3図にて説明する
。The disadvantages of conventional material strength testing equipment, in which a test piece is placed in high-pressure water and this high-pressure water is used as a driving source for applying a load to the test piece, will be explained using Figures 1 to 3. .
第1図で試験片1は高圧水で満たされた圧力室Aにあり
、一端はケーシング2に、他端はピストン3に固定され
ている。圧力水け、入115から出口6に抜け、圧力室
Aの環境を常に一定にするように保たれている。また、
ピストン3の下側には孔7で大気圧力に解放された圧力
室Cがある。このため圧力室AとCの差圧とピストン3
の面積かに計算される一定荷重が試験片1に作用するが
、こうした試験装置では、試験片に発生ずる応力を変え
るためには(1)試験片の断面積を変える、もしくは、
(2)圧力室Aの圧力を変更する必要がある。しかし、
前者では試験片表面f〜が変わるため9割れ発生に対す
る表面積の影響が生じたり、また、割れの伝ばに対して
は断面積の影響が試験結果に現われたりすることが考え
られる。一方、後者では高圧水の圧力条件が試験片毎に
変わり、これも適正な方法でない。In FIG. 1, a test piece 1 is placed in a pressure chamber A filled with high-pressure water, and is fixed to a casing 2 at one end and to a piston 3 at the other end. The pressure water drains from the inlet 115 to the outlet 6, and the environment of the pressure chamber A is kept constant at all times. Also,
Below the piston 3 is a pressure chamber C that is open to atmospheric pressure through a hole 7. Therefore, the differential pressure between pressure chambers A and C and piston 3
A constant load calculated by the area of
(2) It is necessary to change the pressure in pressure chamber A. but,
In the former case, since the test piece surface f~ changes, it is conceivable that the surface area may have an effect on the occurrence of 9 cracks, and the cross-sectional area may have an effect on the test results on the propagation of cracks. On the other hand, in the latter case, the pressure conditions of high-pressure water vary from test piece to test piece, which is also not an appropriate method.
また、第2図は上記の欠点を考慮した試験装置(2)
であり、試験片の寸法、圧力室Aの圧力条件は常に一定
にすることが可能となっている。すなわち、圧力室Aと
連結した圧力室Bを設け、さらに、スリーブ8をケーシ
ング2bとピストン3との間に設れたものである。ピス
トン3の受圧面積は圧力室AとBに接した面積で決定さ
れるから、スリーブ8の厚さと圧力室Bにあるピストン
3の外径を変更することで任意の荷重を試験片1に負荷
することが可能である。しかし、この試験機では試験荷
重毎にスリーブ8とピストン3との組合せを信組か予め
製作しておく必要があり、また、試験荷重を変更する都
度、ピストン3やスリーブ8の分解組立を要し煩雑であ
った。Furthermore, FIG. 2 shows a test device (2) that takes the above-mentioned drawbacks into consideration, and allows the dimensions of the test piece and the pressure conditions of the pressure chamber A to be kept constant at all times. That is, a pressure chamber B connected to a pressure chamber A is provided, and a sleeve 8 is further provided between the casing 2b and the piston 3. Since the pressure receiving area of the piston 3 is determined by the area in contact with the pressure chambers A and B, an arbitrary load can be applied to the test piece 1 by changing the thickness of the sleeve 8 and the outer diameter of the piston 3 located in the pressure chamber B. It is possible to do so. However, with this testing machine, the combination of sleeve 8 and piston 3 must be manufactured in advance for each test load, and the piston 3 and sleeve 8 must be disassembled and reassembled each time the test load is changed. It was complicated.
さらに、これらの試験装置では圧力室Aの圧力条件を変
更する試験を行う場合には圧力室Cが大気解放されでい
ることから、圧力室Aの圧力条件毎に試験片断面寸法を
変える必要が生じ、同一寸法の試験片での試験が出来な
かった。Furthermore, in these test devices, when performing tests that change the pressure conditions of pressure chamber A, pressure chamber C is opened to the atmosphere, so it is necessary to change the cross-sectional dimensions of the test piece for each pressure condition of pressure chamber A. Therefore, it was not possible to conduct tests using test pieces of the same size.
第3図では圧力差Cに大気圧をこえる背圧をポンプある
いは高圧ガスでかけて、この圧力を調整(3)
することで試験片に負荷する応力を調整するものである
が、圧力室Aの圧力条件が低い場合には所定の荷重を出
すにはピストン3の受圧面積を大きくとること必要が生
じ、特に高温高圧木用の試験機では圧力室の大きさも増
大し、問題であった。In Figure 3, back pressure exceeding atmospheric pressure is applied to the pressure difference C using a pump or high-pressure gas, and this pressure is adjusted (3) to adjust the stress applied to the test piece. When the pressure conditions are low, it is necessary to increase the pressure-receiving area of the piston 3 in order to produce a predetermined load, and this increases the size of the pressure chamber, which is a problem, especially in testing machines for high-temperature, high-pressure wood.
本発明は試験片寸法や試験圧力条件を変更することなく
容易に試験応力を任意に設定でき、また、試験圧力条件
を変更した試験に対しても同一寸法の試験片で試験が出
来る試験装置を1rl給することにある。The present invention provides a testing device that allows the test stress to be easily set arbitrarily without changing the test piece dimensions or test pressure conditions, and that allows tests to be performed using test pieces of the same size even when the test pressure conditions are changed. The goal is to provide 1rl.
本発明の材料強度試験装評け3つの圧力室を設け、1つ
の圧力室で11試験片のm Ht、圧力の設定を、他の
2つの圧力室では試験片に作用するILr重を両者の差
圧で制御するようにしたものである。In the material strength test equipment of the present invention, three pressure chambers are provided, and one pressure chamber is used to set the m Ht and pressure of 11 test pieces, and the other two pressure chambers are used to set the ILr weight acting on the test piece. It is controlled by differential pressure.
以下、本発明の実施例を第4図により説明する。 An embodiment of the present invention will be described below with reference to FIG.
試験片1つの上端はケーシング2aに、また、下端はピ
ストン3aに固定される。ピストン3は」二(4)
側の直径が小さく下側の直径が大きい2段径ピストンで
あり、ケーシング2との間での封水を行うためのシール
機構9,10が設けられている。シール9は圧力室Aと
Bの、またシール10は圧力室BとCをそれぞれ封圧す
るものである。本試験装置に於て、圧力室Aは試験片の
圧力環境を設定するものであるが、高温高圧水環境試験
を行う場合には、試験の危険性を考えればその大きさは
小さいもの程良い。また、圧力室Bは試験片1の所定の
荷重を負荷を負荷するための圧力水で満たされるが圧力
室Cを大気解放する場合には荷重条件により圧力水入口
11を使ってその圧力を調整することで任意の荷重を発
生することが可能となる。The upper end of one test piece is fixed to the casing 2a, and the lower end is fixed to the piston 3a. The piston 3 is a two-stage piston having a smaller diameter on the 2nd (4) side and a larger diameter on the lower side, and is provided with seal mechanisms 9 and 10 for sealing water with the casing 2. Seals 9 seal pressure chambers A and B, and seals 10 seal pressure chambers B and C, respectively. In this test device, pressure chamber A is used to set the pressure environment of the test piece, but when performing high temperature and high pressure water environment tests, the smaller the size, the better, considering the danger of the test. . In addition, the pressure chamber B is filled with pressure water to apply a predetermined load to the test piece 1, but when the pressure chamber C is released to the atmosphere, the pressure is adjusted using the pressure water inlet 11 depending on the load condition. By doing so, it becomes possible to generate an arbitrary load.
即ち、圧力室Aのピストン径をDj、+圧力室B。That is, the piston diameter of pressure chamber A is Dj, +pressure chamber B.
Cに接するピストン径をDl、また、それぞれの圧力室
の圧力をP^+pHl+PCとすると、試験片に作用す
る荷重Fは次式で表わせる。If the diameter of the piston in contact with C is Dl, and the pressure in each pressure chamber is P^+pHl+PC, then the load F acting on the test piece can be expressed by the following equation.
F=π/ 4 D 12(P A P 8 )十π/4
D22(PB Pc)・・・・・・(1)
いま、Dl =3cm、PA =70Kg/am2y
Dl(5)
=5cmとして試算すると第5図のように荷重容量は圧
力P日を100〜300 K g / eJとすること
で1〜3 tonになることがわかる。F=π/4 D 12 (P A P 8 ) 1π/4
D22 (PB Pc) (1) Now, Dl = 3cm, PA = 70Kg/am2y
When Dl(5) = 5 cm, it is found that the load capacity becomes 1 to 3 tons when the pressure P is set to 100 to 300 Kg/eJ as shown in Fig. 5.
また、第6図では他の実施例を説明する。第6図は試験
部が高温になる試験機であるため、シールの劣化を避け
るため圧力室Aと13の間のシール機構を取の除き両圧
力室の圧力を同じにしたものである。本実施例は特に高
温高江木環Jn材料試験機用として好適である。すなわ
ち、圧力室A、B間にシール機構がなく、シールの劣化
問題が烈いこと、また、圧力室Bへは低湿の高圧水を送
り込み、また出口12より取り出した木を予熱器等によ
り加熱し、圧力室Aへの入[15へ接続すれば圧力室A
、Bの加圧源は1台ですむこと、さらに圧力室Bは冷水
で満たされるからシール10は低温環境であり劣化が少
ないことなどの利点がある。Further, in FIG. 6, another embodiment will be explained. FIG. 6 is a test machine in which the test section is at a high temperature, so in order to avoid deterioration of the seal, the seal mechanism between pressure chambers A and 13 was removed to make the pressures in both pressure chambers the same. This example is particularly suitable for use in a high-temperature Takae Mukan Jn material testing machine. That is, there is no sealing mechanism between pressure chambers A and B, and the problem of seal deterioration is severe.Also, low-humidity, high-pressure water is sent to pressure chamber B, and the wood taken out from outlet 12 is heated with a preheater etc. and enter pressure chamber A [if connected to 15, pressure chamber A
, B requires only one pressurizing source, and since the pressure chamber B is filled with cold water, the seal 10 is in a low-temperature environment and has the advantage of being less susceptible to deterioration.
本実施例では試験片1に作用する荷重下はF=π/4D
22 (Ps Pc) (2)となり、本実施例の最大
発生荷重をめるためにPc”大気圧とおき、また、D2
=5cmとすれば(6)
第7図のように、P日=100Kg/−でF−2しon
と荷重容量としても十分大きな試験機を得ることが出来
ることがわかる。そして、荷重の制御は圧力室Cの圧力
を調整して行えば良く、また、圧力室Cへの圧力源は圧
力室Bへの圧力源を分岐して導入すれば、全ての圧力室
への圧力の供給を1台のポンプで行うことが出来る。さ
らに、高温高圧室Aの容積が小さくなることから、ヒー
タ15の電気容量が小さくてすむことは言うまでもない
。In this example, the load acting on test piece 1 is F=π/4D
22 (Ps Pc) (2), and in order to calculate the maximum generated load in this example, Pc” is set to atmospheric pressure, and D2
= 5cm, (6) As shown in Figure 7, F-2 on P day = 100Kg/-
It can be seen that a testing machine with a sufficiently large load capacity can be obtained. The load can be controlled by adjusting the pressure in pressure chamber C, and if the pressure source for pressure chamber C is branched from the pressure source for pressure chamber B, then all pressure chambers can be controlled. Pressure can be supplied with one pump. Furthermore, since the volume of the high-temperature, high-pressure chamber A is reduced, it goes without saying that the electric capacity of the heater 15 can be reduced.
以上述べたように、本発明によれば、試験機の負加容量
を容易に大型化でき、特に、高温高圧試験機の場合には
危険性の高い高温高圧部を小型化できる利点がある。As described above, according to the present invention, the applied capacity of the testing machine can be easily increased in size, and in particular, in the case of a high-temperature and high-pressure testing machine, there is an advantage that the highly dangerous high-temperature and high-pressure section can be miniaturized.
第1図は従来の高圧水を利用した定荷重試験装置の断面
図、第2図は従来の他の装置の断面図、第3図は高圧水
を利用した疲労試験も可能な従来の試験装置の断面図、
第4.第6図は本発明による試験装置の断面図、第5.
第7図はそれぞれ本(7)
発明による試験装置の荷重容量と作用力との関係を試算
した説明図である。
1・・・試験片、2・・・圧力容器ケーシング、3・・
・ピストン、5,7,1.1.13・・・圧力水入口、
6゜12.14・・・同出口、A、B、C・・・圧力室
代理人 弁7!lj士 高橋明夫
(8)
第1 図
′vJ21¥]
第 3 図
¥J 4 図
第 5 図
第 6 図
′″fJ 7 図
F’a (KVe惰′)Figure 1 is a cross-sectional view of a conventional constant load testing device that uses high-pressure water, Figure 2 is a cross-sectional view of another conventional device, and Figure 3 is a conventional test device that can also perform fatigue tests using high-pressure water. A cross-sectional view of
4th. FIG. 6 is a sectional view of a test device according to the present invention;
FIG. 7 is an explanatory diagram showing a trial calculation of the relationship between the load capacity and the acting force of the test device according to the present invention (7). 1... Test piece, 2... Pressure vessel casing, 3...
・Piston, 5, 7, 1.1.13...pressure water inlet,
6゜12.14... Same exit, A, B, C... Pressure chamber agent valve 7! lj person Akio Takahashi (8) Fig. 1'vJ21 ¥] Fig. 3 ¥J 4 Fig. 5 Fig. 6 Fig.'''fJ 7 Fig. F'a (KVeina')
Claims (1)
圧力室内に設けた摺動自在のピストンに固定されて、か
つ試験片への負荷が該窩圧媒体を利用して行われる材料
強度試験装置において、ピストンを径の異なる2段軸と
し、さらに、ピストンの中間部に負荷専用の圧力室を設
けたことを特徴とする試験装置。1. A material in which a test piece is placed in a pressure chamber using a fluid as a medium, is fixed to a slidable piston provided in the pressure chamber, and a load is applied to the test piece using the cavity pressure medium. A strength testing device characterized in that the piston has a two-stage shaft with different diameters, and a pressure chamber exclusively for loading is provided in the middle of the piston.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20092783A JPS6093941A (en) | 1983-10-28 | 1983-10-28 | Material strength testing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20092783A JPS6093941A (en) | 1983-10-28 | 1983-10-28 | Material strength testing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6093941A true JPS6093941A (en) | 1985-05-25 |
Family
ID=16432592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20092783A Pending JPS6093941A (en) | 1983-10-28 | 1983-10-28 | Material strength testing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6093941A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4856341A (en) * | 1987-06-25 | 1989-08-15 | Shell Oil Company | Apparatus for analysis of failure of material |
EP0337722A2 (en) * | 1988-04-11 | 1989-10-18 | Raymond D. Hardy | Improved mechanical property testing machine |
WO1992003716A1 (en) * | 1990-08-15 | 1992-03-05 | Anthony Maddison | Stressing device |
DE102006012962A1 (en) * | 2006-03-21 | 2007-10-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Cyclic or dynamic fatigue test implementation device for material sample, has unit enclosing sample of material, connected to clamping units and surrounding hermetically closed volume containing sample of material |
FR2966598A1 (en) * | 2010-10-25 | 2012-04-27 | Commissariat Energie Atomique | System for soliciting glass cylinder in translation, has piston whose surface is exposed to fluid such that fluid generates force for moving piston on surface, so that force solicits glass cylinder in translation |
JP2014521103A (en) * | 2011-07-22 | 2014-08-25 | スネクマ | Apparatus and method for performing a high cycle material fatigue test at a controlled strain ratio in a controlled atmosphere |
KR20210069471A (en) * | 2019-12-03 | 2021-06-11 | 한국가스안전공사 | Test device for metallic materials resistant to hydrogen embrittlement |
-
1983
- 1983-10-28 JP JP20092783A patent/JPS6093941A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4856341A (en) * | 1987-06-25 | 1989-08-15 | Shell Oil Company | Apparatus for analysis of failure of material |
EP0337722A2 (en) * | 1988-04-11 | 1989-10-18 | Raymond D. Hardy | Improved mechanical property testing machine |
WO1992003716A1 (en) * | 1990-08-15 | 1992-03-05 | Anthony Maddison | Stressing device |
GB2263341A (en) * | 1990-08-15 | 1993-07-21 | Anthony Maddison | Stressing device |
GB2263341B (en) * | 1990-08-15 | 1994-03-16 | Anthony Maddison | Stressing device |
US5388464A (en) * | 1990-08-15 | 1995-02-14 | Maddison; Anthony | Stressing device |
DE102006012962A1 (en) * | 2006-03-21 | 2007-10-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Cyclic or dynamic fatigue test implementation device for material sample, has unit enclosing sample of material, connected to clamping units and surrounding hermetically closed volume containing sample of material |
DE102006012962B4 (en) * | 2006-03-21 | 2009-05-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for carrying out a cyclic fatigue test on a material sample |
FR2966598A1 (en) * | 2010-10-25 | 2012-04-27 | Commissariat Energie Atomique | System for soliciting glass cylinder in translation, has piston whose surface is exposed to fluid such that fluid generates force for moving piston on surface, so that force solicits glass cylinder in translation |
JP2014521103A (en) * | 2011-07-22 | 2014-08-25 | スネクマ | Apparatus and method for performing a high cycle material fatigue test at a controlled strain ratio in a controlled atmosphere |
EP2734826B1 (en) * | 2011-07-22 | 2018-11-07 | Safran Aircraft Engines | An apparatus and method for carrying out in a controlled atmosphere material fatigue tests in a high cycle regime with a controlled strain ratio |
KR20210069471A (en) * | 2019-12-03 | 2021-06-11 | 한국가스안전공사 | Test device for metallic materials resistant to hydrogen embrittlement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6971260B2 (en) | Overburden rock core sample containment system | |
Wan et al. | Fracture mechanics of a new blister test with stable crack growth | |
JPS6093941A (en) | Material strength testing apparatus | |
CN105784976B (en) | A kind of method of testing using rock mass dynamic unloading effect tester for testing | |
JP7074553B2 (en) | Controlling force on different parts of the surface of an object using bladder | |
JPH09119060A (en) | Method and apparatus for drying fiber web under high surrounding pressure | |
FI932246A0 (en) | Method for drying wood | |
Smart | A true triaxial cell for testing cylindrical rock specimens | |
CN110398427A (en) | Strain rate Compression and Expansion universal test device and method in hydropneumatic | |
CN115628989B (en) | True triaxial rigid-flexible mixed loading device capable of realizing deep well filling material forming | |
JPH11503377A (en) | Equipment for pressure treatment of wood | |
Xu et al. | A shaft-loaded blister test for elastic response and delamination behavior of thin film–substrate system | |
US4516419A (en) | Methods of enhancing superplastic formability of aluminum alloys by alleviating cavitation | |
US6935197B2 (en) | Method and apparatus for testing uncured prepreg material | |
JPS6010253B2 (en) | Gasket compression tester | |
JPH0874802A (en) | High liquid pressure generating device | |
JPS61100637A (en) | Apparatus for generating varying pressure | |
US996042A (en) | Treatment of porous structures. | |
Wang et al. | Comparative study between small punch test and hydraulic bulge test | |
Yuansong et al. | The numerical simulation of the integral hydrobulging of ellipsoidal shells | |
JP2637716B2 (en) | High pressure processing equipment | |
SU1642292A1 (en) | Method for testing closed shell structure | |
JP2004069298A (en) | Inner pressure application test device | |
Shindo et al. | Development of New Combined-Loading Testing Devices for High Strain-Rates and Its Application to Establishment of Rate Dependent Constitutive Equation | |
JP3190936B2 (en) | High pressure processing equipment |