JPS6093400A - Gamma-ray irradiator - Google Patents

Gamma-ray irradiator

Info

Publication number
JPS6093400A
JPS6093400A JP20064983A JP20064983A JPS6093400A JP S6093400 A JPS6093400 A JP S6093400A JP 20064983 A JP20064983 A JP 20064983A JP 20064983 A JP20064983 A JP 20064983A JP S6093400 A JPS6093400 A JP S6093400A
Authority
JP
Japan
Prior art keywords
irradiation
radiation source
bit
storage container
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20064983A
Other languages
Japanese (ja)
Inventor
英史 伊部
俊介 内田
喜田村 政夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20064983A priority Critical patent/JPS6093400A/en
Publication of JPS6093400A publication Critical patent/JPS6093400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diaphragms For Electromechanical Transducers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Luminescent Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 本発明&J1、放射性同位元素を利用したガンマ線照射
装置に係シ、竹に電気的素子の大瞭量の照射試験に好適
な照射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention &J1 relates to a gamma ray irradiation device using radioactive isotopes, and relates to an irradiation device suitable for irradiation testing of large amounts of electric elements on bamboo.

〔発明のh景〕[H scene of invention]

放射性同位元素を利用した照射装置は、研究目的用、医
療用、ツタ画用等の目的で広く利用されている。とシわ
け、研究目的のものは、原子カプラント、宇宙開発等に
関連して、特に太線量率の照射装置がめられている。被
試験体としては、半々V体素子・材料・光学的素子・材
料・センサー用素子・材料などが中心になっている。こ
れらの素子・材料は、 (1)人工衛星等に用いる場合は、主として中間子を主
体とした宇宙服の照射下においても正しく長期間機能し
得ること、 (11)原子カプラント、核燃料再処理設Difi寺の
点検に利用されるロボット用素子、材料の場合は中性子
やガンマ庫の重照射下においても正しく確実に機能し得
ること、 が必要であるため、これらの耐照射性素子・祠料の研究
開発には照射下での特性を@確に計測しうるガンマ線照
射装置が欠かせない設vr=となる。こうした観点から
、従来のガンマ駅照射設備を見てみると、それらは下記
の4柚頑の型に外項され、それぞれの型の特許と問題点
荀治する。
Irradiation devices using radioactive isotopes are widely used for research purposes, medical purposes, ivy drawings, and other purposes. In particular, for research purposes, irradiation equipment with a particularly high dose rate is desired in connection with atomic couplants, space development, etc. The objects to be tested are mainly 50/50 V-body elements, materials, optical elements, materials, sensor elements, and materials. These elements and materials must: (1) When used in artificial satellites, etc., be able to function properly for a long period of time even under the irradiation of spacesuits, which mainly contain mesons; In the case of robot elements and materials used for temple inspections, it is necessary that they can function correctly and reliably even under heavy neutron and gamma irradiation, so research into these irradiation-resistant elements and abrasive materials is required. For development, a gamma ray irradiation device that can accurately measure the characteristics under irradiation is an essential equipment. From this point of view, if we look at the conventional gamma station irradiation equipment, they can be classified into the following four types, and the patents and problems of each type will be explained.

(リ ノール貯蔵型 この型は、放射性同位元素(以下、線源と称す)をプー
ルの底に沈め、クレーンあるいは何らがの駆D;h 4
1構により水面上に上昇せしめ、プールの近くに置かれ
た試料を照射するもので、わが国においては日本原子力
研究所焉崎研究所、日本アイソトーflIJJ会甲賀研
究所などに在るものが代表的である。第1図は、この型
のガンマ線照射設備の代表的構成例を示す。
(Linol storage type) This type sinks the radioactive isotope (hereinafter referred to as the radiation source) to the bottom of the pool and uses a crane or some other source to transport it.
A single structure is raised above the water surface to irradiate a sample placed near a pool.In Japan, representative examples include those at the Japan Atomic Energy Research Institute's Ninzaki Research Institute and the Japan IsothoflIJJ Society's Koka Research Institute. It is. FIG. 1 shows a typical configuration example of this type of gamma ray irradiation equipment.

第1図の例では、厚い爪コンクリート壁lで照射室10
を形成し、室内にクレーン5.プール2を納めている。
In the example shown in Figure 1, the irradiation chamber 10 has a thick concrete wall l.
5. Contains pool 2.

プール内の水は遮蔽を目的としておシ、辿′^ず、大ハ
iI照射装置に用いられる線源は数万〜数十万Ciが標
準であるため、プールの深さはlOm程度が必要である
。線源3は、水中に沈めた貯蔵容器12がら駆動機構4
の線源固定台に固定される。試料9は、照射室外11が
らシャッタ7を開いて試料台6の上に載せる。試料9の
照射はシャ、り7を閉めた上で、駆動機構4によυ線源
3を水面上に上昇せしめて行う。
The water in the pool is not used for shielding purposes, and the standard radiation source used in the Dai-iI irradiation device is tens of thousands to hundreds of thousands of Ci, so the depth of the pool must be about 10m. It is. The radiation source 3 is connected to a drive mechanism 4 from a storage container 12 submerged in water.
The radiation source is fixed on the radiation source fixing table. The sample 9 is placed on the sample stage 6 by opening the shutter 7 from outside the irradiation chamber 11. The sample 9 is irradiated by closing the shutter 7 and raising the υ radiation source 3 above the water surface using the drive mechanism 4.

この型の利点は、照射室1oが広いため試料9を置くス
(−スを十分に大きくとれる点にあるが、以下の欠点が
ある。
The advantage of this type is that since the irradiation chamber 1o is large, the space for placing the sample 9 can be sufficiently large, but it has the following drawbacks.

(1) クレーン5、プール2を内蔵するため設備全体
が大きくなシ、必然的に経費が嵩む。
(1) Since the crane 5 and the pool 2 are built in, the entire facility is large, which inevitably increases costs.

(11) プールに線源を貯蔵するため駆動装置4のス
トロークが10m又はそれ以上になシ、照射、非照射の
状態の遷移に必然的に時間がかかるので、試料の交換に
時間がかかるのみならず状態遷移中の電気的信号の解析
が難しくなる。
(11) Because the radiation source is stored in the pool, the stroke of the drive device 4 is 10 m or more, and it takes time to change between irradiation and non-irradiation states, so it only takes time to exchange the sample. This makes it difficult to analyze electrical signals during state transitions.

G1ft 設備が大型になるため電気信号を引出すだめ
のケーブルも長くなり、ケーブルの持つ容量のために、
高周波の信号伝送が困朧になって、場合によっては照射
下に増巾器を(5<ことが避けられない。
G1ft As equipment becomes larger, the cables used to extract electrical signals also become longer, and due to the capacity of the cables,
High frequency signal transmission becomes difficult, and in some cases it is unavoidable to use an amplifier (5<5) under irradiation.

(2)床下貯Ml型 この型は、床下に線源貯蔵容器を+LLき、容器の上蓋
をクレーン等で外して、容器内部の駆動m (i#によ
って線源を床上に押上げるもので、東京工業試験所にあ
るものが代表的である。
(2) Underfloor storage Ml type This type places the radiation source storage container under the floor +LL, removes the top cover of the container with a crane, etc., and pushes the radiation source above the floor using the drive m (i#) inside the container. The one at the Tokyo Industrial Research Institute is representative.

第2図はこの型の基本構成を示したものである。FIG. 2 shows the basic configuration of this type.

試料9の出し入れは、プール貯蔵型と同じく、照射室1
0のシャッタ7を開閉して行う。試料9を照射する場合
は、先ず、鉛ガラス等でできだ監視窓13で照射室10
の内部を監視しながら、クレーン5で線源貯蔵容器12
の蓋16を除去し、モータ13によシ由車、スクリュー
15を回転し、これによシ緋源台17を上昇せしめ、床
上に線源3を押上げるものである。
Sample 9 can be loaded and unloaded in irradiation chamber 1, as in the pool storage type.
This is done by opening and closing shutter 7 of 0. When irradiating the sample 9, first open the irradiation chamber 10 using the monitoring window 13 made of lead glass or the like.
While monitoring the inside of the radiation source storage container 12, the crane 5
The lid 16 of the radiation source 3 is removed, and the motor 13 rotates the pulley wheel and screw 15, which raises the source table 17 and pushes the radiation source 3 above the floor.

この型は、プール貯蔵型に比べて、設備そのものが小さ
くて済む割にj(((対案が広くとれる点が長Jヅ[で
あるが、−[記の欠点がある。
Although this type requires smaller equipment than the pool storage type, the advantage of this type is that it allows for a wide range of alternative solutions, but it has the following drawbacks.

(1) l4jt射には孟の除去、線源の押上げの二つ
のステップを、lよるため、照射−非照射の状態遷移に
時間がかかる。
(1) Since l4jt radiation requires two steps: removing the radiation source and pushing up the radiation source, it takes time for the state transition between irradiation and non-irradiation.

(11)照射室内にクレーンを11しけるため照射室1
0が必要以上に大きくなシ、プール貯蔵型と同4:tJ
 +G周波の[L気的化号の伝送・計測が困難になる。
(11) Irradiation room 1 to set up a crane inside the irradiation room
0 is larger than necessary, the same as the pool storage type 4: tJ
It becomes difficult to transmit and measure the L signal of the +G frequency.

(110照射中に、線源駆動機構13+14+15+1
7に異當が発生した場合、#i!m3を容器12内に収
納することが極めて困難になる。
(During 110 irradiation, the radiation source drive mechanism 13+14+15+1
If something goes wrong with 7, #i! It becomes extremely difficult to store m3 in the container 12.

(3)天井吊下げ型 この型は、天井に線源を収納し、階下の照射室に線源を
吊下げることによシ、試料を照射するもので、東大工学
部にあるものが代表例である。
(3) Ceiling hanging type This type irradiates the sample by storing the radiation source in the ceiling and suspending it in the irradiation room downstairs.The one at the Faculty of Engineering, University of Tokyo is a typical example. be.

第3図は、この型の基本構成を示したもので、試料9を
照射するためには、先ず照射室10の階上にある貯蔵室
19内の貯蔵容器12のシャッタ18を横にスライドし
、モータ13、歯車14およびラックを用いた、小動機
構により、尿源3を階下に吊シ下げるものである。
FIG. 3 shows the basic configuration of this type. In order to irradiate the sample 9, first slide the shutter 18 of the storage container 12 in the storage room 19 located on the upper floor of the irradiation chamber 10 sideways. The urine source 3 is suspended downstairs by a small movement mechanism using a motor 13, a gear 14, and a rack.

この型は)(u対案10を広くとれる他、線ひλの出し
入れが比1咬的短時間で済むことが利点であるが、太線
量率を得るには必要な腺dρの量が多くなるため貯蔵容
器12の水石、も大きくなシ、照射蒐全体の耐塵、耐荷
重構造に特別の対策を擬し、設自1が難しくなると共に
経費も嵩むのが欠点である。
This type has the advantage of being able to take a wide range of (u vs. 10) and that the insertion and removal of the line λ can be done in a relatively short time, but the amount of glands dρ required to obtain a thick dose rate is large. Therefore, the water stone in the storage container 12 is large, and special measures are required for the dust-proof and load-bearing structure of the entire irradiation container, which makes the construction difficult and increases the cost.

(4)貯蔵容器内照射方式 この型は、容器内に固定した線源の近傍に照射ピットを
備け、この中に試料を出し入れするものである。第4図
はこの型の代表的構成例を示したもので、貯蔵容器12
の内部に上下に遮蔽体を設けた照射箱25を設け、これ
を油タンク23、ポンプ22、弁24よ構成る油圧式昇
降装置にょシ昇降せしめるものである。
(4) In-storage container irradiation method In this type, an irradiation pit is provided near the radiation source fixed in the container, and samples are taken in and out of this pit. FIG. 4 shows a typical configuration example of this type, in which the storage container 12
An irradiation box 25 with shields provided above and below is provided inside the irradiation box 25, and the irradiation box 25 is raised and lowered by a hydraulic lifting device comprising an oil tank 23, a pump 22, and a valve 24.

この型は、試料9の出し入れが容易であシ、装置全体も
他に比べて小型で済む利点があるが、試料9を収納する
+iJMが必然的に小さくなること、−気的信号を取出
すだめの配線に特別の工夫が必要であるのに従来のもの
にはそうした工夫はなされていないこと、などの欠点が
ある。
This type has the advantage that it is easy to take in and take out the sample 9, and the entire device is smaller than others, but the +iJM for storing the sample 9 is inevitably smaller, and - it is difficult to extract the gas signal. However, there are drawbacks such as the fact that special measures are required for the wiring, whereas conventional devices do not have such measures.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、・破照射試料の出し入れが容易であシ
、照射、非J1(1射の状態用Jの遭移時1…が短く、
かつ電気的信号配線が短くて済む、大勝鼠率の床下貯蔵
型のガンマ線照射装置を提供することにある。
The objects of the present invention are: - It is easy to take in and take out the blast irradiation sample, and the irradiation and non-J1 (J1 for single shot state) is short.
Moreover, it is an object of the present invention to provide an underfloor storage type gamma ray irradiation device that has a high rate of success and requires only short electrical signal wiring.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明のガンマ線の照射装置
は、哩敢体で周囲を囲った照射ビットの下方に、線源を
蓋の下部に固定した線源貯蔵容器を配置し、線源を該蓋
と共に照射ビット内に該ビット外部上方の線源駆動装置
により昇降可能とし且つ該遮蔽体の一部を可動シャッタ
として形成して該シャッタを照射ビット外部の駆!U機
構によシ移動させるように構成したことをLlを徴とす
るものである。
In order to achieve the above object, the gamma ray irradiation device of the present invention has a radiation source storage container with a radiation source fixed to the lower part of the lid placed below the irradiation bit surrounded by a strong body. It can be raised and lowered into the irradiation bit together with the lid by a radiation source driving device located above the outside of the bit, and a part of the shield is formed as a movable shutter so that the shutter can be moved outside the irradiation bit. It is characterized by Ll that it is configured to be moved by a U mechanism.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例の全体基本構成を第5図に示す本実施例
のガンマ線照射装置は、モータ13、歯車14、スクリ
ュー15等から成る線源駆動装置と、鉄遮蔽体27、そ
の一部をなすシャッタ28およびストリーミング防止カ
バー26によ、!lll遮蔽した照射ビット30と、+
m 諒3を固定した益16を有する線源貯蔵容器16と
から成る。
The overall basic configuration of the embodiment of the present invention is shown in FIG. 5. The gamma ray irradiation device of this embodiment includes a radiation source drive device consisting of a motor 13, a gear 14, a screw 15, etc., an iron shield 27, and a part thereof. With the eggplant shutter 28 and the streaming prevention cover 26! llll shielded irradiation bit 30, +
m consists of a radiation source storage container 16 having a fixed head 16;

照射ビット30内への試料9の出入れは、レールに載っ
た車輪29で支えられたシャッタ28を図において右方
へ移動することによシ照射ビット30の上部を開放して
行う。試料9の照射は、鉄遮蔽体27の上方に在る上記
の線源駆動機構によF) +WWB2貯蔵容器の蓋16
と共に上方に持上げ、ビット30内を照射することにょ
シ行う。
The sample 9 is taken in and out of the irradiation bit 30 by opening the upper part of the irradiation bit 30 by moving the shutter 28 supported by wheels 29 mounted on a rail to the right in the figure. The sample 9 is irradiated by the above-mentioned radiation source drive mechanism located above the iron shield 27F) +WWB2 storage container lid 16
At the same time, the bit 30 is lifted upward and the inside of the bit 30 is irradiated.

信号ケーブル32は、鉄遮蔽体27の内部に形成した迷
路ダクトを進って外部の信号処理装置31にツ!j、続
される。ストリーミング防止カバー26は、車憤部29
等の如く照射ピッ)30の遮蔽の不十分になシがちな部
位から漏れたガンマ線を遮蔽するものである。
The signal cable 32 travels through a maze duct formed inside the iron shield 27 and is connected to an external signal processing device 31! j, continued. The streaming prevention cover 26 is
This shields gamma rays leaking from areas that tend to be insufficiently shielded, such as the irradiation pipe 30.

更に1,1:細に説1叫すると、第6図は、線源収納部
の構造を示したもので、本実施例では、線源3は市販さ
れているSO8’316製の二重容器33に収めたコバ
トロ0密封線係ペレツト34を利用し、d器35内にこ
れらを並べて収納して容器35をボルト36によシ上藷
16の突起部に固定する。
Furthermore, 1, 1: To explain in detail, Figure 6 shows the structure of the radiation source storage section, and in this example, the radiation source 3 is a commercially available double container made of SO8'316. Using the Kobatro 0 sealed wire pellets 34 stored in the container 33, they are stored side by side in the container 35, and the container 35 is fixed to the protrusion of the upper shell 16 with the bolt 36.

これらの作5は、十分な遮蔽を施し、マジックハンド等
の設置1:iiを有するホットラボ等の施設で容易に行
いうるので、作業中に被1暴の恐れはない。
These steps 5 can be easily performed in a facility such as a hot lab that is sufficiently shielded and equipped with magic hands and the like, so there is no risk of being injured during the work.

ン(57図は、コンクリート製照射力l!ioの床下に
収納数のnが11場貯鼠各器、照射ビットの構造を示し
たもので、本実用例ではjdυメ貯蔵容器12は大型惜
送容器の規格品を改造したものであシ、従って、線源の
取付、輸送、照射設備への取付、線源交換等が極めて容
易であり、且つ、これらの作業中に放射線被曝の恐れは
ない。線源貯蔵容器12、それを収める腺源谷器ビット
37および照射ビット30にはドレン38が連なってお
シ、溜まシ水によυ装置表面が腐食することを防ぐと共
に、楽品等によシ内部が汚染されたときの洗滌を行うこ
とができる。
(Figure 57 shows the structure of the storage containers and irradiation bits with a storage capacity of 11 under the floor of the concrete irradiation power l!io. In this practical example, the storage container 12 is a large one. It is a modified version of the standard shipping container, so it is extremely easy to install the radiation source, transport it, install it in irradiation equipment, replace the source, etc., and there is no risk of radiation exposure during these operations. A drain 38 is connected to the radiation source storage container 12, the irradiation bit 37 that houses it, and the irradiation bit 30 to prevent the surface of the υ device from being corroded by accumulated water, and to prevent the surface of the υ device from being corroded by accumulated water. It can be used for cleaning when the inside of the container becomes contaminated.

上部の鉄遮蔽体27は、多献の秩ブロックで構成されて
おり、例えはio、ooo ci程度の)i諒を用いる
ときは、全体が60crn程度の厚さで外部庫、[i(
率を許容値以下の1mR/h[度にすることができる。
The upper iron shielding body 27 is made up of a large number of Chichichi blocks. For example, when using the I-Ryo (of the order of io, ooo-ci), the entire thickness is about 60 crn, and the external storage, [i (
The rate can be reduced to 1 mR/h [degrees] below the permissible value.

信号ケーブルを通すだめの配線ダクト39は、鉄ブロッ
クに適当に9)υ欠きを入れることによシ形成した迷路
ダクトであって、ストリーミングを防ぐには2,3回程
度ダクトを屈曲すれば十分でりシ、このとき照射ビット
内外を結ぶ配線の長さは、尚々3mで済む。従って、特
に商い周波数の1d号が問題になる場合を除いて、照射
ビット30内に前置増巾器等を設ける必要がなく、電気
計測が極めて容易になる。
The wiring duct 39 through which the signal cable is passed is a labyrinth duct formed by appropriately cutting a notch in the iron block, and it is sufficient to bend the duct two or three times to prevent streaming. In this case, the length of the wiring connecting the inside and outside of the irradiation bit is only 3 m. Therefore, unless the quotient frequency 1d becomes a problem, there is no need to provide a preamplifier or the like in the irradiation bit 30, making electrical measurement extremely easy.

シャッタ28は上部遮蔽体27と同じく鉄ブロックで形
成してらり、上面にはラック4oが固定してちる。シャ
ッター28を移動する時は、該ラック40と噛み合う歯
車14をモータ13にょ多回転させる。このシャッタ駆
動モータ13の141.源は、i’jfflTfヴが貯
蔵容器12に収納さI雫てぃない状態では入らない様に
、また、線源駆動装K(後に詳述する)の)lfL#収
#:j、ンヤソタ28が開いている状1憾では入らない
様に相互にインタロックが施されている。上記/ヤッタ
駆11の装置it: (tよ、下記の線色駆動装置と同
じく、栽敢体27の外部に設けであるため、照射による
劣化を避けることができる。
The shutter 28 is made of an iron block like the upper shield 27, and has a rack 4o fixed to its upper surface. When moving the shutter 28, the motor 13 rotates the gear 14 that meshes with the rack 40. 141 of this shutter drive motor 13. In order to prevent the source from entering the storage container 12 unless it is stored in the storage container 12, the radiation source drive unit K (described in detail later)) lfL#:j, Nyasota 28 They are mutually interlocked to prevent them from entering if they are left open. The device for the above/Yatta drive 11: (T) Like the line color drive device described below, it is installed outside the planting body 27, so deterioration due to irradiation can be avoided.

第8図はw源、鳴動装置i′l(D#I’を造を例示し
た図である。下端を線源貯蔵容器12の上2に16にゲ
ルトポiY+めした緑#1j3下げ(乍41は上端を支
持台42固定されるが、望ましくは上下方向に自由にな
る様に支持台42に半固定される。半固定にする理由は
、線源3が・1μJらがの異常で動かない時、無理に棒
41を押し下げて装置を壊すことのない様にするためで
ある。支持台42には四方に孔がおいておシ、そのうち
の2つの孔には雌ねじが切ってあシ、これにスクリュー
46が保合している。モータ13の回転はクラッチ43
、変速器44、ウオーム45、ウオーム歯車を介してス
クリュー46に伝達され、スクリュー46の回転方向に
応じて支持台42、線諒fit下げ棒41および、“鍜
源3が上昇又は下降する。クラッチ431Ii通屯され
ると接続し、通電されないと切れる′様になっておシ、
その通電をオンオフさせるによって線源の位置を、19
度良く制御することができる。また、モータ13、クラ
ッチ43等の異常又は停電により線源の収納ができなく
なった場合は、ハンドル47を操作して結合子48を噛
み合わせることにより、ハンドル47の手動操作でウオ
ーム45を回転させて線源3を貯蔵容器12に収納する
ことができる。
Figure 8 is a diagram illustrating the construction of the w source and the ringing device i'l (D#I'). The upper end is fixed to the support 42, but preferably it is semi-fixed to the support 42 so that it can move freely in the vertical direction.The reason for semi-fixing is that the radiation source 3 does not move due to an abnormality of 1 μJ etc. This is to prevent the device from being damaged by forcefully pushing down the rod 41.The support base 42 has holes on all sides, and two of the holes are female threaded. A screw 46 is engaged with this.The rotation of the motor 13 is controlled by a clutch 46.
, the transmission 44, the worm 45, and the worm gear to the screw 46, and depending on the direction of rotation of the screw 46, the support base 42, the line fit lowering rod 41, and the ferrule 3 move up or down. 431Ii connects when power is applied, and disconnects when power is not applied.
By turning on and off the current, the position of the radiation source can be changed to 19
It can be well controlled. In addition, if the radiation source cannot be stored due to an abnormality in the motor 13, clutch 43, etc. or a power outage, the worm 45 can be rotated by manually operating the handle 47 by engaging the connector 48 by operating the handle 47. The radiation source 3 can be stored in the storage container 12.

線源容器の上蓋16を含めた上記の腺′m、駆動装置の
全重量は架台49に支持されている。架台49は施設の
床に支持されている。
The entire weight of the gland 'm and the drive device, including the upper lid 16 of the radiation source container, is supported by a pedestal 49. The pedestal 49 is supported on the floor of the facility.

線源3の引き上げ、引き降しに要する時間は、本実MM
例では、それぞれ約2分および約1分30秒である。ま
た前述したシャ、り28の開閉に要する時間は30秒足
らずである。従って、最も速い場合には照射ピット30
内に試料を設置して照射状態にするまでにヅする時間は
3分程度である。
The time required to raise and lower the radiation source 3 is the actual MM.
In the example, they are about 2 minutes and about 1 minute and 30 seconds, respectively. Further, the time required to open and close the shutter 28 described above is less than 30 seconds. Therefore, in the fastest case, the irradiation pit 30
It takes about 3 minutes to set the sample inside the chamber and bring it into the irradiation state.

hが源駆動装置およびシャッタ1駆!I功装置の全体は
、遅藪体外部に1谷い七あるため照射を受けないから、
16射による劣化がなく、また、照射中に異′Itを生
じても、’?’j−易にこれを破曝なしに修理すること
ができる。
h is the source drive device and shutter 1 drive! The entire I-gong device is not irradiated because there is one valley outside the body.
There is no deterioration due to irradiation, and even if abnormality occurs during irradiation, '? 'j - This can be easily repaired without explosion.

〔発り」の効果〕[Effect of departure]

以上の様に、本発明のガンマ線照射装置は、被照射試料
の出し入れI)i ’IM時11j」は3分程度、およ
び照射−非照射の状態間の近接の所要時間は2分以下1
呈度の短かさにすることができ、また′−気的イ8号を
伝送するケーブルが知、くて足シ、シかも大綜琺牟の照
射を行うことができ、照射作業の迅速化および安置[ヒ
、−気的16号の状態遭移中の解析の容易化又は不要化
、照射下の前置増巾器等の設置の不要化が可能であシ、
測定を長時間に亘シ安定に行うことができる等の効果が
ある。更に、力(メ源駆動機構およびシャック駆動機1
stが遮蔽体外部にあるので照射によるそれらの劣化が
なく、保守も容易であり、照射装置全体を比較的小型に
することができる等の利点がある。
As described above, the gamma ray irradiation apparatus of the present invention takes approximately 3 minutes to take in and take out the irradiated sample I) i'IM time 11j, and the time required for close proximity between the irradiation and non-irradiation states is 2 minutes or less1.
The radiation intensity can be shortened, and the cable that transmits the 8-air beam can be shortened, making it possible to irradiate a large amount of phosphorus, which speeds up the irradiation work. It is possible to facilitate or eliminate the need for analysis during the state evacuation of Ki-ki No. 16, and to eliminate the need to install a preamplifier under irradiation.
There are effects such as being able to perform measurements stably over a long period of time. Furthermore, force (main source drive mechanism and shack drive machine 1
Since the st is located outside the shield, there is no deterioration of them due to irradiation, maintenance is easy, and the entire irradiation device can be made relatively compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、プール貯蔵型のガンマ++−照射装置u。 fE来例の基本構成図、第2図は床下貯Jk+’−dの
ガンマ線照射装置の従来例の基本(14′成図、第3図
は天井11下げ型のガンマ線照射装置の従来例の基本構
成図、第4図は貯蔵容器内照射方式のガンマ線照射装置
の従来例の基本構成図、第51図は本発明の実施例の基
本構成図、第6図は本発明実施における線源収納の47
4’造を示す図、第7図は照射設備に収納後の本発明実
施例の貯蔵容器および照射ビットを示す立断面図、第8
図は本発明実施例の線W駆!11b装置の立面図である
。 1・・・照射室コンクリート壁、 2・・・プール 3・・・放射曲同位元素(勝υ1ル)
4・・・蔵源移動架台、 5・・・クレーン、6・・・
試料台 7・・・シャッタ、 8・・・モニタカメラ、 9・・・試料、10・・・照
射皇、 11・・・モニタ室、12・・・線源貯蔵8詣
、13・・・モータ、14・・・1首屯、 15・・・
スクリュー、16・・・線源貯蔵dト器の蓋、17・・
・線源支持台、18・・・移動遮蔽体、 19・・・1
lili!源貯蔵室、20・・・同商状杓!τ原、 2
1・・・照射孔、22・・・ボンフ0、 23・・・油
タンク、24・・・パルプ、 25・・・照射箱、26
・・・ストリーミング防止カバー、27・・・遮蔽体、
 28・・・シャ、り、29・・・車輪、 30・・・
照射ビット、31・・・イE1号処理装置1ffts 
32・・・信号ケーブル、33・・・ステンレス製2爪
谷器1 34・・・コバルト60iA’に被レット、35・・・
線源容器、 36・・・線源固定ボルト、37・・・貯
緘谷器収納ビット、38・・・ドレン孔、39・・・配
線用タクト、40・・・板歯車、41・・・線源吊シ下
げ棒、42・・・線源支持台、43・・・クラッチ、 
44・・・変速器、45・・・ウオーム、 46・・・
スクリュー、47・・・ハンドル、 48・・・結合子
、49・・・架台。 第1図 第2図 1/ 14 第4図
FIG. 1 shows a pool storage type gamma++-irradiation device u. The basic configuration diagram of fE's next example, Figure 2 is the basics of the conventional example of the gamma ray irradiation device for under-floor storage Jk+'-d (14' diagram, and Figure 3 is the basics of the conventional example of the gamma ray irradiation device of the ceiling 11 hanging type) FIG. 4 is a basic configuration diagram of a conventional example of a gamma ray irradiation device using the storage container irradiation method, FIG. 51 is a basic configuration diagram of an embodiment of the present invention, and FIG. 47
FIG. 7 is an elevational sectional view showing the storage container and irradiation bit of the embodiment of the present invention after being stored in the irradiation equipment; FIG.
The figure shows the line W drive of the embodiment of the present invention! 11b is an elevational view of the device. 1...Concrete wall of irradiation room, 2...Pool 3...Radial music isotope (Katsu υ1 le)
4... Kuragen mobile stand, 5... Crane, 6...
Sample stage 7...Shutter, 8...Monitor camera, 9...Sample, 10...Irradiation monitor, 11...Monitor room, 12...Radiation source storage 8, 13...Motor , 14...1 head ton, 15...
Screw, 16... Lid of radiation source storage container, 17...
- Source support stand, 18... moving shield, 19... 1
Lili! Source storage room, 20... same commercial letter! τ Hara, 2
1... Irradiation hole, 22... Bomb 0, 23... Oil tank, 24... Pulp, 25... Irradiation box, 26
... streaming prevention cover, 27... shielding body,
28...Sha, Ri, 29...Wheel, 30...
Irradiation bit, 31...I E1 processing device 1ffts
32...Signal cable, 33...Stainless steel 2-claw valley device 1 34...Cobalt 60iA' coated, 35...
Radiation source container, 36... Source fixing bolt, 37... Reservoir trough storage bit, 38... Drain hole, 39... Wiring tact, 40... Plate gear, 41... Radiation source hanging rod, 42...Radiation source support stand, 43...Clutch,
44...Transmission, 45...Worm, 46...
Screw, 47... Handle, 48... Connector, 49... Frame. Figure 1 Figure 2 1/14 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 蓋の下部に放射#諒を固定した線源貯蔵容器、該線源貯
蔵容器の上方に設けられ周囲を遮蔽体で囲まれた照射ビ
ット、該照射ビットの外部上方に設けられ上記放射線源
を上記の蓋と共に上記照射ビット内に昇降せしめるfl
Mil:λ駆動機構、上記遮蔽体の一部をなす可動シャ
ッタ、および上記照射ビットの外部に設けられた該シャ
ッタの、v、動機構からなることを特徴とするガンマ線
照射装置。
A radiation source storage container with a radiation source fixed to the lower part of the lid, an irradiation bit installed above the radiation source storage container and surrounded by a shield, and an irradiation bit installed above the outside of the irradiation bit to connect the radiation source to the fl that is raised and lowered into the irradiation bit together with the lid of
A gamma ray irradiation device comprising: a Mil:λ drive mechanism, a movable shutter forming a part of the shield, and a movement mechanism for the shutter provided outside the irradiation bit.
JP20064983A 1983-10-26 1983-10-26 Gamma-ray irradiator Pending JPS6093400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20064983A JPS6093400A (en) 1983-10-26 1983-10-26 Gamma-ray irradiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20064983A JPS6093400A (en) 1983-10-26 1983-10-26 Gamma-ray irradiator

Publications (1)

Publication Number Publication Date
JPS6093400A true JPS6093400A (en) 1985-05-25

Family

ID=16427906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20064983A Pending JPS6093400A (en) 1983-10-26 1983-10-26 Gamma-ray irradiator

Country Status (1)

Country Link
JP (1) JPS6093400A (en)

Similar Documents

Publication Publication Date Title
US5633904A (en) Spent nuclear fuel (SNF) dry transfer system
US5319686A (en) Dry transfer of spent nuclear rods for transporation
KR102250280B1 (en) Radioation Exposure Testing Machine and Movable Radioation Exposure Inspection Station
US8507861B2 (en) Radiological characterization device protected against parasitic ionizing radiation sources
EP0096891A1 (en) Method and apparatus for changing filters in nuclear power stations
JPS6093400A (en) Gamma-ray irradiator
US4876593A (en) Temporary hot cell and related method for handling high radiation level sources
RU2722603C1 (en) Nondestructive test protective chamber
Nehemias et al. Installation and operation of ten-kilocurie cobalt-60 gamma-radiation source
JPH1090464A (en) Accepting equipment for radioactive material container
Calkins et al. The Design of Battelle's Hot Cell Facility
Kelly Waste Solidification Program: design features of the facilities and equipment for the WSEP Product Evaluation Program
JPH0641978B2 (en) Radioactive contamination inspection device
JP4576567B2 (en) Gamma irradiation test equipment
Locke A Basin Facility for Examining Irradiated Nuclear Fuel
Feldman et al. Cell dosimetry
Raj et al. Design and Safety Aspects of Neutron Radiography Rig for Examination of Irradiated Objects
Kelly WASTE SOLIDIFICATION PROGRAM. VOLUME III. DESIGN FEATURES OF THE FACILITIES AND EQUIPMENT FOR THE WSEP PRODUCT EVALUATION PROGRAM.
CN108287362A (en) The ultralow background HPGe gamma ray spectrometers of anticoincidence
Frankfort A CONCEPTUAL DESIGN OF A SHIELD TESTING AND MATERIALS IRRADIATION FACILITY
Picha et al. Renovation status of neutron radiography facility at TRR-1/M1 reactor
Wisner Hot Fuel Examination Facility-The Evolution of a National Asset
Tomlinson et al. Operation and modification of the HEDL Neutron Radiography Facility (NRF)
JP3305116B2 (en) Control rod drive storage device
CORSETTI Recent operational and management experience with established post irradiation examination facilities