JPS6093316A - Eddy current type hot water level measuring method - Google Patents

Eddy current type hot water level measuring method

Info

Publication number
JPS6093316A
JPS6093316A JP19991983A JP19991983A JPS6093316A JP S6093316 A JPS6093316 A JP S6093316A JP 19991983 A JP19991983 A JP 19991983A JP 19991983 A JP19991983 A JP 19991983A JP S6093316 A JPS6093316 A JP S6093316A
Authority
JP
Japan
Prior art keywords
voltage
phase
feedback
amplifier
primary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19991983A
Other languages
Japanese (ja)
Other versions
JPH0242416B2 (en
Inventor
Seigo Ando
安藤 静吾
Yoshihiro Kawase
川瀬 芳広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19991983A priority Critical patent/JPS6093316A/en
Publication of JPS6093316A publication Critical patent/JPS6093316A/en
Publication of JPH0242416B2 publication Critical patent/JPH0242416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields

Abstract

PURPOSE:To prevent a measurement error due to phase shift and the occurrence of self-oscillation causing measurement impossibility by allowing the phase of a feedback voltage, which applies an AC voltage to a primary coil, to coincide with the phase of an output voltage through a phase shifter. CONSTITUTION:An eddy current is generated on the surface of a hot melted steel in accordance with the length from a head by a magnetic flux due to the detecting head consisting of the primary coil and a pair of secondary coils on and under the primary coil, and a voltage corresponding to the level of this surface is induced in secondary coils. The AC voltage due to an oscillator 6 and the feedback voltage are applied to the primary coil from a feedback amplifier 7. The phase of the feedback voltage, which passes an adder 9 which adds the output of the amplifier 7 and the differential output of a pair of secondary coils due to a differential amplifier 8, is allowed to coincide with the phase of the output of the amplifier 7 by a phase shifter 10 having feedback resistance R3 and R4, a phase shift controlling variable resistance R5, a capacitor C, etc. Consequently, the measurement error due to phase shift of the feedback voltage, the occurrence of self-oscillation causing measurement impossibility, etc. are prevented.

Description

【発明の詳細な説明】 この発明は、渦流式湯面レベル測定法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vortex-type hot water level measurement method.

例えば、鋼を連続鋳造する場合、鋳片の品質を向上させ
るためにモールド内の溶鋼面レベルを一定に維持する必
要があり、このためには前記溶鋼面レベルを正確に計測
する必要がある。
For example, when continuously casting steel, it is necessary to maintain a constant level of the molten steel in the mold in order to improve the quality of the slab, and for this purpose it is necessary to accurately measure the level of the molten steel.

従来、モールド内の溶鋼向レベルを計測する方法として
、モールドの上下方向に複数本の熱電対を取り付け、熱
電対による測定結果に基づいて溶鋼面レベルを計測する
熱電対法があった。
Conventionally, as a method for measuring the surface level of molten steel in a mold, there has been a thermocouple method in which a plurality of thermocouples are attached in the vertical direction of the mold and the surface level of molten steel is measured based on the measurement results by the thermocouples.

また、別の方法としてRI線源をモールドの一方壁に取
9付け、モールドの他方壁にRI線の強度を測定するセ
ンサーを設置し、センサーによって測定されたFtI線
の強度変化からモールド内の溶鋼面レベルを計測するR
I法等があった。
Another method is to attach an RI source to one wall of the mold, install a sensor to measure the intensity of the RI radiation on the other wall of the mold, and use the change in the intensity of the FtI radiation measured by the sensor to determine the inside of the mold. R to measure the molten steel surface level
There was the I-law, etc.

しかし、上述した熱電対法は、モールド壁に熱電対を設
置するだめの加工を施こす必要があり。
However, the thermocouple method described above requires processing to install the thermocouple on the mold wall.

しかも、モールド壁を介して溶鋼面レベルを言]測する
ので応答性が悪い。
Moreover, since the molten steel surface level is measured through the mold wall, responsiveness is poor.

一方、上述したRI法は、熱電対法と同様にモールド壁
を介して溶鋼面レベルを計測するので応答性が悪く、シ
かも、RI線が人体に悪影響を及式湯面レベル測定法を
先に提案した。
On the other hand, the above-mentioned RI method measures the molten steel surface level through the mold wall, similar to the thermocouple method, and has poor responsiveness. proposed.

この渦流式湯面レベル測定法を第1図を参照しながら説
明する。第1図において、モールド1内にはタンデイツ
ンユ(図示せず)から溶鋼2が連続的に注入さiする。
This vortex type hot water level measuring method will be explained with reference to FIG. In FIG. 1, molten steel 2 is continuously injected into a mold 1 from a tube (not shown).

溶鋼2面上に検出ヘッド3が垂直に固定されている。検
出ヘンド3は、1個の上次コイル4と、1次コイル4の
上下に設けられた1対の2次コイル5゜および5bを有
する。発振器6は一定周波数の父流電圧e=’tr帰還
増幅器7を介して1次コイル4に加える。差動増幅器8
は1対の2次コイル5aおよび5bに誘起される電圧の
差をとる。加算器9は帰還増幅器7の出力電圧e。と差
動増幅器8の出力電圧と葡加算する。この加算さ第1た
出力電圧、即ち、帰還電圧endは帰還増幅器7に帰還
される。
A detection head 3 is vertically fixed on two surfaces of molten steel. The detection head 3 has one primary coil 4 and a pair of secondary coils 5° and 5b provided above and below the primary coil 4. An oscillator 6 applies a constant frequency father current voltage e='tr to the primary coil 4 via a feedback amplifier 7. Differential amplifier 8
is the difference between the voltages induced in the pair of secondary coils 5a and 5b. Adder 9 receives output voltage e of feedback amplifier 7. is added to the output voltage of the differential amplifier 8. This added first output voltage, ie, the feedback voltage end, is fed back to the feedback amplifier 7.

帰還増幅器8を弁して発振器6から一定周波数の交流電
圧eおが1次コイル4に加えられると、磁束が発生する
結果、1対の2次コイル5.および5b に誘起電圧が
生じる。一方、前記磁束はモールド1内の溶鋼2と交差
して、溶鋼表面に渦電流が発生する。この反作用として
1対の2次コイル5αおよび5bに生じる誘起電圧が変
化するが、1対の2次コイル5aおよび5bのうち溶鋼
2面に近い2次コイル5bの方が溶鋼2面から離れてい
る2次コイル54に比べて、より大きく変化する。1対
の2次コイル5.および5bに誘起される電圧の差(V
S =Va−Vb )は検出ヘッド3と浴@21川との
間の距離1の関数f CL>となる。
When the feedback amplifier 8 is valved and an alternating current voltage e of a constant frequency is applied from the oscillator 6 to the primary coil 4, a magnetic flux is generated, and as a result, a pair of secondary coils 5. An induced voltage is generated at and 5b. On the other hand, the magnetic flux intersects with the molten steel 2 in the mold 1, and eddy currents are generated on the surface of the molten steel. As a reaction to this, the induced voltage generated in the pair of secondary coils 5α and 5b changes, but of the pair of secondary coils 5a and 5b, the secondary coil 5b that is closer to the molten steel 2 surface is farther away from the molten steel 2 surface. The change is larger than that of the secondary coil 54 that is present. A pair of secondary coils5. and the difference in voltage induced in 5b (V
S = Va-Vb ) becomes a function f CL of the distance 1 between the detection head 3 and the bath @21 river.

差動増幅器8は1対の2次コイル54および5bに誘起
された電圧の差Vsを演算する。加算器9は前記差電圧
Vsと帰還増幅器7の出力電圧eOト’を加算する。こ
の加算された出力電圧は、帰還増幅器7に帰還電圧ea
dとして帰還される。
The differential amplifier 8 calculates the difference Vs between the voltages induced in the pair of secondary coils 54 and 5b. The adder 9 adds the difference voltage Vs and the output voltage eO' of the feedback amplifier 7. This added output voltage is applied to the feedback amplifier 7 as a feedback voltage ea
It is returned as d.

帰還増幅器7の出力電圧e。は1次式で表わされる。Output voltage e of feedback amplifier 7. is expressed by a linear equation.

eo−−e、、A、 / (1−AH(K+A2 f(
f) l −41)但し、e、: 発振器6の出力電圧
eo--e,,A,/(1-AH(K+A2 f(
f) l -41) However, e,: Output voltage of the oscillator 6.

A1: 帰還増幅器7の増幅度。A1: Amplification degree of feedback amplifier 7.

A2: 差動増幅器8の増幅度。A2: Amplification degree of differential amplifier 8.

f(L): 検出ヘッド3と溶鋼2面との間の距離によ
る関数。
f(L): A function depending on the distance between the detection head 3 and the two molten steel surfaces.

K : 定数。K: Constant.

(1)式から明らかなように、帰還増幅器7の出力電圧
e。は、浴獅呵2面のレベルに応じて変化するので、前
記出力部、圧e。を測定すればモールド1内のの方法よ
り優れているが1次のような問題点かあつ /こ 。
As is clear from equation (1), the output voltage e of the feedback amplifier 7. changes depending on the level of the two sides of the bathtub, so the pressure e at the output section. Although it is superior to the method in mold 1 when measuring , it has the following problems.

正帰還回路網内に位相偏移が生じると動作が不安定とな
つ/こり、自己発振誘起して正確な計測が白えない。帰
還回路網内に生じる位相偏移の原因としては1次のよう
なものがある。即ち、■ 帰還回路を構成する演算器自
体の位相遅れ。
If a phase shift occurs in the positive feedback network, the operation becomes unstable/stiff, self-oscillation is induced, and accurate measurements cannot be obtained. There are first-order causes of phase shifts that occur within the feedback network. Namely, ■ Phase delay of the arithmetic unit itself that constitutes the feedback circuit.

■ 帰還回路用配線の分布容量による位相遅JL。■ Phase delay JL due to distributed capacitance of feedback circuit wiring.

■ 検出ヘッド3と湯面計本体とを結線する同軸ケーブ
ルの分布容量による影響。
■ The influence of the distributed capacity of the coaxial cable that connects the detection head 3 and the water level gauge body.

■ 検出ヘッド3とモールド側壁との距離が接近した場
合のモールド壁による影響。
■ The influence of the mold wall when the distance between the detection head 3 and the mold side wall becomes close.

第2図に帰還回路網内に位相偏移があるときとないとき
の帰還増幅器の出力電圧の特性を示す。
FIG. 2 shows the characteristics of the output voltage of the feedback amplifier with and without phase shift in the feedback network.

8t42図に示されるように、位相偏移が存在すると、
出力電圧e。に誤差が生じるとともに、出力電圧e。が
ある値以上になると自己発振を起して計測不能と々る。
As shown in Figure 8t42, if there is a phase shift,
Output voltage e. An error occurs in the output voltage e. When the value exceeds a certain value, self-oscillation occurs and measurement becomes impossible.

この発明は、上述した問題点を解決するためになされた
ものであって。
This invention was made to solve the above-mentioned problems.

1次コイルと1対の2次コイルとから構成された検出ヘ
ッドの111記1次コイルに帰還増幅器から交流電圧を
加え、これによって前記1対の2次コイルに生じた誘起
電圧の各々の差を差動増幅器によって演算し、前記差電
圧と前記帰還増幅器の出力電圧と7加算器によって加算
し、前記加算電圧を前記帰還増幅器に帰還することから
なる渦流式湯面レベル測定法において。
An AC voltage is applied from a feedback amplifier to the primary coil No. 111 of the detection head, which is composed of a primary coil and a pair of secondary coils, and the difference in the induced voltages generated in the pair of secondary coils is In the eddy current type hot water level measurement method, which comprises calculating the difference voltage by a differential amplifier, adding the difference voltage and the output voltage of the feedback amplifier by a 7-adder, and feeding the added voltage back to the feedback amplifier.

前記帰還増幅器に帰還する帰還電圧の位相を。The phase of the feedback voltage fed back to the feedback amplifier.

移相器によって前記帰還増幅器の出力電圧の位相と一致
させることに特徴を有する。
The present invention is characterized in that the phase of the output voltage of the feedback amplifier is matched with the phase of the output voltage of the feedback amplifier by a phase shifter.

この発明の一実施態様を図面を参照しながら説明する。One embodiment of this invention will be described with reference to the drawings.

第3図IJ、この発明の一実施態様の概略構成図である
FIG. 3 IJ is a schematic configuration diagram of an embodiment of the present invention.

第3図において、発振器6は一定周波数の交流電圧を帰
還増幅器7を介して検出ヘッドの1次コイル(図示ぜず
)に加える。差動増幅器8は前記検出ヘッドに巻れた1
対の2次コイル(図示せず)からの誘起電圧の差を演算
する。加算器9は帰還増幅器7の出力電圧e。と差動増
幅滞日の出力電圧とを加算する。加算器9は抵抗R,−
抵抗R2および抵抗HN f不する。移相器10は加算
器9からの帰還電圧+3adの位相偏移を補償する。移
相器10は負帰還抵抗83.)(4,ηr=抵抗R3お
よびコンデンサCを不−rる。
In FIG. 3, an oscillator 6 applies an alternating voltage of constant frequency to a primary coil (not shown) of the detection head via a feedback amplifier 7. A differential amplifier 8 is connected to the detector head.
The difference in induced voltages from a pair of secondary coils (not shown) is calculated. Adder 9 receives output voltage e of feedback amplifier 7. and the output voltage of the differential amplifier. The adder 9 has a resistor R, -
Resistor R2 and resistor HN f. Phase shifter 10 compensates for the phase shift of the feedback voltage from adder 9 +3ad. The phase shifter 10 has a negative feedback resistor 83. ) (4, ηr = resistor R3 and capacitor C are excluded.

加算器9の出力電圧、即ち、差動増幅器8の出力電圧と
帰還増幅器7からの出力電圧e。とを加算した帰還電圧
eadは1次式で表わされる。
The output voltage of the adder 9, that is, the output voltage of the differential amplifier 8 and the output voltage e from the feedback amplifier 7. The feedback voltage ead, which is the sum of the above, is expressed by a linear equation.

但し、eo: 帰還増幅器7の出力電圧。However, eo: Output voltage of feedback amplifier 7.

A2: 差動増幅器8の増幅度、 r(z): 検出ヘッド3と溶鋼2面との間の距離によ
る関数。
A2: Amplification degree of the differential amplifier 8, r(z): A function depending on the distance between the detection head 3 and the molten steel 2 surface.

加算器9からの帰還電圧eodは移相器1oに加えられ
る。移相器10は前記帰還電圧eadの位相偏移を補償
して、帰還増幅器7の出力電圧e。の位相と一致した帰
還電圧eを帰還増幅器7に帰還する。
Feedback voltage eod from adder 9 is applied to phase shifter 1o. The phase shifter 10 compensates for the phase shift of the feedback voltage ead, so that the output voltage e of the feedback amplifier 7 is adjusted. A feedback voltage e matching the phase of is fed back to the feedback amplifier 7.

移相器10の動作を説明する。移相器1oからの前日r
2帰還電圧知は次式で表わされる。
The operation of phase shifter 10 will be explained. The previous day r from phase shifter 1o
2 feedback voltage is expressed by the following equation.

zl + Z2 zl ” Z2 (3)式において一83=R4に設定すると。zl + Z2 zl” Z2 If -83=R4 is set in equation (3).

但し Bp: 移相器10の帰還′電圧、ead: 加
算器9の出力電圧。
However, Bp: Feedback voltage of phase shifter 10, ead: Output voltage of adder 9.

Z、: 可変抵抗R5のインピーダンス、Z2: コン
デンサCのインピーダンス。
Z: Impedance of variable resistor R5, Z2: Impedance of capacitor C.

(4)式から明らかなように、移相器lOからの帰還電
圧epの位相は一移相器10の増幅度(R4/R3)が
1でありので、可変抵抗R6の値を変化させることによ
って任意に1+1整することができる。これによって、
帰還増幅器9の出力電圧e。の位相と、加算器9からの
帰還′電圧eadとの位相全一致させることができる。
As is clear from equation (4), the phase of the feedback voltage ep from the phase shifter IO is determined by changing the value of the variable resistor R6 since the amplification degree (R4/R3) of the phase shifter 10 is 1. It can be arbitrarily set to 1+1 by by this,
Output voltage e of feedback amplifier 9. It is possible to completely match the phase of the feedback voltage ead from the adder 9.

移相器10のijJ変抵抗抵抗R5を、帰還増幅器9の
出力電圧e。の位相と、加算器9からの帰還電圧end
との位相とか一致するように調整するには。
The ijJ resistance resistance R5 of the phase shifter 10 is set to the output voltage e of the feedback amplifier 9. and the feedback voltage from adder 9 end
To adjust the phase to match.

以下のようにする。例えば、帰還増幅器7が1発振器6
の出力箱、圧e。の位相と帰還増幅器7の出力電圧e。
Do as follows. For example, feedback amplifier 7 is one oscillator 6
output box, pressure e. phase and the output voltage e of the feedback amplifier 7.

の位相とが180度ずれているときに最も効率よく作動
するものであるときには、前記出力電圧e、およびe。
The output voltages e and e operate most efficiently when they are 180 degrees out of phase with the output voltages e and e.

を各々1例えば位相計で測定し。are each measured using a phase meter, for example.

これらの間の位相差が180度となるように前記可変抵
抗R3の値を手動によって調整する。
The value of the variable resistor R3 is manually adjusted so that the phase difference between them is 180 degrees.

次に、この発明の他の実施態様を図面を参照しながら説
明する。
Next, other embodiments of the invention will be described with reference to the drawings.

この実施態様は1位相補償を自動的に行う点が前述した
実施態様と異なる。
This embodiment differs from the previously described embodiment in that one-phase compensation is automatically performed.

第4図は、この発明の他の実施態様の概略構成図である
FIG. 4 is a schematic diagram of another embodiment of the present invention.

第4図において1位相検波器11は発振器6の出力電圧
e、と帰還増幅器7の出力電圧e。との位相差に対応し
た直流制御電圧Eci位相制御器12の一方の入力端子
Xに供給する。位相制御器12は掛算器13と、掛算器
13の他方の入力端子Yと出力端子2との間に接続した
コンデンサCとからなる。移相制御器12の入力端子Y
には移相器10の一方の入力電圧eが加えられ、入力端
子Xには位相検波器11からの制御電圧Ecが加えらi
する。
In FIG. 4, the one-phase detector 11 detects the output voltage e of the oscillator 6 and the output voltage e of the feedback amplifier 7. A DC control voltage Eci corresponding to the phase difference between Eci and Eci is supplied to one input terminal X of the phase controller 12. The phase controller 12 includes a multiplier 13 and a capacitor C connected between the other input terminal Y of the multiplier 13 and the output terminal 2. Input terminal Y of phase shift controller 12
One input voltage e of the phase shifter 10 is applied to the input terminal X, and the control voltage Ec from the phase detector 11 is applied to the input terminal i.
do.

掛算器」。3の出力′「b、圧eMは。Multiplier”. 3's output 'b, pressure eM is.

リーに−e−EC・・・(5) 但し、に:掛算器]−3の定数 どなるから、制御電圧ECの値が変化すると、コンデン
サCの両端子間の電圧差(e−eu)が変化し。
-e-EC...(5) However, since the constant of -3 (multiplier) changes, when the value of control voltage EC changes, the voltage difference (e-eu) between both terminals of capacitor C changes. Change.

このためにコンデンサCを流れる電流の値が変わる。This causes the value of the current flowing through capacitor C to change.

従って、制111111j圧Ec の変化に応じてコン
デンサCの客用は等測的に変化する。
Therefore, the capacitance of the capacitor C changes isometrically in response to changes in the pressure Ec.

例えQま、掛11器」3の定数KQl/10とすると。For example, if we take the constant KQl/10 for Q, multiplication 11 units''3.

制4.11 <圧ECに対するコンデンサCの等111
1i ?、F量C8t」2.第5図に示されるような特
性となる。
Control 4.11 < Etc. of capacitor C against pressure EC 111
1i? , F amount C8t"2. The characteristics are as shown in FIG.

このように、コンデンサCの容量が制御電圧ECに応じ
て変化すれば、(4)式から明らかなように。
In this way, if the capacitance of the capacitor C changes according to the control voltage EC, as is clear from equation (4).

移相器10は加算器9の帰還電圧endの位相を自動的
に補償して、帰還増幅器7の出力電圧e。の位相と一致
した帰還電圧epi帰還増幅器7に帰還する。
The phase shifter 10 automatically compensates the phase of the feedback voltage end of the adder 9 to adjust the output voltage e of the feedback amplifier 7. A feedback voltage epi that matches the phase of is fed back to the feedback amplifier 7.

イ]、6図に上述したこの発明に従って帰還回路網内の
位相偏移を補償したときの帰還増幅器の出力特性を示す
FIG. 6 shows the output characteristics of the feedback amplifier when the phase shift in the feedback network is compensated for according to the invention described above.

第6図から明らかなように、この発明によれは、帰還回
路網内に移相偏移が生じても位相口、11移かない場合
の出力特性と同様な出力特性を得ることができる。
As is clear from FIG. 6, according to the present invention, even if a phase shift occurs in the feedback network, it is possible to obtain an output characteristic similar to the output characteristic when there is no phase shift.

以上説明したように、この発明によれば、帰還回路網内
で帰還電圧の位相偏移が生じても浴:JIil1面レベ
ル全レベル計測することができるといったきわめて有用
な効果がもたらされる。
As explained above, according to the present invention, even if a phase shift of the feedback voltage occurs in the feedback circuit, the entire level of the first surface of the bath can be measured, which is an extremely useful effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の渦九式湯面割の概略構成図。 第2図は、溶鋼面レベルと検出ヘッドとの間の距離りと
出力電圧e。との関係を示すグラフ、第3図は、この発
明の一実施態様の概略構成図、第4図は、この発明の他
の実施態様の概略構成図、第5図は、制御電圧ECとc
e/Cとの関係を示すグラフ。 第6図は、溶鋼面レベルと検出ヘッドとの間の距離りと
出力電圧e。との関係を示すグラフである。 図面において。 1・・・モールド 2・・・溶鋼 3・・・検出ヘッド 4・・・1次コイル5、.5b・
・ 2次コイル 6・・・発振器7・・・帰還増幅器 
計・・差動増幅器9・・・加算器 10・・・移相器 1工・・・位相検波器 12・・・位相制御器13・・
・掛算器 出願人 日本鋼管株式会社 代理人 潮 谷 奈津夫(他2名)
FIG. 1 is a schematic diagram of the conventional Uzu-9 type hot water level splitting system. Figure 2 shows the distance between the molten steel surface level and the detection head and the output voltage e. 3 is a schematic block diagram of one embodiment of the present invention, FIG. 4 is a schematic block diagram of another embodiment of the present invention, and FIG. 5 is a graph showing the relationship between control voltage EC and c.
Graph showing the relationship with e/C. FIG. 6 shows the distance between the molten steel surface level and the detection head and the output voltage e. It is a graph showing the relationship between In the drawing. 1... Mold 2... Molten steel 3... Detection head 4... Primary coil 5, . 5b・
・ Secondary coil 6... Oscillator 7... Feedback amplifier
Total... Differential amplifier 9... Adder 10... Phase shifter 1... Phase detector 12... Phase controller 13...
・Multiplier applicant Natsuo Shioya, representative of Nippon Kokan Co., Ltd. (and 2 others)

Claims (1)

【特許請求の範囲】 ]次コイルと1対の2次コイルとから構成された検出ヘ
ッドの前i己1次コイルに帰還増幅器から交流電圧を加
え、これによって前記1対の2次コイルに生じた誘起電
圧の各々の差を差動増幅器によって演算し、前記差電圧
と前記帰還増幅器の出力電圧とを加算器によって加算し
、前記加算電圧を前記帰還増幅器に帰還することからな
る渦流式湯面レベル測定法において。 前記帰還増幅器に帰還する帰還電圧の位相を。 移相器によって前記帰還増幅器の出力′電圧の位相と一
致させることを特徴とする渦流式湯面レベル測定法。
[Claims]] An alternating current voltage is applied from a feedback amplifier to the primary coil in front of the detection head, which is composed of a primary coil and a pair of secondary coils, thereby generating voltage in the pair of secondary coils. The eddy current type hot water surface comprises calculating the difference between each of the induced voltages using a differential amplifier, adding the difference voltage and the output voltage of the feedback amplifier using an adder, and feeding back the added voltage to the feedback amplifier. In level measurement methods. The phase of the feedback voltage fed back to the feedback amplifier. An eddy current type hot water level measuring method characterized in that the phase of the output voltage of the feedback amplifier is matched with the phase of the feedback amplifier using a phase shifter.
JP19991983A 1983-10-27 1983-10-27 Eddy current type hot water level measuring method Granted JPS6093316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19991983A JPS6093316A (en) 1983-10-27 1983-10-27 Eddy current type hot water level measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19991983A JPS6093316A (en) 1983-10-27 1983-10-27 Eddy current type hot water level measuring method

Publications (2)

Publication Number Publication Date
JPS6093316A true JPS6093316A (en) 1985-05-25
JPH0242416B2 JPH0242416B2 (en) 1990-09-21

Family

ID=16415778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19991983A Granted JPS6093316A (en) 1983-10-27 1983-10-27 Eddy current type hot water level measuring method

Country Status (1)

Country Link
JP (1) JPS6093316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525262A (en) * 2009-04-29 2012-10-22 アヴミ Sensor and method for measuring molten metal level
WO2013114914A1 (en) * 2012-01-31 2013-08-08 品川リフラクトリーズ株式会社 Inside-mold molten surface gauge for continuous casting, and molten surface control method using same
WO2013114915A1 (en) * 2012-01-31 2013-08-08 品川リフラクトリーズ株式会社 Eddy current mold level sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612502A (en) * 1979-07-12 1981-02-06 Nippon Kokan Kk <Nkk> Feedback amplification type vortex flow range finder
JPS57192805A (en) * 1981-05-25 1982-11-27 Nippon Kokan Kk <Nkk> Differential feedback type eddy current distance meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612502A (en) * 1979-07-12 1981-02-06 Nippon Kokan Kk <Nkk> Feedback amplification type vortex flow range finder
JPS57192805A (en) * 1981-05-25 1982-11-27 Nippon Kokan Kk <Nkk> Differential feedback type eddy current distance meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012525262A (en) * 2009-04-29 2012-10-22 アヴミ Sensor and method for measuring molten metal level
WO2013114914A1 (en) * 2012-01-31 2013-08-08 品川リフラクトリーズ株式会社 Inside-mold molten surface gauge for continuous casting, and molten surface control method using same
WO2013114915A1 (en) * 2012-01-31 2013-08-08 品川リフラクトリーズ株式会社 Eddy current mold level sensor

Also Published As

Publication number Publication date
JPH0242416B2 (en) 1990-09-21

Similar Documents

Publication Publication Date Title
EP0416866B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
JPS6057217A (en) Vortex type mold molten metal level meter
US4567435A (en) Method and apparatus for continuously measuring distance utilizing eddy current and having temperature difference influence elimination
CA1052886A (en) Capacitive thickness gauging
US5059902A (en) Electromagnetic method and system using voltage induced by a decaying magnetic field to determine characteristics, including distance, dimensions, conductivity and temperature, of an electrically conductive material
EP0168696A1 (en) Eddy current distance signal formation apparatus
US4099238A (en) Apparatus for determining a magnetic field
JP2582990B2 (en) Determination method of stator magnetic flux of asynchronous equipment
JPS6093316A (en) Eddy current type hot water level measuring method
US3178941A (en) Induction flowmeter
US5844143A (en) Electromagnetic flowmeter
JPS60216959A (en) Detection of level of continuous casting mold
JPS60131404A (en) Measuring device for film thickness
JPS6017700Y2 (en) mold level meter
JPH06137921A (en) Method for detecting molten metal level
JPS56129819A (en) Eddy current type mold level meter with agc
JP2616146B2 (en) Electric discharge machine
JPS637349B2 (en)
JPS6238382A (en) Eddy current type metal detector
JPH0850047A (en) Water-level measuring method
JP2526597Y2 (en) Differential transformer type displacement detector
SU1165891A1 (en) Electromagnetic flowmeter
JPS59163502A (en) Differential type eddy current distance meter
TW308640B (en) Method and apparatus of isothermal micro-calorie meter for automatic measurement of microwave power
SU1029157A1 (en) D.c. high voltage stabilizer