JPS6092491A - Electrolyzing method of potassium carbonate - Google Patents

Electrolyzing method of potassium carbonate

Info

Publication number
JPS6092491A
JPS6092491A JP19996883A JP19996883A JPS6092491A JP S6092491 A JPS6092491 A JP S6092491A JP 19996883 A JP19996883 A JP 19996883A JP 19996883 A JP19996883 A JP 19996883A JP S6092491 A JPS6092491 A JP S6092491A
Authority
JP
Japan
Prior art keywords
potassium carbonate
diaphragm
anode
koh
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19996883A
Other languages
Japanese (ja)
Inventor
Joji Watakabe
渡壁 城治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP19996883A priority Critical patent/JPS6092491A/en
Publication of JPS6092491A publication Critical patent/JPS6092491A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To form electrolytically K2CO3 to useful KOH by electrolyzing an aq. KOH soln. contg. solid K2CO3 in an electrolytic cell provided with a specific diaphragm. CONSTITUTION:A suspension of an aq. KOH soln. contg. solid K2CO3 is supplied into the anode chamber 5 of an electrolytic cell which is provided with an anode 2 formed of an Ni plate and a cathode 3 formed of Pb and has diaphragm 4 formed of asbestos, PVC, etc. The aq. KOH soln. flows through the diaphragm 4 and enters a cathode chamber 6 from which the soln. is recovered through a circulating line 13 into a KOH tank 14. The solid K2CO3 sticks as a deposition layer 7 on the diaphragm 4. When the layer 7 grows to 0.5-5mm. thickness, the suspension and the KOH soln. are respectively drawn from both chambers 5, 6 and pure water is supplied thereto. A DC voltage is impressed to both electrodes 2, 3 to dissolve and electrolyze the K2CO3 deposited on the diaphragm 4. The formed aq. KOH soln. is taken out of a conduit 9.

Description

【発明の詳細な説明】 本発明は、炭酸カリウムの電解方法にHalするもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a method for electrolyzing potassium carbonate.

炭酸カリウムは、アルカリ型燃料電池などにおいて水酸
化カリウムと二酸化炭素により、多量に副生ずる物質で
あるが、これを水酸化カリウムへ転化して再利用するこ
とが望まれる。
Potassium carbonate is a substance that is produced in large amounts as a by-product from potassium hydroxide and carbon dioxide in alkaline fuel cells, etc., and it is desirable to convert this to potassium hydroxide and reuse it.

従来、炭酸カリウムを水酸化カリウムへ転化づる方法と
しては、 (1)水酸化カルシウムを用いる苛性化反応に2Go3
+Ca (OH)2→2KOH+Ca C03(2)炭
酸カリウムの焼成および水和 に2C0j−4K2O+ CO2 に20+H20→2 K O+−1 (3)電解反応 に2G O,+ 2 1−120 −> 2 K O1
1+ CO2+ l−1,+ −zO2等による方法が
知られている。
Conventionally, the methods for converting potassium carbonate to potassium hydroxide include (1) 2Go3 in a causticizing reaction using calcium hydroxide;
+Ca (OH)2→2KOH+Ca C03 (2) 2C0j-4K2O+ CO2 for calcination and hydration of potassium carbonate 20+H20→2 K O+-1 (3) 2G O, + 2 1-120 -> 2 K O1 for electrolytic reaction
Methods using 1+ CO2+ l-1, + -zO2, etc. are known.

このうち、(1)の水酸化カルシウムを用いる苛性化反
応は古くより、工業的な方法として用いられてきた方法
である。この方法は化学m論的な反応を行える利点があ
る。しかし、水酸化カルシウムへの再生工程が必要とな
り、また、生成した炭酸カルシウム固体を分離、焼成等
しなければならないので、操作−3よび装置が複雑化す
るとbXs生成する水酸化)Jリウム中へC?が混入す
るため、その完全な除去には、別にキレート樹脂処理等
の高価な処理が心数となるとかの問題点がある。
Among these, the causticizing reaction using calcium hydroxide (1) has been used as an industrial method since ancient times. This method has the advantage of being able to perform schemistic reactions. However, it requires a regeneration process to produce calcium hydroxide, and the produced calcium carbonate solid must be separated and calcined, so if the operation 3 and the equipment become complicated, b C? is mixed in, and its complete removal requires an additional expensive treatment such as chelate resin treatment, which increases the number of fibers.

(2)の炭酸カリウムの焼成法は、約i o O0℃の
高温を要し、そのための操作、装置および材質に解決す
べき問題点が多く残されている。
The method (2) of firing potassium carbonate requires a high temperature of about ioO0°C, and many problems remain to be solved regarding the operation, equipment, and materials involved.

(3)の電解法は、”方法としては最も容易な方法であ
るが、ただこのhFJjの欠点は、処理対象液から、炭
酸カリウム固体を分創し、電解処理する過程におい−(
、晶41i・分離・再溶解・電解という複雑な操作が心
数となるという問題がある。
The electrolytic method (3) is the easiest method, but the drawback of hFJj is that in the process of separating solid potassium carbonate from the liquid to be treated and electrolytically treating it.
, crystal 41i, separation, redissolution, and electrolysis, which are complicated operations that require a large number of cores.

本発明は、(3)の電解法にお()る複雑な分離・再溶
解過程を簡jli化・合理化する方法を提供するもので
ある。
The present invention provides a method for simplifying and rationalizing the complicated separation and redissolution process in the electrolytic method (3).

本発明は、陽極J3よび陰極を備え、かつ、液体を通す
が、気泡J3J、ひ炭酸カリウム固体を通さない隔膜で
、陽極室と1リモ極室とに仕切られた電解槽において、
陽極室へ炭酸カリウム固体を含有する水酸化カリウム水
溶液を導入し、水酸化カリウム水溶液を隔膜を通して陰
極室側へ浸出させることにより、隔膜の陽極室側の表面
上に、炭酸カリウム固体の沈m層を形成させた後、両電
極室の液を水r:置換し、両電極に直流電気を通じるこ
とにより、陽極室側の隔膜表面に沈積した炭酸カリウム
固体を電解させて、陰極室側より生成した水酸化カリウ
ム水溶液、i3よび副生水素を取り出すことを特徴とす
る炭酸カリウムの電解方法である。
The present invention provides an electrolytic cell equipped with an anode J3 and a cathode and partitioned into an anode chamber and one remote electrode chamber by a diaphragm that allows liquid to pass through but does not allow air bubbles J3J and potassium carbonate solids to pass through.
By introducing a potassium hydroxide aqueous solution containing solid potassium carbonate into the anode chamber and leaching the potassium hydroxide aqueous solution through the diaphragm to the cathode chamber side, a precipitated layer of potassium carbonate solid is formed on the surface of the diaphragm on the anode chamber side. After forming, the liquid in both electrode chambers is replaced with water and DC electricity is passed through both electrodes to electrolyze the potassium carbonate solid deposited on the surface of the diaphragm on the anode chamber side, and the potassium carbonate solid is generated from the cathode chamber side. This is a method for electrolyzing potassium carbonate, which is characterized by extracting a potassium hydroxide aqueous solution, i3, and by-product hydrogen.

本発明によれば、 (1)原料の炭酸カリウ18から、反応上無益に電力を
消費する水酸化カリウム分は最大限に分離される。
According to the present invention, (1) Potassium hydroxide, which wastefully consumes power during the reaction, is separated to the maximum extent from the raw material potassium carbonate-18.

(2)電解反応の間は、陽極室に常に十分な炭酸カリウ
ムが供給される。
(2) Sufficient potassium carbonate is always supplied to the anode chamber during the electrolytic reaction.

(3)炭酸カリウムの固体を、完全密閉系で処理でき、
操作、装置システムが極めて簡素化・合理化されるとい
う優れIC効果が奏される。
(3) Solid potassium carbonate can be processed in a completely closed system,
Excellent IC effects are achieved in that the operation and device system are extremely simplified and rationalized.

次に、本発明についてさらに詳しく説明する。Next, the present invention will be explained in more detail.

第1図は、本発明の電解槽1の概略図である。FIG. 1 is a schematic diagram of an electrolytic cell 1 of the present invention.

本発明において、用いられる陽極2の材料の具体例とし
て【よ、鉛、ニッケル、ニッケルめっき鉄板、9%Ni
11.5%Nf mJ5J:(f 18 8ス7ンレス
鋼が挙げられる。これらの中でもニッケルが好ましく用
いられる。
In the present invention, specific examples of materials for the anode 2 used include lead, nickel, nickel-plated iron plate, 9% Ni
11.5%Nf mJ5J: (f 18 8 stainless steel is mentioned. Among these, nickel is preferably used.

また、用いられる陰(4i3の材料の具体例どしては、
鉛また【よ鉄が挙げられる。
In addition, specific examples of the material used for shade (4i3) are:
Examples include lead and iron.

本発明においで用いられる隔膜4は、水酸化カリウム水
溶液を通づが、水素、炭酸ガスおよび酸素の気泡、およ
び炭酸カリウム固体を通さないものであり、かつ、下記
のにうな要件を満たずものでな(]ればならないn ’
J 4にわら、耐アルカリ性、耐酸性、耐還元性、耐酸
化性であること;陽極室5、陰極室6間の0.1にり/
 csnF以上の差圧に耐えられる強酸を有Jること;
90〜100℃に酎え4rノる耐熱性をイ1りるごど;
目の大きさが1μm以上50μl以下であること;およ
び沈V4層7のイ1着保持竹が31、いこと(゛ある。
The diaphragm 4 used in the present invention is one that allows a potassium hydroxide aqueous solution to pass through but does not allow hydrogen, carbon dioxide gas, and oxygen bubbles, and potassium carbonate solids to pass through, and does not meet the following requirements. dena(] mustn'
J 4 Must be alkali resistant, acid resistant, reduction resistant, oxidation resistant; 0.1% between anode chamber 5 and cathode chamber 6/
Contains a strong acid that can withstand a pressure difference of more than csnF;
It has a heat resistance of 90 to 100℃ for 4 hours;
The size of the eyes is 1 μm or more and 50 μl or less; and there are 31 bamboos that retain the first place in the V4 layer 7.

このような要件をみにη隔n’A 4の材料の具体例と
しては、アスベスト、ポリテトラフルオロエチレン、ポ
リ塩化ビニル、ポリ塩化ビニリデン、ポリアクリロニト
リルなどの高分子材料、a3よびこれらの高分子材料を
基材としてアスベストをプリコートしたものが挙げられ
る。
Considering these requirements, specific examples of materials with an η spacing n'A of 4 include polymeric materials such as asbestos, polytetrafluoroethylene, polyvinyl chloride, polyvinylidene chloride, and polyacrylonitrile, A3, and these polymeric materials. Asbestos is pre-coated using the base material.

電解1!1の両端部にそれぞれ、陽極2および陰極3が
協えられている。電解溝1は、中央部に隔膜4が設置さ
れて、陽極室5と陰極室6とに仕切られている。
An anode 2 and a cathode 3 are connected to both ends of the electrolyzer 1!1, respectively. The electrolysis groove 1 is partitioned into an anode chamber 5 and a cathode chamber 6 by a diaphragm 4 installed in the center.

電解溝1の陰極室6の油導管9を閉じ、陽極室5の油導
管8よりこ炭酸カリウム固体を含有する水酸化カリウム
水溶液の懸濁液を送入する。陽極室5へ送入された懸濁
液の液成分は、隔l1144の細孔を通って陰極室6へ
浸出げろ。この場合、陽極室5のガス排出管10は閉じ
、陰極室6のガス排出管11は問いでおく。懸濁状態を
均一に保つために、陽極室5の1llIIfA室側循環
ライン12で、陽極室5の懸濁液を循yAりることもで
きる。
The oil conduit 9 of the cathode chamber 6 of the electrolytic groove 1 is closed, and a suspension of potassium hydroxide aqueous solution containing solid potassium carbonate is introduced through the oil conduit 8 of the anode chamber 5. The liquid component of the suspension fed into the anode chamber 5 leaks into the cathode chamber 6 through the pores of the partition 1144. In this case, the gas exhaust pipe 10 of the anode chamber 5 is closed, and the gas exhaust pipe 11 of the cathode chamber 6 is left open. In order to maintain a uniform suspension state, the suspension in the anode chamber 5 can be circulated through the circulation line 12 on the side of the anode chamber 5.

陰極室6へ浸出した液成分は、陰極側循環ライン13、
あるいは油導管9より循環ライン13を経て水酸化カリ
ウム水溶液の貯蔵タンク14へ送られる。この際、懸濁
液中の炭酸カリウム固体は隔膜4の陽極室側表面に何首
され、沈積E7を形成する。このどさの陽極室5への懸
濁液の送入圧はl atm l、にいし数711.nl
が適当である。陰極室6の圧力は1 atmまたは、i
威肚にされる。温痘は、通常、常温ないし90°C稈1
哀ぐある。
The liquid components leached into the cathode chamber 6 are transferred to the cathode side circulation line 13,
Alternatively, the oil is sent from the oil conduit 9 via the circulation line 13 to the storage tank 14 for potassium hydroxide aqueous solution. At this time, the solid potassium carbonate in the suspension is deposited on the surface of the diaphragm 4 on the anode chamber side, forming a deposit E7. The feeding pressure of the suspension to the anode chamber 5 at this speed is l atm l, which is 711. nl
is appropriate. The pressure in the cathode chamber 6 is 1 atm or i
be intimidated. Hotpox is usually treated at room temperature to 90°C.
I'm sad.

このようイに操作のもとに、炭酸カリウム固体の隔膜4
の陽極室5側表面上での沈積層7の厚さがQ、5mm以
上10 n+nlXド、好ましくは0.5mm1X上5
mm以下になる;Lc、油導管8より、懸濁液を送入す
る。
Under this operation, the solid potassium carbonate membrane 4
The thickness of the deposited layer 7 on the surface of the anode chamber 5 side is Q, 5 mm or more 10 n+nlX, preferably 0.5 mm 1
mm or less; Lc, the suspension is sent through the oil conduit 8.

沈積1ii7を形成しlJ後、陰極室6側の水酸化カリ
ウム液(、′L、油導管9より抜き取って、水酸化カリ
ウム水溶液の貯蔵タンク14へ移す゛。
After forming the deposit 1ii7 and 1J, the potassium hydroxide solution (,'L) on the cathode chamber 6 side is extracted from the oil conduit 9 and transferred to the storage tank 14 for potassium hydroxide aqueous solution.

一方、陽極全5 tljよび陽極側循環ライン12の懸
濁液は、ガスIJI出管′10をflitいて油導管8
より、抜き取る。
On the other hand, the suspension in all the anodes 5 tlj and the anode side circulation line 12 is flited through the gas IJI outlet pipe '10 to the oil conduit 8.
Take it out.

次いで、l!J極室5 atよび陰極室6にそれぞれ、
純水を油導管8および油導管9より送入する。
Then l! In the J electrode chamber 5 at and the cathode chamber 6, respectively,
Pure water is fed through oil conduit 8 and oil conduit 9.

液の逆流をふlぐため、陽極室5の液面は陰極室6の液
面よりも10mm以上高(なるように、純水を液導入1
]8より送入する。
In order to prevent backflow of the liquid, the liquid level in the anode chamber 5 should be at least 10 mm higher than the liquid level in the cathode chamber 6.
]8.

このような準備を整えた後、両電極2.3に直流電気を
通して電解を開始覆る。 ″ 直流電気は、電圧2.0〜2.5vが適当である。電流
密麿は3〜40A/d′TIF、特に、5〜2OA/d
1Fであることが好ましい。
After making such preparations, electrolysis begins by passing direct current electricity through both electrodes 2.3. "For DC electricity, a voltage of 2.0 to 2.5V is appropriate.The current density is 3 to 40A/d'TIF, especially 5 to 2OA/d.
It is preferable that it is 1F.

陰極室6には、電解により次第に、炭酸カリウム固体の
沈積層7の炭酸カリウムが溶解・分解され、水酸化カリ
ウムへ転化されてK イオンが蓄積されてくる。また、
陰極室6のガス排出口11から、生成する1−12ガス
が排出されてくる。
In the cathode chamber 6, potassium carbonate in the potassium carbonate solid deposit layer 7 is gradually dissolved and decomposed by electrolysis, converted into potassium hydroxide, and K 2 ions are accumulated. Also,
The generated 1-12 gas is discharged from the gas outlet 11 of the cathode chamber 6.

陰極室6は、次第に水酸化カリウム成分が増加して来る
。水酸化カリウム水溶液の1nrttは、30重量%以
下、好ましくは15重間%以下に調節するように陰極室
6に純水を油導管9より送入し、かつ、陰極室6の水酸
化カリウム水溶液は、所定液面を保持するようにしなが
ら貯蔵タンク14へ抜き取る。
In the cathode chamber 6, the potassium hydroxide component gradually increases. Pure water is fed into the cathode chamber 6 through the oil conduit 9 so that 1nrtt of the potassium hydroxide aqueous solution is adjusted to 30% by weight or less, preferably 15% by weight or less, and the potassium hydroxide aqueous solution in the cathode chamber 6 is is drawn into the storage tank 14 while maintaining a predetermined liquid level.

両電極室5.6の液は、適宜、循環ライン12.13を
通して循環し、電極室5.6内の液温は常温〜901:
、好J、しくは、40〜80’Cの範囲ぐ一定に保持す
る。
The liquid in both electrode chambers 5.6 is appropriately circulated through the circulation line 12.13, and the liquid temperature in the electrode chambers 5.6 is from room temperature to 901:
, preferably within the range of 40 to 80'C.

次に実施例を承り。Next, let's take a look at the examples.

実施例1 材質が、−ツクルからなる陽極2および鉄からなる陰極
3を備え、かつ、アスベストを材料とする有効面積10
 c+nx 10 cn+の隔膜4で陽極室5と陰極室
6とに仕切1うれた容量150ccの電解溝1を使用し
た。水酸化カリウム濃度が50重1社%、炭酸カリウム
淵度が17重量%の水容液0.612を50℃にiif
 )JJ シて[1られる炭酸カリウム固体を含有する
水酸化カリウム水容液の懸濁液を陽極室l\全ffi導
入し!、:。水酸化カリウムを主成分とづる液成分を、
隔膜1通(〕て陰極゛7+! 6へ浸出さけ、炭酸カリ
ウム固体を隔膜1の陽極室5側に沈積させた。このとき
沈積層7の厚さが4InIII程度となった。
Example 1 An effective area 10 comprising an anode 2 made of iron and a cathode 3 made of iron, and made of asbestos.
An electrolysis groove 1 with a capacity of 150 cc was used, which was partitioned into an anode chamber 5 and a cathode chamber 6 by a diaphragm 4 of c+nx 10 cn+. Iif an aqueous solution with a potassium hydroxide concentration of 50% by weight and a potassium carbonate depth of 17% by weight at 50°C.
) JJ [1] Introduce a suspension of potassium hydroxide aqueous solution containing solid potassium carbonate into the anode chamber l\full ffi! , :. A liquid component whose main component is potassium hydroxide,
The potassium carbonate solid was leached into the cathode 7+! 6 through one diaphragm and deposited on the anode chamber 5 side of the diaphragm 1. At this time, the thickness of the deposited layer 7 was about 4 InIII.

こののち、両極室5、(5がら、それぞれ油導管8、油
導管9を通じて残液を抜き取っI、:。次に、陽極室5
および陰極室6に純水を、油導管8および導韓rs+−
ym−h七 ツムツーj−1は管器−・−−ヘ −−を
通して循環さけた。陽極室5の液面を陰極室6の液面よ
り1011Ill^く保った。次に、両電極5.6に直
流電気2.5■、5△/d1+Fで通電し、電解反応を
起こさせた。約10時間後、陽極室57J)らCO2の
発生が減少し、炭酸カリウムの固体の大部分が電解され
た。
After that, the remaining liquid is extracted from the bipolar chambers 5 and 5 through the oil conduit 8 and the oil conduit 9, respectively.Next, the anode chamber 5
and pure water to the cathode chamber 6, the oil conduit 8 and the conduit rs+-
ym-h7 Tsum2 j-1 was circulated through the tube. The liquid level in the anode chamber 5 was kept 1011 Ill^ higher than the liquid level in the cathode chamber 6. Next, direct current electricity was applied to both electrodes 5.6 at 2.5 mm, 5 Δ/d1+F to cause an electrolytic reaction. After about 10 hours, the generation of CO2 from the anode chamber 57J) decreased and most of the solid potassium carbonate was electrolyzed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電解溝の概略図である。 1・・・電解溝、2・・・陽極、3・・・陰極、4・・
・隔膜、5・・・陽極室、6・・・陰極室、−7・・・
沈積層特許出願人 宇部興産株式会社
FIG. 1 is a schematic diagram of an electrolytic groove. 1... Electrolytic groove, 2... Anode, 3... Cathode, 4...
・Diaphragm, 5... Anode chamber, 6... Cathode chamber, -7...
Sedimentary layer patent applicant Ube Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 陽極および陰極を備え、かつ、液体を通すが、気泡およ
び炭酸カリウム固体を通さない隔膜て陽極室と陰1!i
 宇とにC1,1,IJられた電解槽において、陽極室
へ炭酸カリウム固体を含有する水酸化カリウム水溶液を
導入し、水酸化カリウム水溶液を隔膜を通しで陰極室側
へ浸出させることにより、隔膜の陽極室側の表面にに、
炭酸カリウム固体の沈積層を形成させた後、両電極室の
液を水で置換し、両電極にIJ流電気を通じることによ
り、陽極室側の線膜表面に沈積した炭酸カリウム固体を
電解させて、W:A極室側より生成した水酸化カリウム
水溶液およびu1生水索を取り出すことを特徴とする炭
酸カリウムの電解方法。
A diaphragm comprising an anode and a cathode and allowing liquid to pass through but not air bubbles and potassium carbonate solids. i
In an electrolytic cell equipped with C1, 1, IJ, a potassium hydroxide aqueous solution containing solid potassium carbonate is introduced into the anode chamber, and the potassium hydroxide aqueous solution is leached through the diaphragm to the cathode chamber side. On the surface of the anode chamber side,
After forming a deposited layer of potassium carbonate solid, the liquid in both electrode chambers is replaced with water, and IJ current electricity is passed through both electrodes to electrolyze the potassium carbonate solid deposited on the wire membrane surface on the anode chamber side. A method for electrolyzing potassium carbonate, characterized in that a potassium hydroxide aqueous solution and a raw water cord U1 are taken out from the W:A electrode chamber side.
JP19996883A 1983-10-27 1983-10-27 Electrolyzing method of potassium carbonate Pending JPS6092491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19996883A JPS6092491A (en) 1983-10-27 1983-10-27 Electrolyzing method of potassium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19996883A JPS6092491A (en) 1983-10-27 1983-10-27 Electrolyzing method of potassium carbonate

Publications (1)

Publication Number Publication Date
JPS6092491A true JPS6092491A (en) 1985-05-24

Family

ID=16416589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19996883A Pending JPS6092491A (en) 1983-10-27 1983-10-27 Electrolyzing method of potassium carbonate

Country Status (1)

Country Link
JP (1) JPS6092491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182888A (en) * 1988-11-09 1990-07-17 Soc Atochem Continuous preparation of alkali metal perchlorate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02182888A (en) * 1988-11-09 1990-07-17 Soc Atochem Continuous preparation of alkali metal perchlorate

Similar Documents

Publication Publication Date Title
US4337126A (en) Electrolysis of carbonates to produce hydroxides
US3222267A (en) Process and apparatus for electrolyzing salt solutions
US2921005A (en) Electrolytic conversions with permselective membranes
US4273628A (en) Production of chromic acid using two-compartment and three-compartment cells
JPH05504170A (en) Electrochemical production method of chloric acid/alkali metal chlorate mixture
JP2001508925A (en) Lithium recovery and purification
US20120292200A1 (en) Electrolytic process to produce aluminum hydroxide
US3539486A (en) Method of electrolytically producing alkaline chlorates
JPH08512099A (en) Production of polysulfide by electrolysis of white liquor containing sulfide
US3542657A (en) Electrolytic reduction of nitrate from solutions of alkali metal hydroxides
CN114481161A (en) Water electrolysis hydrogen production system and oxygen production subsystem
EP0230737A1 (en) Membrane pervaporation process for obtaining a chlorine dioxide solution
CN112281180A (en) Method for preparing chlorine by electrolyzing concentrated seawater through bipolar membrane
US3888749A (en) Electrolytic separation of oxygen from air
JPS6092491A (en) Electrolyzing method of potassium carbonate
CN102605383A (en) Method and device for hydrogen-circulating electrolysis and application of the method and device in production of aluminum oxide
US3705090A (en) Novel electrolytic cell and method for producing chlorine and metal hydroxides
US3364127A (en) Method for producing caustic soda and chlorine by means of electrolysis of sea water or other similar saltish water
RU98123657A (en) METHOD FOR REMOVING BROMINE FROM BROMS-CONTAINING SOLUTIONS AND INSTALLATION FOR ITS IMPLEMENTATION
RU196524U1 (en) DEVICE FOR PRODUCING ALKALINE SOLUTION FERRAT (VI) SODIUM
US1173346A (en) Method for the manufacture of chlorates and perchlorates of alkali metals.
US3790458A (en) Method of electrochemical processing of manganese ores and their concentration wastes
US2810685A (en) Electrolytic preparation of manganese
US3682797A (en) Stationary film mercury cell
PL302211A1 (en) Method of electrolytically obtaining chlorine and lye and membrane-type electrolyzer therefor