JPS6092235A - Preparation of cyclohexanone - Google Patents

Preparation of cyclohexanone

Info

Publication number
JPS6092235A
JPS6092235A JP58201830A JP20183083A JPS6092235A JP S6092235 A JPS6092235 A JP S6092235A JP 58201830 A JP58201830 A JP 58201830A JP 20183083 A JP20183083 A JP 20183083A JP S6092235 A JPS6092235 A JP S6092235A
Authority
JP
Japan
Prior art keywords
cyclohexene
compound
cyclohexanone
reaction
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58201830A
Other languages
Japanese (ja)
Other versions
JPH048414B2 (en
Inventor
Kazufumi Obata
小幡 一史
Yoshihide Mori
森 美秀
Osamu Moriya
修 守谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP58201830A priority Critical patent/JPS6092235A/en
Publication of JPS6092235A publication Critical patent/JPS6092235A/en
Publication of JPH048414B2 publication Critical patent/JPH048414B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the titled compound useful as a raw material for preparing caprolactam, adipic acid, etc. simply in high conversion ratio and in high selectivity, by oxidizing cyclohexene in liquid phase with molecular oxygen in liquid phase by the use of a compounded catalyst of Pd-Bi system. CONSTITUTION:Cyclohexene preferably containing a large amount of benzene and/or cyclohexane is oxidized in a liquid phase with molecular O2 in the presence of an aliphatic alcohol preferably ethanol, etc. and a compounded catalyst having a ratio of Pd compound to Bi compound of 1-30 gram atom Bi based on 1 gram atom Pd at 20-250 deg.C under pressure of lkg/cm<2>G, to give cyclohexanone. The higher the ratio of the Bi compound, the higher the reaction ratio and the reactivity of cyclohexene. Palladium nitrate, or Pd supported on alumina, active carbon, etc. is preferably used as the Pd compound, and bismuth nitrate is preferably used as the Bi compound.

Description

【発明の詳細な説明】 本発明はシクロヘキセンを分子状酸素で酸化してシクロ
ヘキサノンを製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cyclohexanone by oxidizing cyclohexene with molecular oxygen.

シクロヘキサノンはカプロラクタム、アジピン酸等の製
造原料、高沸点溶媒等において古くから多量に用いられ
ており、工業的にきわめて有用な物質である。通常シク
ロヘキサノンはシクロヘキサンを酸化してシクロヘキサ
ノールとシクロヘキサノン混合物を得、蒸留して分離後
シクロヘキサノールは脱水素してシクロヘキサノンとす
る方法、およびフェノールを選択的水素添加によってシ
クロヘキサノンとする方法によって製造されているが、
前記方法であるシクロヘキサンを酸化する場合生成物の
シクロヘキサノンが原料シクロヘキサンよりも酸化され
やすいため転化率をきわめて低くしなければならないば
かりかシクロヘキサノールとシクロヘキサノンとの分離
及びシクロヘキサノールの脱水素を実施する必要がある
という不都合を有している。又後記方法であるフェノー
ルを選択的水素添加する場合、原料フェノールが比較的
高価である。よって安価な原゛料を使用し、より効率良
くシクロヘキサノンを製造する方法が切に望まれており
、このような方法としては例えば特開昭57−1564
28号公報、特開昭57−156429号公報、英国特
許1122040号に示されていゐ腹相で脂肪族アルコ
ールの共存下触媒としてパラジウム化合物と銅化合物お
よび/もしくは鉄化合物ととからなるいわゆるワラカー
型触媒を用いシクロヘキセンを分子状酸素により酸化す
る方法が公知である。
Cyclohexanone has long been used in large quantities as a raw material for producing caprolactam, adipic acid, etc., as a high-boiling solvent, and is an extremely useful substance industrially. Cyclohexanone is usually produced by oxidizing cyclohexane to obtain a mixture of cyclohexanol and cyclohexanone, distilling it to separate it, and then dehydrogenating the cyclohexanol to form cyclohexanone, and selectively hydrogenating phenol to form cyclohexanone. but,
When oxidizing cyclohexane using the above method, the product cyclohexanone is more easily oxidized than the raw material cyclohexane, so not only must the conversion rate be extremely low, but also it is necessary to separate cyclohexanol and cyclohexanone and dehydrogenate cyclohexanol. It has the disadvantage that there is Furthermore, when selectively hydrogenating phenol as described below, the raw material phenol is relatively expensive. Therefore, there is a strong need for a method for producing cyclohexanone more efficiently using inexpensive raw materials.
No. 28, JP-A No. 57-156429, and British Patent No. 1122040 disclose the so-called Waraker type, which consists of a palladium compound and a copper compound and/or iron compound as a catalyst in the presence of an aliphatic alcohol in the abdominal phase. A method of oxidizing cyclohexene with molecular oxygen using a catalyst is known.

しかしながら、これらワラカー型の触媒を使用スる方法
においては、パラジウムの酸化還元電位が高すぎて、銅
化合物および鉄化合物としては塩化物のみが有効であり
、塩化物以外はまったく効果を発揮しないかもしくはき
わめてわずかの効果しか得られず工業的実施に当っては
多量の試剤を使用しなければならないという不都合を有
している。又塩化物を使用する場合にはOp−イオンの
強い腐食性のためにチタン等のひじょうに高価な装置を
使用する必要があるばかりか、有機塩素化合物の生成が
あるという不都合を有している。
However, in methods using these Waraker-type catalysts, the redox potential of palladium is too high, and as a copper compound and iron compound, only chloride is effective, and other than chloride may not be effective at all. Otherwise, only a very small effect can be obtained and a large amount of reagent must be used in industrial implementation, which is disadvantageous. Furthermore, when chloride is used, it is not only necessary to use extremely expensive equipment made of titanium or the like due to the strong corrosivity of Op- ions, but also has the disadvantage of generating organic chlorine compounds.

本発明者らはシクロヘキセンと分子状酸素よりシクロヘ
キサノンを製造するに際し、これら従来法の欠点を克服
し、より簡単な方法でしかもシクロヘキセンの転化率を
高め、高い選択率で効率よくシクロヘキサノンを得る方
法につき鋭意検討を重ねた結果本発明に至った。すなわ
ち本発明はパラジウム化合物とビスマス化合物゛とを含
む複合系触媒を用い、液相でシクロヘキセンを分子状酸
素で効率よく酸化し、シクロヘキサノンを得る方法であ
る。
The present inventors have devised a method for producing cyclohexanone from cyclohexene and molecular oxygen by overcoming the drawbacks of these conventional methods, by increasing the conversion rate of cyclohexene in a simpler manner, and efficiently obtaining cyclohexanone with high selectivity. As a result of extensive studies, the present invention was arrived at. That is, the present invention is a method for efficiently oxidizing cyclohexene with molecular oxygen in a liquid phase to obtain cyclohexanone using a composite catalyst containing a palladium compound and a bismuth compound.

本発明方法のシクロヘキセンは、ベンゼンの部分水素添
加あるいはシクロへ、キサンの部分脱水素あるいはフェ
ニルシクロヘキシルパーオキサイドおよびフェニルシク
ロヘキサンの分解等によって得られるシクロヘキセンも
しくは多量のベンゼンおよび/もしくはシクロヘキサン
を含むシクロヘキセン等が好適に用いられる。一般にこ
れ、らの方法によって製造されるシクロヘキセンに含ま
れるベンゼン、シクロヘキサンは沸点が余りにも接近し
ているため分離精製してシクロヘキセンのみを得ること
は実用的には極めて困難であるが、本発明方法を実施す
る場合にはこれら混合系からシクロヘキセンを分離精製
することなく反応原料として使用できる。
The cyclohexene used in the method of the present invention is preferably cyclohexene obtained by partial hydrogenation of benzene to cyclo, partial dehydrogenation of xane, decomposition of phenylcyclohexyl peroxide and phenylcyclohexane, or cyclohexene containing a large amount of benzene and/or cyclohexane. used for. In general, benzene and cyclohexane contained in cyclohexene produced by these methods have very close boiling points, so it is practically extremely difficult to separate and purify to obtain only cyclohexene. However, the method of the present invention When carrying out cyclohexene from these mixed systems, it can be used as a reaction raw material without separation and purification.

本発明に用いるパラジウム化合物としては硫酸パラジウ
ム、硝酸パラジウム等の無機塩、酢酸パラジウム、プロ
ピオン酸パラジウム等の有機酸塩、およびアルミナ、ゼ
オライト、シリカ、シリカアルミナ、活性炭に担持した
パラジウムなどが用いられる。
Examples of the palladium compound used in the present invention include inorganic salts such as palladium sulfate and palladium nitrate, organic acid salts such as palladium acetate and palladium propionate, and palladium supported on alumina, zeolite, silica, silica alumina, and activated carbon.

好しくは硝酸パラジウム、及び担持したパラジウムであ
る。担持したパラジウムは一般的に担持パラジウム触媒
として入手可能なものでよい。
Preferred are palladium nitrate and supported palladium. The supported palladium may be any commonly available supported palladium catalyst.

ビスマス化合物は、硝酸ビスマス、硫酸ビスマス、酸化
ビスマス、ビスマスの有機錯塩などであり、好しくは硝
酸ビスマスである。
Bismuth compounds include bismuth nitrate, bismuth sulfate, bismuth oxide, and organic complex salts of bismuth, and preferably bismuth nitrate.

大きくする割に該反応率、選択率が向上しないシクロヘ
キセンに対するパラジウム化合物のこの比率が小さいと
反応速度が低くなり反応(5) 望ましい。
The reaction rate and selectivity do not improve even if the ratio is increased.If this ratio of palladium compound to cyclohexene is small, the reaction rate will be low, which is desirable.

本発明で言うところの分子状酸素は、純酸素ガスまたは
酸素ガスを反応に不活性な希釈剤、例えば窒素、ヘリウ
ム等で希釈した混合ガス、および空気等であり、反応系
に存在させる酸素の量は反応に必要な化学量論モル以上
であればよく、また反応時の圧力は1 kg/dG以上
の加圧系が望ましく、反応時の最高使用圧力は設備費お
よび爆発等に関する安全性より決定される。
In the present invention, molecular oxygen refers to pure oxygen gas or a mixed gas of oxygen gas diluted with a diluent inert to the reaction, such as nitrogen, helium, etc., and air. The amount should be at least the stoichiometric molar amount required for the reaction, and a pressurized system with a pressure of 1 kg/dG or more is preferable. It is determined.

本発明における反応温度は触媒の添加量および種類、反
応圧力によって異なるが、一般には反応温度が250℃
以上では副反応が増大するばかりか、高価な設備を要す
るし、20℃より反応温度が低い場合には反応速度の大
幅な低下および反応熱の効果的な除去が困難となるので
、通常20〜250℃の温度範囲が使用される。
The reaction temperature in the present invention varies depending on the amount and type of catalyst added and the reaction pressure, but generally the reaction temperature is 250°C.
If the temperature is higher than 20°C, not only will side reactions increase, but also expensive equipment will be required.If the reaction temperature is lower than 20°C, the reaction rate will be significantly reduced and it will be difficult to effectively remove the heat of reaction. A temperature range of 250°C is used.

特に好ましくは40〜160°Cの温度範囲が(6) 用いられる。Particularly preferred is a temperature range of 40 to 160°C (6) used.

本発明の触媒を使用し、シクロヘキセンのみ又はベンゼ
ンおよび/もしくはシクロヘキサン共存下のシクロヘキ
センを分子状酸素と接触させることによってシクロヘキ
サノンを得ることは可能であるが、シクロヘキサノンを
さらに効率よく得るためにはエタノール、プロパノニル
、ブタノール等の脂肪族アルコールを共存させることが
望ましい。
Although it is possible to obtain cyclohexanone by contacting cyclohexene alone or cyclohexene in the coexistence of benzene and/or cyclohexane with molecular oxygen using the catalyst of the present invention, in order to obtain cyclohexanone more efficiently, ethanol, It is desirable to coexist an aliphatic alcohol such as propanonyl or butanol.

以下実施例により本発明を更に詳細に説明するが、本発
明はこれら実施例により何ら制限を受けるものではない
。なお、反応生成物の分析にはガスクロマトグラフィー
を用いた。なお選択率は(反応によって生成したシクロ
ヘキサノンのモル数)/(シクロヘキセンの反応前のモ
ル数−シクロヘキセンの反応後のモル数)、転換率は(
シクロヘキセンの反応前のモル数−シクロヘキセンの反
応後のモル数)/(シクロヘキセンの反応前のモル数)
である。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited in any way by these Examples. Note that gas chromatography was used to analyze the reaction products. The selectivity is (number of moles of cyclohexanone produced by the reaction)/(number of moles of cyclohexene before reaction - number of moles of cyclohexene after reaction), and the conversion rate is (
Number of moles of cyclohexene before reaction - number of moles of cyclohexene after reaction)/(number of moles of cyclohexene before reaction)
It is.

実施例1 2’1.8fのベンゼンおよび20.51のシクロヘキ
センおよび94.Ofのエタノールを800 eeのク
ーラー付丸底フラスコに仕込み、触媒としてl O,2
fの硝酸ビスマスおよび0、52 fの硝酸パラジウム
を添加した後純度99%酸素(残りは窒素)を51 /
Hr 連続的に十分攪拌した液中へ供給した。反応温度
を50℃に設定し、4時間反応させた後、反応生成物を
分析した結果、シクロヘキセンの転化率は48%、シク
ロヘキサノンの選択率は49%であった。
Example 1 2'1.8f benzene and 20.51 cyclohexene and 94. Of ethanol was charged into an 800 ee round bottom flask with a cooler, and 1 O,2 was added as a catalyst.
After addition of f bismuth nitrate and 0,52 f palladium nitrate, 99% purity oxygen (remainder nitrogen) is added to 51/
Hr was continuously supplied into the well-stirred liquid. After the reaction temperature was set at 50° C. and the reaction was carried out for 4 hours, the reaction product was analyzed, and the conversion rate of cyclohexene was 48%, and the selectivity of cyclohexanone was 49%.

比較例1 実施例1において硝酸ビスマスを添加しない以外は全く
同様にして処理した。得られた反応生成物を分析した結
果シクロヘキセンの転化率は16%、シクロヘキサノン
の選択率は1.4%であった。
Comparative Example 1 The same treatment as in Example 1 was carried out except that bismuth nitrate was not added. As a result of analysis of the obtained reaction product, the conversion rate of cyclohexene was 16%, and the selectivity of cyclohexanone was 1.4%.

実施例2 実施例1と同じ組成のベンゼン、シクロヘキセン、エタ
ノール混合物141.8Fを実施例1で用いたと同一装
置に仕込み、触媒として9.7gの硝酸ビスマスおよび
5.41の市販5%pd−活性炭担持触媒(日本エンゲ
ルノ\ルド社製)を添加した後、純度99%酸素(残り
は窒素)を5n/Hr連続的に十分攪拌した液中へ供給
した。反応温度を55°Cに設定し、4時間反応させた
後反応生成物を分析した結果シクロヘキセンの転化率は
89%、シクロヘキサノンの選択率は66%であった。
Example 2 A benzene, cyclohexene, ethanol mixture 141.8 F having the same composition as in Example 1 was charged into the same apparatus used in Example 1, and 9.7 g of bismuth nitrate and 5.41 g of commercially available 5% PD-activated carbon were added as catalysts. After adding a supported catalyst (manufactured by Nippon Engel Nord Co., Ltd.), 99% pure oxygen (the remainder being nitrogen) was continuously supplied at 5 n/hr into the sufficiently stirred solution. The reaction temperature was set at 55°C, and after 4 hours of reaction, the reaction product was analyzed and the conversion of cyclohexene was 89%, and the selectivity of cyclohexanone was 66%.

比較例2 実施例2において硝酸ビスマスを添加しない以外は全く
同様にして処理した。得られた反応生成物を分析した結
果シクロヘキセンの転化率は92%であり、シクロヘキ
サノンの選択率は1%以下であった。
Comparative Example 2 The same treatment as in Example 2 was carried out except that bismuth nitrate was not added. As a result of analysis of the obtained reaction product, the conversion rate of cyclohexene was 92%, and the selectivity of cyclohexanone was 1% or less.

実施例8〜6 20.59のシクロヘキサンおよび20.59のシクロ
ヘキセンおよび94.Ofのn−プロピルアルコールを
、実施例1で用いたと同一装置に仕込み、触媒として8
.2Fの硝酸ビス(9) マスおよび第1表に示したパラジウム触媒を添加した後
、実施例1と同様な方法で反応を行った。反応生成物を
分析した結果を第1表に示す。
Examples 8-6 20.59 cyclohexane and 20.59 cyclohexene and 94. Of n-propyl alcohol was charged into the same apparatus used in Example 1, and 8
.. After adding 2F bis(9) nitrate mass and the palladium catalyst shown in Table 1, the reaction was carried out in the same manner as in Example 1. Table 1 shows the results of analyzing the reaction products.

第 1 表 (10完)Table 1 (10 complete)

Claims (1)

【特許請求の範囲】[Claims] 液相でシクロヘキセンを分子状酸素で酸化することによ
りシクロヘキサノンを製造する方法において、パラジウ
ム化合物とビスマス化合物とから成る複合系触媒を用い
ることを特徴とするシクロヘキサノンの製造方法。
A method for producing cyclohexanone by oxidizing cyclohexene with molecular oxygen in a liquid phase, the method comprising using a composite catalyst comprising a palladium compound and a bismuth compound.
JP58201830A 1983-10-26 1983-10-26 Preparation of cyclohexanone Granted JPS6092235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201830A JPS6092235A (en) 1983-10-26 1983-10-26 Preparation of cyclohexanone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201830A JPS6092235A (en) 1983-10-26 1983-10-26 Preparation of cyclohexanone

Publications (2)

Publication Number Publication Date
JPS6092235A true JPS6092235A (en) 1985-05-23
JPH048414B2 JPH048414B2 (en) 1992-02-17

Family

ID=16447597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201830A Granted JPS6092235A (en) 1983-10-26 1983-10-26 Preparation of cyclohexanone

Country Status (1)

Country Link
JP (1) JPS6092235A (en)

Also Published As

Publication number Publication date
JPH048414B2 (en) 1992-02-17

Similar Documents

Publication Publication Date Title
AU2000250690B2 (en) Process for the production of vinyl acetate
US4933507A (en) Method of dehydrogenating cyclohexenone
CA1095076A (en) Process for the catalytic gas phase oxidation of toluene with a gas containing molecular oxygen
US5292960A (en) Process for purification of cyclohexanone
US4042630A (en) Process for the preparation of cycloalkanones and cycloalkanols
US7291755B2 (en) Process for producing alcohol and/or ketone
JPS63280040A (en) Production of 2,3,5-trimethylbenzoquinone
KR950010785B1 (en) Method for preparing cyclohexanol and cyclohexanon and catalpt for preparing same
US3987101A (en) Process for preparing cycloalkanones and cycloalkanols
JP3126190B2 (en) Method for producing ethers
US4400544A (en) Method for the preparation of cyclohexanone
US6433229B1 (en) Method of producing cyclic, α, β-unsaturated ketones
JPS6092235A (en) Preparation of cyclohexanone
DE60114166T2 (en) PROCESS FOR THE OXIDATION OF CYCLOHEXANE IN CARBOXYLIC ACIDS
JPH0436142B2 (en)
JPS63115836A (en) Improved manufacture of mixture of cyclohexanol and cyclohexane
JPS60181046A (en) Synthesis of methyl ethyl ketone
JPS6092234A (en) Production of cyclopentanone
US6075170A (en) Process for preparing cyclohexanol and cyclohexanone
US3923881A (en) Process for the preparation of C{HD 4 {B dicarboxylic acids from 2-butene
JPS6261942A (en) Production of ethylbenzophenone
JPS6362500B2 (en)
JPS60330B2 (en) Method for producing cyclopentanone
JPH07100674B2 (en) Method for producing cyclohexene oxide
WO2000043339A1 (en) Hydroxylation of aromatic compounds at elevated pressures