JPS6092176A - Steering device for suction-traveling robot on wall surface - Google Patents

Steering device for suction-traveling robot on wall surface

Info

Publication number
JPS6092176A
JPS6092176A JP58201826A JP20182683A JPS6092176A JP S6092176 A JPS6092176 A JP S6092176A JP 58201826 A JP58201826 A JP 58201826A JP 20182683 A JP20182683 A JP 20182683A JP S6092176 A JPS6092176 A JP S6092176A
Authority
JP
Japan
Prior art keywords
steering
power
suction
worm
traveling robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58201826A
Other languages
Japanese (ja)
Inventor
Keiji Koyama
小山 啓二
Gen Nishigaki
西垣 弦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Kiko Co Ltd
Original Assignee
Osaka Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Kiko Co Ltd filed Critical Osaka Kiko Co Ltd
Priority to JP58201826A priority Critical patent/JPS6092176A/en
Publication of JPS6092176A publication Critical patent/JPS6092176A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels

Abstract

PURPOSE:To make a turning angle of 360 deg. securable, by setting a transmission route of traveling power and steering power down to each separate system, while making a steering angle so as not to receive any restriction due to interference with a transmission mechanism of the traveling power in time of operating a steering device. CONSTITUTION:Rotative driving force in a power plant 1 is forcibly applied to space between a first driving shaft 11 and each of friction plates 14 and 14 being pressed by a Belleville spring 13 via a worm 12 locked onto this first driving shaft 11 and thereby rotates a worm wheel 15 engaged with the said worm 5. Driving force in a second driving shaft 16, which is made into a solid structure with the said worm wheel 15 and rotates till the specified load is produced, is raced by a slip between the friction plate and the worm wheel is transmitted to a first differential gear being attached to an axle 6' of a rear wheel 3 via a beveal gear 17 of the second driving shaft, thereby rotating the rear wheel 3.

Description

【発明の詳細な説明】 本発明は壁面吸着走行ロボットの操舵装置に関するもの
であり、更に詳しくは走行車輪への動力伝達機構と操舵
車輪への動力伝達機構を別設し、走行用回転駆動力の作
用下のみならず停止時に於いても操舵車輪の操作を為し
得るようにした壁面吸着走行ロボットの操舵装置を要旨
とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steering device for a wall adsorption traveling robot, and more specifically, the present invention relates to a steering device for a wall adsorption traveling robot. The gist of the present invention is to provide a steering device for a wall suction traveling robot that allows the steering wheels to be operated not only under the action of the robot but also when the robot is stopped.

イ、従来技術 電子力発電所に於ける放射性廃棄物処理施設や再処理施
設のタンク、貯蔵プールおよびライニング槽の検査、石
油プラントに於ける各種タンクの内外壁の検査、洗浄、
再塗装等の作業に遠隔操作方式の壁面吸着走行ロボット
が使用されている。これらの走行ロボツトは遠隔操作に
よって付設されたマニプレータを作動させることによっ
て上記の如き作業を実行し得るように設計されており、
壁面もしくは床面に圧着される吸着素子を備えた吸着壁
内に走行装置、操舵装置、動力発生装置あるいは動力伝
達装置からなる走行ロボットの本体を装着している。而
して公知の壁面吸着走行ロボットは、前記吸着盤内に発
生する負圧吸引力を利用して壁面もしくは床面に走行ロ
ボットの本体を吸着せしめ、垂直壁面上を走行する場合
に於いても該走行ロボットに強固な吸着保持力が働くよ
うに構成されている。斯くして壁面吸着走行ロボットは
、人手による作業が不可能な種々の作業環境に於いて作
業機械として作動することができるが、反面幾つかの実
用上の不都合を内在せしめたまま今日に至っている。先
づ、走行ロボットに与えられる吸着保持力を所定の水準
に維持するためには壁面もしくは床面の平坦度と平滑度
を一定のレベル以上に規正する必要があり、設計条件上
の制約から走行ロボットの稼動域が制約される場合が少
なくない。従って、斯かる制約に対処するためには壁面
吸着走行ロボットの回転半径ができる限り小さくなるよ
うに動力伝達装置や操舵装置の設計条件を選定する必要
があるが、単一の作動装置による限り回転半径の短縮に
は限度があり、上記目的の達成には著しく困難が付随す
る。更に走行重輪に伝達される回動駆動トルクの変動防
止手段として等速ジヨイント等の調速装置を付設すると
動力伝達機構そのものが複雑化し走行ロボットにM量増
加等の不都合が派生する。
B. Inspection of tanks, storage pools and lining tanks in radioactive waste treatment facilities and reprocessing facilities in conventional electronic power plants; inspection and cleaning of the inner and outer walls of various tanks in petroleum plants;
Remotely controlled wall suction robots are used for tasks such as repainting. These traveling robots are designed to be able to carry out the above tasks by operating an attached manipulator by remote control.
The main body of the traveling robot, which includes a traveling device, a steering device, a power generation device, or a power transmission device, is mounted within a suction wall that is equipped with a suction element that is pressed against a wall or floor surface. Therefore, the known wall suction traveling robot uses the negative pressure suction force generated within the suction cup to suction the main body of the traveling robot to a wall or floor surface, even when traveling on a vertical wall surface. It is constructed so that a strong suction and holding force acts on the traveling robot. In this way, wall adsorption traveling robots can operate as working machines in various work environments where manual work is impossible, but on the other hand, they still have some practical disadvantages to this day. . First, in order to maintain the adsorption and holding force given to the traveling robot at a predetermined level, it is necessary to regulate the flatness and smoothness of the wall or floor surface to a certain level or higher, and due to design conditions constraints, it is necessary to regulate the flatness and smoothness of the wall or floor. The operating range of robots is often restricted. Therefore, in order to deal with such constraints, it is necessary to select the design conditions of the power transmission device and steering device so that the rotation radius of the wall adsorption traveling robot is as small as possible, but as long as a single actuating device is used, the rotation radius There is a limit to the shortening of the radius, and it is extremely difficult to achieve the above objective. Furthermore, if a speed governor such as a constant velocity joint is attached as a means for preventing fluctuations in the rotational drive torque transmitted to the traveling heavy wheels, the power transmission mechanism itself will become complicated, resulting in problems such as an increase in the amount of M in the traveling robot.

口0発明の目的 本発明の目的の主要な目的は、在来の壁面吸着走行ロボ
ット、殊にその操舵装置に認められた前記の如き問題点
を解消し得る壁面吸着走行ロボットの操舵装置を提供す
ることにある。
OBJECTS OF THE INVENTION The main object of the present invention is to provide a steering device for a wall suction traveling robot that can solve the above-mentioned problems observed in conventional wall suction traveling robots, especially the steering devices thereof. It's about doing.

本発明の他の主要な目的は、回転半径を減少せしめた操
作性の良好な壁面吸着走行ロボットを提供することにあ
る。
Another main object of the present invention is to provide a wall suction traveling robot with a reduced rotation radius and good operability.

ハ8発明の構成 本発明は第1の動力装置(1)から供給される走行用動
力を前輪(2)および後輪(3)に個別に伝達するため
の差動装置(4)、(5)を前記前輪(2)および後輪
(3)のそれぞれの車軸(6)、(6″)に装着すると
共に、第2の動力装置(29)から供給される操舵用動
力を前記前輪(2)または後輪(3)の何れが一方の車
軸(6)またば(6”)に伝達する動力伝達機構を形成
せしめた壁面吸着走行ロボットの操舵装置を要旨とする
ものである。
C8 Structure of the Invention The present invention provides differential devices (4) and (5) for individually transmitting driving power supplied from a first power unit (1) to front wheels (2) and rear wheels (3). ) are attached to the respective axles (6), (6″) of the front wheels (2) and rear wheels (3), and the steering power supplied from the second power unit (29) is applied to the front wheels (2). ) or the rear wheel (3) forms a power transmission mechanism for transmitting power to one of the axles (6) or (6'').

二、実施例 第1図は本発明に係る壁面吸着走行ロボットの一部破断
側面図であり、第2図は摩擦クラッチ機構の細部構造を
例示する壁面吸着走行ロボットの後輪部分の一部破断正
面図である。また第3図は該壁面吸着走行ロボットの前
輪部分の構造を例示する一部破断圧面図である。これら
の図面に於いて、壁面吸着走行ロボットの本体(R>は
、壁面もしくは床面(8)との対向縁に吸着素子(9)
を装着してなる吸着盤(1o)内に架装されており、圧
空モータ等の動力装置(1)から伝達される動力を前輪
(2)および後輪(3)の差動装置(4)および(5)
に伝達することにより前記壁面もしくは床面(8)上を
走行し得るように構成されている。参照番号(41)で
示すエジェクタは、真空発生装置として機能し、吸着盤
(10)内を負圧状態に維持し、走行ロボットに壁面も
しくは床面(8)への吸着力を生ぜしめる。該動力装置
(1)の回転駆動力は、第1の駆動軸(11) 、該第
1の駆動軸(11)上に固着されたウオーム(12ン、
皿ばね(13)により押圧されるフリクションプレー1
−(14)、(14)の間に圧着され前記ウオーム(1
2)と噛合うウオームホイール(15) 、所定の負荷
が発生する迄前記ウオームホイール(I5〕 と一体構
造を為して回転し、負荷が設定値を上廻ったとき前記フ
リクションプレート(14)、(14)とウオームホイ
ール(15)との間のスリップにより空転する第2の駆
動軸(16)ならびに該第2の駆動軸(16)の出力端
に固着された傘歯車(17)を介して後輪(3)の車軸
(6゛)に装着された第1の差動装置(5)に伝達され
、後輪(3)に回転運動を生起させる。
2. Embodiment FIG. 1 is a partially cutaway side view of the wall suction traveling robot according to the present invention, and FIG. 2 is a partially cutaway side view of the rear wheel portion of the wall suction traveling robot illustrating the detailed structure of the friction clutch mechanism. It is a front view. Further, FIG. 3 is a partially broken pressure surface view illustrating the structure of the front wheel portion of the wall suction traveling robot. In these drawings, the main body of the wall suction traveling robot (R> is the suction element (9) on the edge facing the wall or floor (8).
It is mounted in a suction cup (1o) which is equipped with and (5)
The vehicle is configured to be able to run on the wall surface or floor surface (8) by transmitting the signal to the vehicle. The ejector indicated by the reference number (41) functions as a vacuum generator, maintains the interior of the suction cup (10) in a negative pressure state, and generates suction force for the traveling robot to the wall or floor (8). The rotational driving force of the power device (1) is generated by a first drive shaft (11), a worm (12 mm) fixed on the first drive shaft (11),
Friction play 1 pressed by a disc spring (13)
- The worm (1) is crimped between (14) and (14).
a worm wheel (15) that meshes with the worm wheel (15) and rotates integrally with the worm wheel (I5) until a predetermined load is generated, and when the load exceeds the set value, the friction plate (14); (14) and the worm wheel (15) through a second drive shaft (16) that idles due to slip and a bevel gear (17) fixed to the output end of the second drive shaft (16). The signal is transmitted to the first differential device (5) mounted on the axle (6') of the rear wheel (3), causing rotational movement in the rear wheel (3).

前記動力装置(1)の回転駆動力は前輪(2)に対して
も伝達される。即ち、動力装置(1)の回転駆動力は、
前記第1の駆動軸(11)の出力端に固着されたはす両
歯車(1B) 、該はす両歯車(18)と噛合う第2の
ばす両歯車(19)を一端に固着し他端に出力用の傘歯
車(21)を固着してなる第3の駆動軸(20) 、前
記傘歯車(21)と噛合う傘歯車(22)を一端に固着
し他端に出力用のばす両歯車(24)を固着してなる第
4図の駆動軸(23)ならびに前記はす歯歯車(24)
と噛合うはす両歯車(25)を一端に固着し他端にウオ
ーム(27)を固着してなる第5の駆動軸(26)より
なる動力伝達経路を介して前輪(2)の車軸(6)に固
着されたウオームホイール(28)に伝達され、以後常
法に従って前輪(2)の差動装置(4)を介して前輪(
2)に回転運動を生起させる。尚、本発明装置に於いて
は前輪(2)および後輪(3)駆動用の動力装置(1)
とは別個に前輪(2)操舵用の第2の動力装置(29)
が設けられている。更に詳しく説明すると、前記第1の
動力装置(1)と同様の圧空モータ(29)の出方軸(
3o)には傘歯車(31)が固着されており、該傘歯車
(31)によって取り出された第2の動力装置(29)
の回転駆動力は、前記傘歯車(31)と歯合う従動傘歯
車(33)を一端に固着し他端にウオーム(35)を固
着してなる第6の駆動軸(34) 、前記’)オーム(
35)と噛合うウオームホイール(37)を回動自在に
遊嵌支持する前記第4の駆動軸(23)、ならびに前記
ウオームホイール(37)に対して一体構造に接合され
たスリーブ状部材(38)と前輪(2)の支持部材(3
9)からなる動力伝達経路を介して前輪(2)の車軸(
6)に伝達され、壁面吸着走行ロボットの走行方向を変
換自在に制御する。一方、壁面吸着走行ロボットの吸着
盤(10)上には常法に従って適当な位置に公知のマニ
プレータ(40)あるいはモニタリング用のカメラ等が
取付けられており、遠隔操作により必要な作業が為し得
るように構成されている。
The rotational driving force of the power unit (1) is also transmitted to the front wheels (2). That is, the rotational driving force of the power device (1) is
A double helical gear (1B) fixed to the output end of the first drive shaft (11), a second double helical gear (19) that meshes with the double helical gear (18) fixed to one end and the other end. a third drive shaft (20) having a bevel gear (21) for output fixed thereto; a bevel gear (22) meshing with the bevel gear (21) fixed to one end and a bevel gear for output at the other end; (24) and the helical gear (24) shown in FIG.
The front wheel (2) axle ( The signal is then transmitted to the worm wheel (28) fixed to the front wheel (2) via the differential device (4) of the front wheel (2) according to a conventional method.
2) to cause rotational movement. In addition, in the device of the present invention, a power device (1) for driving the front wheels (2) and the rear wheels (3) is used.
A second power unit (29) for steering the front wheels (2) separately from the
is provided. To explain in more detail, the output shaft (
A bevel gear (31) is fixed to 3o), and the second power unit (29) is taken out by the bevel gear (31).
The rotational driving force is generated by a sixth drive shaft (34) formed by fixing a driven bevel gear (33) that meshes with the bevel gear (31) at one end and a worm (35) at the other end. Ohm (
The fourth drive shaft (23) rotatably and loosely supports the worm wheel (37) that meshes with the worm wheel (35), and the sleeve-shaped member (38) integrally joined to the worm wheel (37). ) and the support member (3) for the front wheel (2).
9) through the power transmission path consisting of the front wheel (2) axle (
6), and controls the running direction of the wall suction moving robot in a freely convertible manner. On the other hand, a well-known manipulator (40) or a monitoring camera, etc. is installed at an appropriate position on the suction cup (10) of the wall suction traveling robot according to a conventional method, and necessary work can be performed by remote control. It is configured as follows.

ホ9発明の効果 以上の説明に明らかな如く、本発明装置は走行用動力と
操舵用動力の伝達経路を別系統とし、操舵装置の作動に
際し走行用動力の伝達機構との干渉によって操舵角が制
約されることのない構造に形成されているから、操舵車
輪に理論上360°の旋回角度を与えることができる。
E. 9 Effects of the Invention As is clear from the above explanation, the device of the present invention separates the transmission paths for driving power and steering power, and when the steering device operates, the steering angle changes due to interference with the driving power transmission mechanism. Since it is formed in an unrestricted structure, it is possible to theoretically give the steering wheels a turning angle of 360°.

実際にはマニプレータの装着等の外的要因により操舵車
輪の旋回角度は上記理論値よりも小さくなるが、本発明
装置の採用により少(とも200°の広い旋回角度を操
舵車輪に付与することができる。更に走行用動力の伝達
経路が操舵用動力の伝達経路と別個に形成されているか
ら、走行時たると停止時たるとを問わず操舵装置を操作
することができる。従9て、走行可能な壁面もしくは床
面の面積が制約されており走行ロボットに大きな旋回角
度を与えねばならぬような苛酷な作動条件下に於いても
、壁面吸着走行ロボットに安定した走行状態を保障する
ことができる。
In reality, the turning angle of the steered wheels will be smaller than the above theoretical value due to external factors such as the attachment of the manipulator, but by adopting the device of the present invention, it is possible to give the steered wheels a wide turning angle of at least 200 degrees. Furthermore, since the transmission path for driving power is formed separately from the transmission path for steering power, the steering device can be operated regardless of whether the vehicle is traveling or stopped. Even under severe operating conditions where the wall or floor surface area is restricted and the traveling robot must be given a large turning angle, stable running conditions can be ensured for the wall suction traveling robot.

よって本発明装置は、壁面吸着走行ロボットの走行車輪
に対する動力伝達性能の向上ならびに該走行ロボットの
回転半径の減少に顕著な効果を発揮し得るものである。
Therefore, the device of the present invention can exhibit remarkable effects in improving the power transmission performance to the running wheels of the wall adsorption running robot and reducing the turning radius of the running robot.

【図面の簡単な説明】 第1図は本発明に係る壁面吸着走行ロボフトの一部破断
側面図であり、第2図はその後輪部分の構造を例示する
一部破断正面図である。また第3図は操舵用動力の伝達
機構を例示する一部破断正面図である。 (1)、(29)−・−動力装置、(2)・・−前輪、
(3) −後輪、(4)、(5)・−差動装置、(6)
、(6”)−車軸、(7)・−摩擦クラ、チ機構、(3
0)、(31)、(33)、(34)、(35)、’(
37)、(23)、(3日)、(39) −操舵用動力
の伝達機構、(41) −・エジェクタ。 第2図 第3図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway side view of a wall suction traveling robot robot according to the present invention, and FIG. 2 is a partially cutaway front view illustrating the structure of a rear wheel portion. FIG. 3 is a partially cutaway front view illustrating the steering power transmission mechanism. (1), (29)--power unit, (2)...-front wheel,
(3) -Rear wheel, (4), (5)・-Differential, (6)
, (6”) - Axle, (7) - Friction clutch, Chi mechanism, (3
0), (31), (33), (34), (35),'(
37), (23), (3rd), (39) - Steering power transmission mechanism, (41) - Ejector. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1) 第1の動力装置から供給される走行用動力を前
輪および後輪に個別に伝達するための差動装置を前記前
輪および後輪のそれぞれの車軸に装着すると共に、第2
の動力装置から供給される操舵用動力を前記前輪または
後輪の何れか一方の車軸に伝達する動力伝達機構を形成
せしめたことを特徴とする壁面吸着走行ロボットの操舵
装置。
(1) A differential device for individually transmitting driving power supplied from the first power device to the front wheels and rear wheels is attached to each axle of the front wheels and rear wheels, and a second
A steering device for a wall adsorption traveling robot, characterized in that a power transmission mechanism is formed to transmit steering power supplied from the power device to either the front wheel or the rear axle.
JP58201826A 1983-10-26 1983-10-26 Steering device for suction-traveling robot on wall surface Pending JPS6092176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201826A JPS6092176A (en) 1983-10-26 1983-10-26 Steering device for suction-traveling robot on wall surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201826A JPS6092176A (en) 1983-10-26 1983-10-26 Steering device for suction-traveling robot on wall surface

Publications (1)

Publication Number Publication Date
JPS6092176A true JPS6092176A (en) 1985-05-23

Family

ID=16447534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201826A Pending JPS6092176A (en) 1983-10-26 1983-10-26 Steering device for suction-traveling robot on wall surface

Country Status (1)

Country Link
JP (1) JPS6092176A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078141U (en) * 1993-07-13 1995-02-03 日本車輌製造株式会社 Automated guided vehicle
US7535620B2 (en) 2007-04-04 2009-05-19 Precisely Microtechnology Corp. Micro-electro-mechanical system micro mirror
US8646347B2 (en) 2009-06-26 2014-02-11 Jireh Industries Ltd. Modular scanner apparatus and probe holding apparatus for inspection
US9385634B2 (en) 2012-01-26 2016-07-05 Tiansheng ZHOU Rotational type of MEMS electrostatic actuator
CN113232748A (en) * 2021-05-11 2021-08-10 深圳市欧铠智能机器人股份有限公司 Laser guidance AGV natural navigation positioning robot

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078141U (en) * 1993-07-13 1995-02-03 日本車輌製造株式会社 Automated guided vehicle
US7535620B2 (en) 2007-04-04 2009-05-19 Precisely Microtechnology Corp. Micro-electro-mechanical system micro mirror
US8646347B2 (en) 2009-06-26 2014-02-11 Jireh Industries Ltd. Modular scanner apparatus and probe holding apparatus for inspection
US9385634B2 (en) 2012-01-26 2016-07-05 Tiansheng ZHOU Rotational type of MEMS electrostatic actuator
CN113232748A (en) * 2021-05-11 2021-08-10 深圳市欧铠智能机器人股份有限公司 Laser guidance AGV natural navigation positioning robot

Similar Documents

Publication Publication Date Title
US6948576B2 (en) Driving and transmission unit for use in rolling vehicles
EP0247820B1 (en) Differential gear
JPS63203483A (en) Active adaptation type crawler travel vehicle
ITRM940041A1 (en) DRIVING DEVICE, IN PARTICULAR STEERING, FOR VEHICLES.
US4987963A (en) Steering gear for the roadwheels of a vehicle
US4577528A (en) Driving/turnaround device for a remote controlled toy vehicle
JPS6092176A (en) Steering device for suction-traveling robot on wall surface
JP6837910B2 (en) Omni-directional moving vehicle
GB2260108A (en) Motor-driven steerable wheel units eg. for T.V. camera pedestals
JPS6137581A (en) Motor-driven power steering gear
JPS6020621B2 (en) Device with planetary gears
US7637831B2 (en) Power transmission mechanism of model vehicle
JPS6078831A (en) Wheel equipment of transportation vehicle
EP0805004A1 (en) Wrist mechanism for articulated robot
JPH0370669B2 (en)
JPS6056054B2 (en) electric actuator
JPS6092175A (en) Driving force for front and rear wheels of suction- traveling robot on wall surface
CN110701255B (en) Single-drive-input multi-shaft decoupling output transmission mechanism and working method and application thereof
JP2007145070A (en) Drive wheel structure for vehicle
JP3294471B2 (en) Omnidirectional vehicle and steering control method thereof
US2833161A (en) Mechanical steering system for track vehicles
US5297644A (en) Vehicle with tiltable propulsion units
US20240067248A1 (en) Drive wheel and cart
JPH03271002A (en) Automatic direction setting follower wheel and automobile using same
JPH0637188B2 (en) Moving machine