JPS6092084A - High-speed mig welding method - Google Patents

High-speed mig welding method

Info

Publication number
JPS6092084A
JPS6092084A JP19909583A JP19909583A JPS6092084A JP S6092084 A JPS6092084 A JP S6092084A JP 19909583 A JP19909583 A JP 19909583A JP 19909583 A JP19909583 A JP 19909583A JP S6092084 A JPS6092084 A JP S6092084A
Authority
JP
Japan
Prior art keywords
electrode
welding
tig
mig
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19909583A
Other languages
Japanese (ja)
Inventor
Eiji Ashida
栄次 芦田
Masayasu Nihei
二瓶 正恭
Fumio Taguchi
田口 文夫
Satoshi Ogura
小倉 慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19909583A priority Critical patent/JPS6092084A/en
Publication of JPS6092084A publication Critical patent/JPS6092084A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas

Abstract

PURPOSE:To enable weling of high quality and high efficiency by specifying the distance betwee the tip of a TIG electrode and material to be welded, and the distance between electrodes extension of center lines of which intersect on the material to be welded. CONSTITUTION:A welding torch consists of TIG of a preceding electrode and MIG of a succeeding electrode. Power is supplied from a DC power source 1 through current switching circuits 2, 2', and welding is performed by generating arcs 7, 8 between the materials 6 to be welded. The TIG electrode is a tungsten electrode 9, and the MIG electrode is a wire 10 fed continuously by a wire feeding device 4. The distance between the tip of the TIG electrode 9 and the material 6 to be welded is made 8-12mm.. The distance between electrodes extension of center lines of which intersect on the material 6 to be welded is made 4- 17mm.. Thus, influences of arc of TIG is reduced, preheating effect of the MIG arc is utilized effectively, and MIG welding is sped up.

Description

【発明の詳細な説明】 〔発明の利用分野」 本発明はMIG溶接とTIG浴接全接金組合浴接Vこお
いて、重速時TIG溶接に起因する溶接欠陥全排除して
高品質で、高能率な浴接をb]能ならしめる高速MIG
溶接法に関するものである。。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention is a combination of MIG welding and TIG bath welding, which eliminates all weld defects caused by TIG welding at heavy speeds and achieves high quality. , High-speed MIG that makes highly efficient bathing possible
It concerns welding methods. .

〔発明の背景〕[Background of the invention]

TLG溶接の非消耗電極とMIG溶接の消耗電極を組合
せた溶接法は、特願昭48−122841号、特願昭5
3−7481号などがあり、浴着量の増大、ブローホー
ルの阻止等の効果のため高品質、高能率俗接法として用
いられている1、また、%願昭56−99844号は先
行電極ケ非消耗電極とし、銅の溶接に用いられている。
A welding method that combines the non-consumable electrode of TLG welding and the consumable electrode of MIG welding is disclosed in Japanese Patent Application No. 122841-1984 and Japanese Patent Application No. 5
No. 3-7481, which is used as a high-quality, high-efficiency general welding method due to its effects such as increasing the amount of bath coat and preventing blowholes. It is a non-consumable electrode and is used for copper welding.

こtしらにいずれモ非消耗−極で消耗電極の加熱、溶接
金属の温度上昇を目的としているので非消耗電極と消耗
電極は接近した状態で用いられでいる。、一般に非消耗
′電極はTIG、消耗−極はMIGが用いらtしている
Since each of these uses a non-consumable electrode to heat the consumable electrode and raise the temperature of the weld metal, the non-consumable electrode and the consumable electrode are used close to each other. Generally, TIG is used as a non-consumable electrode, and MIG is used as a consumable electrode.

通常〜IIG溶接において浴接速度ケ増丁と、溶融池前
半部と佐半邪の温度差が大となり、これがため溶融池表
面には、その温度差に基つく強力な表面張力流が生じ、
溶融池前半部の溶融金属はこの#t、1% U)たぬ後
カへ運ばれハンヒンクビードト呼ハれる不連続ビード全
形成する。J溶融池前半部と後半部の温度差全小きくす
るには被溶接材の平熱が鳴動的である。そのため特願昭
56−99844号のように先行電極を非消耗電極とす
れば、非消耗電極アークで後行電極に対する局部平熱効
果が得られ、従来の1竜極のMIG法等に比べ溶接速度
が向上する。しかしMIGの溶接速度を速くするにはT
IGの溶接電流を増さなけれはならない。
In normal to IIG welding, there is a large temperature difference between the bath welding speed, the first half of the molten pool, and the sahanja, and as a result, a strong surface tension flow is generated on the molten pool surface based on the temperature difference.
The molten metal in the first half of the molten pool is transported to the rear part of this #t, 1% U) layer and completely forms a discontinuous bead called a hammer bead. In order to reduce the total temperature difference between the first half and the second half of the J molten pool, the normal temperature of the material to be welded must be pulsating. Therefore, if the leading electrode is a non-consumable electrode as in Japanese Patent Application No. 56-99844, a local normal heating effect on the trailing electrode can be obtained by the non-consumable electrode arc, and the welding speed is faster than the conventional MIG method with one dragon pole. will improve. However, to increase the welding speed of MIG, T
IG welding current must be increased.

しかしTIGの溶接邂流?増すと電流の2乗に比例して
アーク力も増加する1、そのため、TIG電流を増して
予熱効果全高めようとすると、逆にTIGのアーク力が
溶融全綱の後方への流i″L全促進させるようKM<た
め後方の流れが早くなり、ハンピングやアンダカントと
呼ばれる不良ビードを形成するようになるので大幅な溶
接速度の向上は望めない。
But TIG's welding style? When the current increases, the arc force also increases in proportion to the square of the current1. Therefore, if you try to increase the TIG current to fully enhance the preheating effect, the TIG arc force will increase the total backward flow i''L of the molten steel. Since the KM is accelerated, the backward flow becomes faster and defective beads called humping and undercants are formed, so a significant improvement in welding speed cannot be expected.

第1図uM I GiW!’1W流i 150A、 ’
ri極間距離H4mmの条件でステンレス鋼全溶接した
場合の溶接速度限界と’l’l011(流の関係會示す
。溶接速度限界はハンピング、アンダヵットビードが発
生しはじめる溶接速度でるる。TIG電流が少ない場合
、アーク力の影響が少なく、予熱効果の影響の方が大き
く溶接速度限界は高くなる。しかしTIG電流が増えて
くると低くなりTIG寛流;400Aでは予熱温度は大
幅に高くなるが、それ以上にアーク圧力の溶融金属に作
用するカが大きくなり、MIG単独の場合より低くなる
Figure 1 uM I GiW! '1W style i 150A,'
This shows the relationship between the welding speed limit and 'l'l011 (flow) when stainless steel is fully welded under the condition of ri inter-electrode distance H4mm.The welding speed limit is the welding speed at which humping and undercut beads begin to occur.TIG When the current is small, the influence of the arc force is small, and the influence of the preheating effect is greater, and the welding speed limit becomes higher.However, as the TIG current increases, it decreases, and with TIG relaxation; at 400A, the preheating temperature becomes significantly higher. However, the force of the arc pressure acting on the molten metal becomes greater than that, and becomes lower than in the case of MIG alone.

〔発明の目的〕[Purpose of the invention]

本発明は前述のような、TIGのアーク力によるハンピ
ングビードの発生全抑制して、高速度でも良好なビード
が得られる溶接法を提供°ノーるものである。
The present invention provides a welding method that completely suppresses the occurrence of humping beads due to the arc force of TIG, as described above, and can obtain good beads even at high speeds.

〔発明の概要〕[Summary of the invention]

本発明の要旨とするところは、TIGのアーク力の影#
全受けないで、先行電極の’1” I Gアークによる
予熱効果が有効的に得られる電極間距離及びアーク力の
影響が少なく、局部平熱に理想的な温度分布が得られる
TIGの被溶接材と電極先端間の距離を実験的にめ、T
 I Gを付加したMIG溶接法の高速化全実現したも
のである。第2図は被浴接材と′電極先端間の距離AL
とアーク圧力(7)関係を示す。ALが3mm以上にな
るとアーク圧力は急激に低下し、8mm以上では、AL
が1mmの約115に低下し、それ以上ではほす1一定
となる。また、第3図はALが2 m Inとgmmの
溶接進行方向と直角方向の温度分布を示すが、ALが2
ntmO曲l1ljaではアーク直下部は高温になるが
、温度分布の広がりは小さい、それに対し9mm(曲l
IMb)では広い範囲が高温に加熱される。
The gist of the present invention is that the shadow of the arc force of TIG #
The material to be welded by TIG can effectively obtain the preheating effect by the '1'' IG arc of the preceding electrode without being completely affected by the distance between the electrodes and the arc force, and can obtain an ideal temperature distribution for local normal heating. Experimentally determine the distance between T and the electrode tip, and
This is a fully realized high-speed MIG welding method with the addition of IG. Figure 2 shows the distance AL between the bathed material and the electrode tip.
and arc pressure (7). When AL is 3 mm or more, the arc pressure decreases rapidly, and when AL is 8 mm or more, AL
decreases to about 115, which is 1 mm, and beyond that the value remains constant. Also, Figure 3 shows the temperature distribution in the direction perpendicular to the welding direction when the AL is 2 m In and gmm;
In ntmO curve l1lja, the temperature immediately below the arc is high, but the spread of the temperature distribution is small.
In IMb), a wide area is heated to a high temperature.

そのため、ALは長いのが望ましい。しかし被溶接材と
′1極先端間の距離ALが13mm以上となるとTIG
アークが不安定となり、ビード外観が悪くなる1、第4
図は電極間距離と溶接速度限界の関係を示す。電極間距
離が大きくなると溶接速度限界は高くなり、10mm以
上ではほぼ一定となる。しかし16mm以上では低下す
る。これは距離が大きくなると、熱の拡散により平熱効
果が小さくなるためである。以上の結果より、電極間距
離を10〜17mm、被溶接材と電極先端の距離を8〜
12mmにすれは、MIG溶接の商運化が図れる。
Therefore, it is desirable that the AL be long. However, if the distance AL between the material to be welded and the tip of the '1 pole is 13 mm or more, TIG
1st and 4th cases where the arc becomes unstable and the bead appearance deteriorates.
The figure shows the relationship between the distance between electrodes and the welding speed limit. As the distance between the electrodes increases, the welding speed limit increases, and becomes approximately constant at 10 mm or more. However, it decreases at 16 mm or more. This is because as the distance increases, the normal temperature effect becomes smaller due to heat diffusion. From the above results, the distance between the electrodes should be 10 to 17 mm, and the distance between the material to be welded and the tip of the electrode should be 8 to 17 mm.
If the distance is less than 12mm, MIG welding can become commercially viable.

〔発明の実施例〕[Embodiments of the invention]

次に上記組合せでステンレス鋼の突合せ溶接ヲ行った例
について説明する。第5図本発明実施例の装置の構成図
である。溶接トーチは先行%極のTIGと後行電極のM
IGから構成されており直流電源1からそれぞれt光切
換回路2.7’i通って供給され被溶接材6間にアーク
7.8を発生させ浴接を行う。TIG電極はタングステ
ン電極9でありMIG!極はワイヤ送給装置4で連続的
に送給されるワイヤ10である。制御装置3は各電極に
流れる溶接電流を制御すると共に’I’IOとMIGに
交互に溶接電流を供給する制御を行う。さらvcMIG
電流に応じワイヤ送給量の指令を出す。
Next, an example in which butt welding of stainless steel was performed using the above combination will be explained. FIG. 5 is a configuration diagram of an apparatus according to an embodiment of the present invention. The welding torch is TIG for the leading electrode and M for the trailing electrode.
The IGs are supplied from the DC power supply 1 through the optical switching circuits 2.7'i, respectively, to generate an arc 7.8 between the materials 6 to be welded and perform bath welding. The TIG electrode is a tungsten electrode 9 and the MIG! The poles are wires 10 that are continuously fed by a wire feeding device 4. The control device 3 controls the welding current flowing through each electrode, and also performs control to alternately supply the welding current to 'I'IO and MIG. SaravcMIG
Issues a wire feed amount command according to the current.

ワイヤ送給制御装置5ではこの指令に基つきワイヤ送給
装置全動作させる。図示していないが、TIGとMIG
畦極で構成される溶接トーチは浴接線しこ沿って移動す
る。また溶接部及び′電極はシールドガスでおおわれる
構造となっている4、本装置金用い1板厚3n1mのス
テンレス根(SO8304)を突合せ浴接し7た。MI
GワイヤはY2O2(φ1.2)、′電極間距離はH1
2mm、被溶接材と非消耗電極先端の距離i9n1m、
切換周波数; 200H2,シールドガスAr、TIG
亀i、390A。
The wire feeding control device 5 operates the entire wire feeding device based on this command. Although not shown, TIG and MIG
A welding torch consisting of a ridge pole moves along the bath tangent line. In addition, the welded part and the 'electrode have a structure in which they are covered with shielding gas4. A stainless steel base (SO8304) with a thickness of 3n1m was butt-welded7 using this device.7. M.I.
G wire is Y2O2 (φ1.2), distance between electrodes is H1
2mm, distance between the material to be welded and the tip of the non-consumable electrode i9n1m,
Switching frequency; 200H2, shield gas Ar, TIG
Turtle i, 390A.

MIGz流;150Aの条件で溶接したところ浴接速度
3 m / 011 nで、裏波ビードも裏向で、余盛
りの少ない平滑な溶接ビードが得られた。
When welding was performed under the conditions of MIGz flow: 150 A, a smooth weld bead with little excess buildup was obtained at a bath contact speed of 3 m/011 n, with the uranami bead facing backwards.

サラに厚さ5 m mのステンレス板でも、MIGti
;200A、TIG’Ki;450Aで、2m/ m 
i nの高速で良好なビードを得ることができた。実施
例の溶接ではMIG4Thのみを溶接進行方向と反対方
向に垂直面より20°#4けた(前進角)が、両電極を
傾けても良い。
Even with a stainless steel plate as thick as 5 mm, MIGti
;200A, TIG'Ki;450A, 2m/m
A good bead could be obtained at high speed. In the welding of the embodiment, only the MIG4Th was moved 20 degrees #4 orders of magnitude (advance angle) from the vertical plane in the direction opposite to the welding direction, but both electrodes may be tilted.

〔発明の効果〕〔Effect of the invention〕

TIGのアーク力の影響が少なく、MIGアークの予熱
効果全有効的に利用できるため、MIG溶接の商運化が
図れる。そのため浴接能率が者しく向上する。。
Since the influence of the TIG arc force is small and the preheating effect of the MIG arc can be fully utilized, commercialization of MIG welding can be achieved. Therefore, bathing efficiency is significantly improved. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図μ従来法でのT 11 G溶徽喝流と酊接速度限
界の関1糸を示す線図、第2図はTiG電極先端と被浴
接材間の距離とアーク力の関係を示す線図、第3図は温
度分布を示す線図、第4図はI−極間距離と溶接速度限
界の関係を示すIfM図、第5図は本発明法を実施する
装置の例のブロック図である。 1・・・溶接電源、2.2’・・・電流切換回路、3・
・・制御装置、4・・・ワイヤ送給装置、5・・・ワイ
ヤ送給制御ゲステン電極(TIG)、1(1・・・ワイ
ヤ第1図 桔70 を梅先蝋と砿うI材間り距島隻At−師弧)帆3の 第年国 電極/’/]距離ノ(rh側ジ
Figure 1 shows the relationship between the T 11 G welding flow and the welding speed limit in the conventional method. Figure 2 shows the relationship between the distance between the TiG electrode tip and the welded metal and the arc force. 3 is a diagram showing the temperature distribution, FIG. 4 is an IfM diagram showing the relationship between the I-electrode distance and the welding speed limit, and FIG. 5 is a block diagram of an example of a device implementing the method of the present invention. It is a diagram. 1... Welding power source, 2.2'... Current switching circuit, 3.
... Control device, 4... Wire feeding device, 5... Wire feeding control Gesten electrode (TIG), 1 (1... Wire 70 in Figure 1 between Umesaki wax and I material to be heated ritoshima ship At-shi arc) sail 3 year country electrode /'/] distance no (rh side di

Claims (1)

【特許請求の範囲】[Claims] 1、各電極に交互に溶接電流を流してなるT I G溶
接とMIG浴接を組合せた溶接法において、先行の電極
をTIGとし、かつTIG%極の電極先端と被浴接材間
の距離?]l−8〜121旧nとすると共に、両電極の
中心線の延長が被浴接材上で交わる電極間比*’に4〜
17mmとすることを特徴とする高速MIG溶接法。
1. In a welding method that combines TIG welding and MIG bath welding in which welding current is passed alternately through each electrode, the preceding electrode is TIG, and the distance between the electrode tip of the TIG% electrode and the bathed material ? ]l-8~121 Old n, and the electrode ratio *' where the extensions of the center lines of both electrodes intersect on the bathed material is 4~
A high-speed MIG welding method characterized by a welding process of 17 mm.
JP19909583A 1983-10-26 1983-10-26 High-speed mig welding method Pending JPS6092084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19909583A JPS6092084A (en) 1983-10-26 1983-10-26 High-speed mig welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19909583A JPS6092084A (en) 1983-10-26 1983-10-26 High-speed mig welding method

Publications (1)

Publication Number Publication Date
JPS6092084A true JPS6092084A (en) 1985-05-23

Family

ID=16402031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19909583A Pending JPS6092084A (en) 1983-10-26 1983-10-26 High-speed mig welding method

Country Status (1)

Country Link
JP (1) JPS6092084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099755A (en) * 2011-11-07 2013-05-23 Toyota Motor Corp Arc welding method
WO2013118865A1 (en) * 2012-02-08 2013-08-15 大陽日酸株式会社 Composite welding method and welding torch for composite welding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099755A (en) * 2011-11-07 2013-05-23 Toyota Motor Corp Arc welding method
WO2013118865A1 (en) * 2012-02-08 2013-08-15 大陽日酸株式会社 Composite welding method and welding torch for composite welding
JP2013158826A (en) * 2012-02-08 2013-08-19 Taiyo Nippon Sanso Corp Method of composite welding and welding torch for composite welding
US9925622B2 (en) 2012-02-08 2018-03-27 Taiyo Nippon Sanso Corporation Hybrid welding method and welding torch for hybrid welding

Similar Documents

Publication Publication Date Title
Palani et al. Selection of parameters of pulsed current gas metal arc welding
CN108581142B (en) Ultrahigh-speed double-wire co-molten pool gas metal arc welding process
CN110369829B (en) Electro-gas welding device and welding method
CN104842048A (en) Argon tungsten-arc welding and cold metal transition welding composite heat source welding device and method and application
JPH0399780A (en) Method of gas metal arc welding of aluminum base work
US3171944A (en) Method of submerged arc welding of fillet welds
CN103551711A (en) High-efficiency single-pass one-side welding with back formation method for moderately thick plate butting
CN110497065B (en) Variable-polarity three-wire gas-shielded indirect arc welding method and device and application thereof
WONTHAISONG et al. High-efficiency and low-heat-input CO2 arc-welding technology for butt joint of thick steel plate using hot wire
JPS6092084A (en) High-speed mig welding method
JP2002219571A (en) Control method for three electrode arc welding
JP3423467B2 (en) High speed gas shielded arc welding apparatus and method
JPS5573479A (en) Tandem system high speed arc welding method
US4100389A (en) Method of high speed gas shielded arc welding
US3854028A (en) High speed vertical electro-slag welding
JP3867164B2 (en) Welding method
JPH05337650A (en) Consumable electrode arc welding method
Moinuddin et al. Multiple-Wire Welding GMAW and SAW
JPH03234368A (en) Root running method for narrow groove welding
JPS5927773A (en) Single side welding method
US3610868A (en) Submerged-welding method
JP2778628B2 (en) Welding method using bioceramic
JPS6045034B2 (en) DC TIG weaving welding method
JPH071126A (en) Automatic horizontal position one side welding method
JPS60118386A (en) Submerged arc welding method