JPS6091301A - Total reflection prism - Google Patents

Total reflection prism

Info

Publication number
JPS6091301A
JPS6091301A JP58200464A JP20046483A JPS6091301A JP S6091301 A JPS6091301 A JP S6091301A JP 58200464 A JP58200464 A JP 58200464A JP 20046483 A JP20046483 A JP 20046483A JP S6091301 A JPS6091301 A JP S6091301A
Authority
JP
Japan
Prior art keywords
prism
total reflection
light
base
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58200464A
Other languages
Japanese (ja)
Other versions
JPH0254921B2 (en
Inventor
Shunichiro Wakamiya
俊一郎 若宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP58200464A priority Critical patent/JPS6091301A/en
Publication of JPS6091301A publication Critical patent/JPS6091301A/en
Publication of JPH0254921B2 publication Critical patent/JPH0254921B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To obtain a total reflection prism with a 100% reflection factor by making the reflection direction of 45 deg. incident light on an incidence surface coincident with the light beam direction in which the incident light is reflected totally by reflection surface and then projected through the incidence surface. CONSTITUTION:The total reflection prism is sectioned in an isosceles trapezoid shape, and has the base as the incidence surface and other flanks and the top as total reflection surfaces. The respective surfaces are so formed that when the incident light is at 45 deg. to the base, the light beam projected from the base after total reflection on both sides and the base is at 90 deg. to the incident light as well as the light beam reflected directly by the base. Then, gamma=45 deg.+sin<-1>(2<1/2>/2n) where gamma is the angle of the base to both side reflecting surfaces and (n) is the refractive index of the prism, and the ratio b/a of the length (a) of the base and the distance (b) to the height of the trapezoid is b/a=2singamma/(singamma+cosgamma).

Description

【発明の詳細な説明】 本発明は、入射光線束を90°反射屈曲させる全反射プ
リズムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a total reflection prism that reflectively bends an incident light beam by 90 degrees.

入射光線束を入射方向から80°方向に偏向させるには
従来、入射光路に対し45°傾けた、いわゆる45° 
ミラーが一般的に用いられている。この45° ミラー
は、レーザの様な単一波長の光源を用いる光学装置の中
にもしばしば用いられているが、多くの場合これらの光
学装置において、反射の際のエネルギロスを無くすこと
、つまり反射率を100%にすることが望まれる。しか
し反射率が10ozのミラーというのは極めて実現困難
である。一般的に用いられる456 ミラーは、第1図
に示すように、基板11の表面に、金属あるいは誘電体
多層のミラー膜12を施した表面鏡からなるものである
が、ミラー膜12を金属膜とする場合、代表的に用いら
れるAIの場合で反射率85z、またAgの場合で95
%程度の反射率しか得られない。他方誘電体多層膜の場
合、理論的には膜の数を増していけば、反射率を119
.9%以上と100%に近づけることが可能であるが、
膜の暦数が増えるに従い製造技術あるいは製造コスト上
の問題点が発生する。またtJ’、2図に示すようなプ
リズムの全反射を利用した断面三角形の光゛偏向プリズ
ム13も知られているが、このプリズム13では、光路
と45°の角度をなす反射面Qで100%の反射率が得
られても、光路と直角をなす入射面Pおよび出射面Rで
の反射を完全に零にすることはできないので、トータル
として入射のエネルギIOを100X、906方向に偏
向させることはできない。
Conventionally, in order to deflect the incident light beam in the direction of 80° from the incident direction, it is conventionally necessary to deflect the incident light beam at 45° with respect to the incident optical path, so-called 45°.
Mirrors are commonly used. This 45° mirror is often used in optical devices that use single-wavelength light sources such as lasers, but in many cases, these optical devices are used to eliminate energy loss during reflection, that is, to eliminate energy loss during reflection. It is desired that the reflectance be 100%. However, it is extremely difficult to realize a mirror with a reflectance of 10 oz. A commonly used 456 mirror consists of a surface mirror in which a metal or dielectric multilayer mirror film 12 is formed on the surface of a substrate 11, as shown in FIG. In the case of typically used AI, the reflectance is 85z, and in the case of Ag, the reflectance is 95z.
% reflectance can only be obtained. On the other hand, in the case of dielectric multilayer films, theoretically, if the number of films is increased, the reflectance can be increased to 119
.. Although it is possible to get close to 100% at 9% or more,
As the number of membranes increases, problems arise in terms of manufacturing technology or manufacturing costs. In addition, a light deflecting prism 13 with a triangular cross section that utilizes total reflection of the prism as shown in Fig. Even if a reflectance of % is obtained, it is not possible to completely reduce the reflection at the entrance plane P and exit plane R, which are perpendicular to the optical path, so the total incident energy IO is deflected in the 100X, 906 direction. It is not possible.

本発明は、反射率を100%とし得る全反射プリズムを
目的になされたもので、基本的には、入射面に対し45
°の方向をなして入射する入射光線が該入射面で反射す
る光線の方向と、入射面から入射した後反射面で全反射
してから該入射面を通して出射する光線の方向とを一致
させることにより、反射率が実質的に1001の全反射
プリズムを得るという発想に基づいてなされたものであ
る。
The present invention was made for the purpose of a total reflection prism that can achieve a reflectance of 100%, and basically has a reflectance of 45
The direction of the incident light ray that enters in the direction of ° is reflected by the incident surface, and the direction of the light ray that enters from the incident surface, is totally reflected by the reflective surface, and then exits through the incident surface. This was done based on the idea of obtaining a total reflection prism with a reflectance of substantially 1001.

二のような発想に基づいて完成された本発明の全反射プ
リズムは、基本的には、底面と、この底面と平行な上面
と、上記底面に対し鋭角をなし[二面に対し鈍角をなす
左右対称の両側反射面とを有する、断面等脚台形をなし
ていて、底面が入射面、他の両側面および上面が全反射
面を構成する。そしてこれらの各面は、底面に対し45
°の角度をなして入射し、両側反射面および上面で全反
射した後上記底面から出射する光線の方向が、上記底面
で直接反射する光線の方向と同じく入射光に対し90°
の角度をなすように、その位置および各面間の角度が設
定されている。
The total reflection prism of the present invention, which was completed based on the idea mentioned above, basically has a bottom surface, a top surface parallel to this bottom surface, and an acute angle to the bottom surface [an obtuse angle to the two surfaces]. It has an isosceles trapezoid cross section with symmetrical reflecting surfaces on both sides, with the bottom surface forming an incident surface and the other both side surfaces and the top surface forming total reflection surfaces. and each of these faces is 45
The direction of the ray of light that enters at an angle of 90 degrees and exits from the bottom surface after being totally reflected on both reflective surfaces and the top surface is 90 degrees to the incident light, which is the same as the direction of the ray that is directly reflected on the bottom surface.
The position and the angle between each surface are set so as to form an angle of .

さらにこのような全反射プリズムは、具体的には少なく
とも、底面と両側反射面とのなす鋭角をγ、プリズムの
屈折率をnとしたとき、7 = 45” +sin→ 
(# / 21+) とし、かつ、底面の長さaと、底
面から上面迄の距#bとの比b/aを、 b/a=2s in y / (s in y +co
s y )の関係を満足するように作成すると得られる
Furthermore, such a total reflection prism has at least the following equation: 7 = 45" + sin→
(# / 21+), and the ratio b/a of the length a of the bottom surface to the distance #b from the bottom surface to the top surface is b/a=2s in y / (s in y +co
It can be obtained by creating it so as to satisfy the relationship s y ).

以下図示実施例について本発明を説明する。第3図は本
発明り第一の実施例を示すもので、プリズムの屈折率n
が、n=1.50の場合の具体的形状例およびそのとき
の光路例を示している。この全反射プリズムは、底面2
0、この底面20と平行なに1面21、および底面20
と上面21を結ぶ左右対称の両側面22.22からなっ
ていて、両側面22は底面20に対し鋭角γをなし、シ
超がって1−面21に対しては鈍角をな−し、全体とし
て断面各脚台形をなしている。
The invention will now be described with reference to the illustrated embodiments. FIG. 3 shows the first embodiment of the present invention, in which the refractive index n of the prism is
shows a specific example of the shape when n=1.50 and an example of the optical path at that time. This total reflection prism has a bottom surface 2
0, a surface 21 parallel to this bottom surface 20, and the bottom surface 20
It consists of both symmetrical side surfaces 22 and 22 connecting the upper surface 21 and the upper surface 21, and the both side surfaces 22 form an acute angle γ with the bottom surface 20, and extend beyond the surface and form an obtuse angle with the 1-surface 21. The cross section as a whole is trapezoidal with each leg.

そして底面20の長さをaとし、台形の高さ、すなわち
底面20と上面21の距離をbとすると、このa、bお
よび上記γは上記各条−件を満たしている。すなわちy
=73.13’ 、 b=1.535aとなっている。
If the length of the bottom surface 20 is a, and the height of the trapezoid, that is, the distance between the bottom surface 20 and the top surface 21 is b, then a, b, and the above-mentioned γ satisfy each of the above conditions. That is, y
=73.13', b=1.535a.

上記構成の全反射プリズムにおいて、底面20の中央の
A点に、入射角45°で光線を入射させると、底面20
における反射率に応じ、一部は底面20表面で入射方向
に対し90@をなす方向に反射される。入射光のエネル
ギをIQ、底面20における反射率をRとすると、この
表面反射によって入射方向と80″をなす方向に偏向さ
れる光のエネルギはIORである。Hの値は、もしこの
底面20に何らのコーティングが施されていない場合は
n=o、o4([)であるが、適当なコーティングを施
してHの値がこれ以外の任意の値をとったとしても、光
の吸収がないコーティングであれば本発明は成立する。
In the total reflection prism with the above configuration, when a light beam is incident on point A at the center of the bottom surface 20 at an incident angle of 45°, the bottom surface 20
Depending on the reflectance at , a part of the light is reflected by the surface of the bottom surface 20 in a direction 90@ with respect to the incident direction. If the energy of the incident light is IQ, and the reflectance at the bottom surface 20 is R, then the energy of the light deflected by this surface reflection in a direction 80" from the incident direction is IOR. The value of H is, if this bottom surface 20 If there is no coating applied to the The present invention can be applied as long as it is a coating.

他方底面20表面により反射された光エネルギの残り、
すなわちI o (1−R)は本プリズムの中に入って
いく。この光は底面20で屈折の法則に従う角度α(本
例の場合はα−28,13’ )でプリズムの中を進み
、側面22のB点で90°偏向の反射を受け、次に上面
21の0点に入射角β(本例の場合はn=81.8?°
)で入射する。0点に入射した光はここで反射され、次
の側面22の0点で再び90″偏向の反射を受けてA点
に戻ってくる。B。
The remainder of the light energy reflected by the other surface of the bottom surface 20;
That is, I o (1-R) enters the present prism. This light travels through the prism at the bottom surface 20 at an angle α (α-28,13' in this example) according to the law of refraction, is reflected at point B on the side surface 22 with a 90° deflection, and then is reflected at the top surface 21. The angle of incidence β (in this example, n = 81.8°
) is incident. The light incident on the 0 point is reflected here, and is reflected again at the 0 point on the next side surface 22 with a deflection of 90'' and returns to the A point.B.

点、0点および0点における反射率は、これら各点への
入射角がいずれもプリズムの臨界角(本例の場合は41
.81°)より大きいので100% (全反射)となり
、結局本プリズムへ入射した光のエネルギI o (1
−R)は、そのままA点に戻ることになる。ここで光の
エネルギは再び底面2oを透過するものと、底面20で
反射するものとに分けられるが、I o (1−R)(
1−R)のエネルギがプリズムの外へ出て、最初に底面
20で反射した光と同じく、IOの入用方向と90’を
なす方向へ放出される。
The reflectance at point, 0 point, and 0 point is determined by the fact that the angle of incidence at each point is the critical angle of the prism (in this example, 41
.. 81°), so it becomes 100% (total reflection), and the energy of the light incident on the prism ends up being I o (1
-R) will return to point A as it is. Here, the energy of the light is again divided into what passes through the bottom surface 2o and what is reflected by the bottom surface 20, but I o (1-R) (
1-R) exits the prism and is emitted in a direction 90' to the direction of use of the IO, similar to the light initially reflected at the bottom surface 20.

一方I Q (1−R)Rのエネルギ分は、再びプリズ
ム内へ反射され、最初の入射光と同じにB点、C点およ
びD点の全反射を受けてA点に戻り、ここで10 (1
−R) 2 Rの光が、工0の入射方向と80” をな
す方向へ放出される。
On the other hand, the energy I (1
-R) 2 R light is emitted in a direction that is 80" from the incident direction of beam 0.

このような繰り返し反射が本プリズム内で行なわれる結
果、入射光に対して90’方向に偏向される光の総エネ
ルギエは、その繰り返し反射の分を無限に足し合わせて
、 I=IoR+Io(1−R)2+ Io(1−R) 2
R+l0(1−R)zR2+l0(1−R)2R’+ 
−i = I O(R÷(1−R)2(++R+R2+
R3# # e ))となる。
As a result of such repeated reflections occurring within this prism, the total energy of the light that is deflected in the 90' direction relative to the incident light is obtained by adding up the repeated reflections infinitely, and is given by: I=IoR+Io(1- R)2+ Io(1-R)2
R+l0(1-R)zR2+l0(1-R)2R'+
-i = I O(R÷(1-R)2(++R+R2+
R3##e)).

R<1であるので、この無限級数は結局I = I o
 (R+(1−R)2/(1−R)) = I 。
Since R<1, this infinite series ends up being I = I o
(R+(1-R)2/(1-R)) = I.

となり、すべての入射光エネルギが入射方向と90度を
なす方向へ偏向されることとなる。つまり本プリズムの
反射率は100%である。
Therefore, all of the incident light energy is deflected in a direction that is 90 degrees to the incident direction. In other words, the reflectance of this prism is 100%.

なおこの例において底面2oに入射させ得る有効な光線
束の大きさは、第3図の破線で示す範囲で、底面20の
長さをaを用いると、0 、202aの直径として表す
ことができる。
In this example, the size of the effective beam of light that can be incident on the bottom surface 2o is within the range shown by the broken line in FIG. .

第4図は本発明の第二の実施例を示すもので、プリズム
の月1折率nがn=2.0の場合の例を示している。こ
のとき底面20と側面22のなす鋭角γは、上述の式か
ら、γ−85.71°、底面2oの長さaと台形の高さ
bの比は、b=1.38?aとなる。そしてこの実施例
では、底面2oに対して入射45°で入射し、屈折角α
(α−20,70” )で本プリズム内に入っていった
光線は、B点およびD点の入射角がともに45°、C点
の入射角βがβ=f19.30° となり、いずれもこ
のプリズムの臨界角30’ を超えるので、第一の実施
例と全く同様に、入射光エネルギの100%を90″偏
向させることができる。
FIG. 4 shows a second embodiment of the present invention, in which the monthly refraction index n of the prism is n=2.0. At this time, the acute angle γ between the bottom surface 20 and the side surface 22 is calculated from the above equation as γ-85.71°, and the ratio of the length a of the bottom surface 2o to the height b of the trapezoid is b=1.38? It becomes a. In this embodiment, the incident angle is 45° to the bottom surface 2o, and the refraction angle α
(α-20,70”), the incident angles at points B and D are both 45°, and the angle of incidence β at point C is β=f19.30°. Since the critical angle 30' of this prism is exceeded, 100% of the incident light energy can be deflected by 90'', just like in the first embodiment.

またこの実施例において有効な入射光線の径は、第5 
INの破線で囲まれる部分で、底面20の長さaを用い
て0.101aの直径として弄すことかできる。そして
、この破線で示す光線束の範囲から分るように、プリズ
ムはこの範囲だけが使用され、他の部分は使用されない
。よって第4図のように、側面22.22の光線が通過
しない部分をカットしても、100%反射の全反射プリ
ズムの機能は全く失われない。第一の実施例についても
同様である。
Furthermore, in this example, the effective diameter of the incident light beam is the fifth
In the part surrounded by the broken line IN, the length a of the bottom surface 20 can be used to manipulate the diameter as 0.101a. As can be seen from the range of the light beam indicated by this broken line, only this range of the prism is used, and the other parts are not used. Therefore, as shown in FIG. 4, even if the portions of the side surfaces 22 and 22 through which the light rays do not pass are cut, the function of the 100% total reflection prism is not lost at all. The same applies to the first embodiment.

以上のように本発明の全反射プリズムによれは、100
%の反04率で光線を90°偏向させることかできるの
で、一般の反射物体の反射率を測定する場合の参照反射
物体として用いることができる。
As described above, the total reflection prism of the present invention has a total reflection rate of 100
Since it is possible to deflect a light beam by 90 degrees with a 04% ratio, it can be used as a reference reflective object when measuring the reflectance of a general reflective object.

すなわち従来例えば45° ミラーの反射率を測定する
には、第5図のように、同一の受光素子30を用いて被
験45° ミラー31への入射前の光のエネルギIO,
および反射後の光のエネルギIを測定し、反射率RをR
= I/Ioとして測定していたのであるが、この測定
方法は受光素子30を移動させねばならない点で装置が
複雑になる。ところが本発明の全反射プリズムによれば
、これを参照物体として用い、市販の複光束分光器等を
用いて、被験体に反射した後の光エネルギと、水金反射
プリズムで反射した光のエネルギとの比をめれば、容易
に被験体の反射率を測定することができる。
That is, conventionally, in order to measure the reflectance of a 45° mirror, for example, as shown in FIG.
and the energy I of the light after reflection is measured, and the reflectance R is determined by R
= I/Io, but this measurement method requires the light receiving element 30 to be moved, which complicates the apparatus. However, according to the total reflection prism of the present invention, using this as a reference object and using a commercially available double beam spectrometer, the light energy after being reflected on the subject and the energy of the light reflected by the water-metal reflecting prism can be determined. By calculating the ratio, the reflectance of the subject can be easily measured.

この細氷発明の全反射プリズムの効果を列挙すると次の
通りである。
The effects of the total reflection prism of this thin ice invention are listed below.

(1)底面、上面および両側面の研磨面に何等の反射増
加膜あるいは反射防止膜を施さなくとも、入射光のエネ
ルギを100鬼、90″偏向させることができるので、
安価な高反射プリズムの製作がijf能となる。
(1) The energy of the incident light can be deflected by 100 degrees and 90 inches without applying any reflection-enhancing film or anti-reflection film to the polished surfaces of the bottom, top, and both side surfaces.
It is possible to manufacture inexpensive high-reflection prisms.

(2)逆に光の入射する底面には光の吸収を伴なわない
透明膜であれば、どのようなものが付いていても、光の
エネルギをtoot、 90°方向に偏向させることが
できるという効果は失われないので、上面と両側面の全
反射面の保護を十分に行なっておけば、底面の汚れに強
い長期使用、保存に耐える高反射プリズムが得られる。
(2) Conversely, as long as there is a transparent film that does not absorb light on the bottom surface where light enters, it is possible to deflect the light energy in the 90° direction no matter what kind of material is attached to it. This effect is not lost, so if the total reflection surfaces on the top and both sides are sufficiently protected, a highly reflective prism that is resistant to dirt on the bottom and can be used and stored for a long time can be obtained.

(3) 100%反射、90°偏向の効果は、入射光の
偏向状態の如何に拘わらず変化しないので、光学系に起
因する偏向状態の変化に影響されない安定した高反射プ
リズムが得られる。
(3) Since the effects of 100% reflection and 90° deflection do not change regardless of the polarization state of the incident light, a stable high-reflection prism that is not affected by changes in the polarization state caused by the optical system can be obtained.

(4)ト述のように、他の反射ミラーや反射プリズム等
の被験体の反射率を測定する際の参照ミラーとして使用
することができ、入射角45°の反射率(絶対反射率)
測定が容易となる。
(4) As mentioned above, it can be used as a reference mirror when measuring the reflectance of objects such as other reflective mirrors and reflective prisms, and the reflectance at an incident angle of 45° (absolute reflectance)
Measurement becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の45° ミラーの例を示す概念図。 第2図は従来の全反射面を利用した光偏向プリズムの概
念図、第3図、第4図はそれぞれ本発明の全反射プリズ
ムの実施例を示す断面図、第5図は従来の反射物体の反
射率先測定する際の原理図で20・・・底面、21・、
・上面、221.、側面。 同代理人 三 Ml) 邦 大 筒Hat 第2図 第5図 ”=30 第3図 第4■
FIG. 1 is a conceptual diagram showing an example of a conventional 45° mirror. Fig. 2 is a conceptual diagram of a conventional light deflection prism using a total reflection surface, Figs. 3 and 4 are cross-sectional views showing examples of the total reflection prism of the present invention, and Fig. 5 is a conventional reflection object. The principle diagram when measuring the reflectance of 20... bottom surface, 21...
・Top surface, 221. ,side. Same agent 3 Ml) Kuni Otsutsu Hat Figure 2 Figure 5” = 30 Figure 3 Figure 4 ■

Claims (1)

【特許請求の範囲】[Claims] (1)底面と、この底面と平行な上面と、上記底面に対
し鋭角をなし上面に対し鈍角をなす左右対称の両側反射
面とを有するプリズムであって、上記底面に対し45°
の角度をなして入射し、両側反射面および上面で全反射
した後上記底面から出射する光線の方向が、上記底面で
直接反射する光線の方向と同じく入射光に対し90’の
角度をなすように上記各面の位置および各面間の角度を
設定したことを特徴とする全反射プリズム。 (2、特許請求の範囲第1項において、底面と両側反射
面とのなす鋭角γは、プリズムの屈折率をnとして、 γ=45° +s in−’ (J / 2n)であり
、 底面の長さaと、底面から上面迄の距離すとの比b/a
は、 b/a=2siny / (siny +cosγ)の
関係を満足する全反射プリズム。
(1) A prism having a bottom surface, a top surface parallel to the bottom surface, and symmetrical reflecting surfaces on both sides forming an acute angle with the bottom surface and an obtuse angle with the top surface, the prism having a 45° angle with respect to the bottom surface.
The direction of the ray of light that enters at an angle of A total reflection prism characterized in that the positions of the above-mentioned surfaces and the angles between the respective surfaces are set. (2. In claim 1, the acute angle γ between the bottom surface and the reflective surfaces on both sides is γ=45° + sin-' (J/2n), where n is the refractive index of the prism, and Ratio of length a to distance from bottom to top surface b/a
is a total reflection prism that satisfies the relationship b/a=2siny/(siny+cosγ).
JP58200464A 1983-10-26 1983-10-26 Total reflection prism Granted JPS6091301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58200464A JPS6091301A (en) 1983-10-26 1983-10-26 Total reflection prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58200464A JPS6091301A (en) 1983-10-26 1983-10-26 Total reflection prism

Publications (2)

Publication Number Publication Date
JPS6091301A true JPS6091301A (en) 1985-05-22
JPH0254921B2 JPH0254921B2 (en) 1990-11-26

Family

ID=16424743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58200464A Granted JPS6091301A (en) 1983-10-26 1983-10-26 Total reflection prism

Country Status (1)

Country Link
JP (1) JPS6091301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058097A1 (en) * 2005-11-18 2007-05-24 Matsushita Electric Industrial Co., Ltd. Prism, imaging device and illumination device that have the same, and method of producing prism
WO2007060835A1 (en) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. Prism, imaging device and lighting device with the same, and method of producing prism
WO2015146721A1 (en) * 2014-03-26 2015-10-01 株式会社フジクラ Light guide device, manufacturing method, and ld module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058097A1 (en) * 2005-11-18 2007-05-24 Matsushita Electric Industrial Co., Ltd. Prism, imaging device and illumination device that have the same, and method of producing prism
WO2007060835A1 (en) * 2005-11-24 2007-05-31 Matsushita Electric Industrial Co., Ltd. Prism, imaging device and lighting device with the same, and method of producing prism
WO2015146721A1 (en) * 2014-03-26 2015-10-01 株式会社フジクラ Light guide device, manufacturing method, and ld module
CN106104343A (en) * 2014-03-26 2016-11-09 株式会社藤仓 Guiding device, manufacture method and LD module
US20170010417A1 (en) * 2014-03-26 2017-01-12 Fujikura Ltd. Light guiding device, manufacturing method, and ld module
US9864142B2 (en) 2014-03-26 2018-01-09 Fujikura Ltd. Light guiding device, manufacturing method, and LD module

Also Published As

Publication number Publication date
JPH0254921B2 (en) 1990-11-26

Similar Documents

Publication Publication Date Title
US4440468A (en) Planar waveguide bragg lens and its utilization
US3420596A (en) Apparatus including guide plate means and multiple internal reflective prism means for launching and transmitting surface-guided optical waves
US5066990A (en) Reflector system for michelson interferometers
KR100354377B1 (en) Directed reflection optical device
US5333090A (en) Optical coating for reflecting visible and longer wavelength radiation having grazing incidence angle
US7352512B2 (en) Compact self-compensating beam splitter apparatus and method of using
US4676643A (en) Ring laser gyro readout assembly simplification with adjustment capability
JP3034899B2 (en) Encoder
JPS60221723A (en) Apparatus for dividing laser beam
US5619382A (en) Reflection type imaging optical system
US5117305A (en) Modified retroreflector
JPS6091301A (en) Total reflection prism
JPS60140301A (en) Recurrent reflector
US5083866A (en) Method for monitoring alignment using a modified retroreflector
US20010024329A1 (en) Beamsplitter
EP0370071B1 (en) Partly transparent mirror for a ring laser gyro
US5377010A (en) Air path beam combining optics for a ring laser
US3804487A (en) Optical input coupler for a light guide
JP3502475B2 (en) Straightness measuring device
JP2764440B2 (en) Anamorphic prism
JPH0643305A (en) Optical coupler film
US20240111171A1 (en) Low-speckle laser line generator
SU1674038A1 (en) Band-pass reflecting polaroid filter
Sawada et al. Integrated micro-laser displacement sensor
JPH0436702A (en) Optical retroreflection quipment