JPS609098Y2 - Steering force control device in power steering device - Google Patents

Steering force control device in power steering device

Info

Publication number
JPS609098Y2
JPS609098Y2 JP10230578U JP10230578U JPS609098Y2 JP S609098 Y2 JPS609098 Y2 JP S609098Y2 JP 10230578 U JP10230578 U JP 10230578U JP 10230578 U JP10230578 U JP 10230578U JP S609098 Y2 JPS609098 Y2 JP S609098Y2
Authority
JP
Japan
Prior art keywords
hydraulic pressure
passage
hydraulic
steering
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10230578U
Other languages
Japanese (ja)
Other versions
JPS5591766U (en
Inventor
茂 真鍋
正光 阪井
周三 平櫛
Original Assignee
光洋精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光洋精工株式会社 filed Critical 光洋精工株式会社
Priority to JP10230578U priority Critical patent/JPS609098Y2/en
Publication of JPS5591766U publication Critical patent/JPS5591766U/ja
Application granted granted Critical
Publication of JPS609098Y2 publication Critical patent/JPS609098Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、動力舵取装置における操舵力制御装置、殊
に高速走行時における操舵のフィーリングを向上させた
操舵力制御装置に関する。
[Detailed Description of the Invention] This invention relates to a steering force control device in a power steering system, and particularly to a steering force control device that improves the feeling of steering during high-speed running.

従来の動力舵取装置は、運転者の操舵力の軽減を主眼と
して開発されて来た。
Conventional power steering devices have been developed with a focus on reducing the steering force of the driver.

しかし運転上、路面抵抗に応じた操舵感覚を得るように
することが好ましく、従来はそのためにサーボ機構内に
反動室を設け、操作油圧による力を操舵反力としてフィ
ードバックする型式のものが採用されている。
However, in driving, it is desirable to obtain a steering sensation that corresponds to road resistance, and conventionally, a reaction chamber has been provided in the servo mechanism to feed back the force generated by the operating hydraulic pressure as a steering reaction force. ing.

ところがこのものは、その反力が操舵負荷のみに比例し
て車速には直接に関係しない。
However, in this case, the reaction force is proportional only to the steering load and is not directly related to the vehicle speed.

従って特に高速走行時におけるフィーリングが悪化して
運転者に大きな不安感を与える欠点がある。
Therefore, there is a drawback that the feeling is deteriorated especially when driving at high speeds, giving the driver a great sense of anxiety.

さらに反動室においてその反力受圧面積を種々に調整し
、低速、高速時の中間の妥協点で反力を設定しているが
、フィーリングの向上のためには、操舵力が低速時には
小さく、高速時には大きくなることが望ましい。
Furthermore, the reaction force receiving area in the reaction chamber is adjusted in various ways, and the reaction force is set at a compromise between low speed and high speed, but in order to improve the feeling, the steering force is small at low speed, and the reaction force is set at a compromise between low speed and high speed. It is desirable that it be larger at high speeds.

この考案は以上のような従来装置の欠点を解消して、高
速走行時の操舵トルクを車速に対応して変化させ、その
フィーリングを向上させると共に、低速時のハンドル操
作を軽快に行い、理想的な操舵特性が得られる操舵力制
御装置を提供することを目的とし、かつその作動の安定
性、応答性を向上させ、また反動作用特性の調整を容易
となすものである。
This idea eliminates the shortcomings of the conventional devices as described above, changes the steering torque at high speeds in accordance with the vehicle speed, improves the steering feel, and makes the steering wheel easier to operate at low speeds, making it ideal. The object of the present invention is to provide a steering force control device that can obtain a steering characteristic that is similar to that of the present invention, improves the stability and responsiveness of its operation, and facilitates the adjustment of reaction characteristics.

実施例について説明すれば、第1図において、1は周知
の操舵制御弁機構を有する操舵制御弁室であって、油圧
ポンプ2によりタンク3の流体を主回路4を介して供給
され、渓流回路を経てタンク3に流体を渓流させる。
To explain an embodiment, in FIG. 1, reference numeral 1 denotes a steering control valve chamber having a well-known steering control valve mechanism, to which fluid from a tank 3 is supplied by a hydraulic pump 2 through a main circuit 4, and a mountain stream circuit. The fluid flows into the tank 3 through the mountain stream.

この種の機構は周知のように、路面抵抗の増大に伴ない
、操舵制御弁室1の液圧が上昇して操舵トルクの補助を
行う。
As is well known, in this type of mechanism, as road resistance increases, the hydraulic pressure in the steering control valve chamber 1 increases to assist the steering torque.

5は液圧反動室であって、操舵制御弁室1の液圧が上昇
すると、主回路4を介して該室5に供給される液圧が上
昇するようになっている。
5 is a hydraulic reaction chamber, and when the hydraulic pressure in the steering control valve chamber 1 increases, the hydraulic pressure supplied to the chamber 5 via the main circuit 4 increases.

以上において、主回路4と連通して、操舵制御弁室1の
液圧を液圧反動室5に伝達する液圧通路6に、操舵力制
御機構7を設ける。
In the above, the steering force control mechanism 7 is provided in the hydraulic pressure passage 6 that communicates with the main circuit 4 and transmits the hydraulic pressure of the steering control valve chamber 1 to the hydraulic reaction chamber 5.

操舵力制御機構7は、前記液圧通路6と液圧反動室5に
連通する液圧通路8と、該通路8から分岐して固定絞り
9を有し、タンク3への渓流通路11に連通ずる分岐通
路10とを形成した弁室ブロック12と、例えば自動車
のトランスミッションの出力軸により駆動されて、車速
の増減により流量を変化する車速センサーポンプ13と
を有する。
The steering force control mechanism 7 has a hydraulic passage 8 communicating with the hydraulic passage 6 and the hydraulic reaction chamber 5, and a fixed throttle 9 branching from the passage 8, which is connected to a mountain stream passage 11 to the tank 3. The valve chamber block 12 has a valve chamber block 12 forming a branch passage 10 that communicates with the vehicle, and a vehicle speed sensor pump 13 that is driven by, for example, an output shaft of an automobile transmission and changes the flow rate according to increases and decreases in vehicle speed.

前記液圧通路8には、路面抵抗負荷、および車速の変イ
bこより作動して該通路8を開閉する遮断制御弁14を
設け、該通路8を開放する方向に作用するばね15をも
って遮断制御弁14を一方向に付勢しである。
The hydraulic pressure passage 8 is provided with a shutoff control valve 14 that opens and closes the passage 8 by being actuated by a road resistance load and a change in vehicle speed, and a spring 15 that acts in the direction of opening the passage 8 performs shutoff control. The valve 14 is biased in one direction.

分岐通路10には、少なくとも2つの絞り弁16.17
を設けて、該弁16.17をそれぞればね18,19に
より一方向に付勢する。
At least two throttle valves 16,17 are provided in the branch channel 10.
are provided and the valves 16, 17 are biased in one direction by springs 18, 19, respectively.

一方の絞り弁16を、前記通路10の固定絞り9と、該
通路10の液圧を前記遮断制御弁14に働かせるための
液圧室20との間に配置し、他方の絞り弁17を液圧室
20よりも後方、すなわち分岐通路10の渓流通路11
側に配置して、該絞り弁16゜17に、車速センサーポ
ンプ13の液圧を作用させるように構威し、前記ばね1
B、19は車速ゼロの状態で絞り弁16が分岐通路10
を全開し、絞り弁17が同通路10を遮断している如く
、各弁16,17を付勢している。
One throttle valve 16 is disposed between the fixed throttle 9 of the passage 10 and a hydraulic pressure chamber 20 for applying the hydraulic pressure of the passage 10 to the shutoff control valve 14, and the other throttle valve 17 is Behind the pressure chamber 20, that is, the mountain stream passage 11 of the branch passage 10
The throttle valves 16 and 17 are arranged on the side so that the hydraulic pressure of the vehicle speed sensor pump 13 acts on the throttle valves 16 and 17, and the spring 1
B, 19, when the vehicle speed is zero, the throttle valve 16 is connected to the branch passage 10.
is fully opened, and each valve 16, 17 is energized so that the throttle valve 17 is blocking the passage 10.

一方、車速センサーポンプ13により発生した液圧は、
通路21を介して絞り弁16.17の各液圧室22,2
3に作用して前記ばね力に対抗し、また液圧室20の液
圧は遮断制御弁14の付勢ばね力に対抗する構成である
On the other hand, the hydraulic pressure generated by the vehicle speed sensor pump 13 is
Each hydraulic chamber 22, 2 of the throttle valve 16, 17 is connected via a passage 21.
3 to counteract the spring force, and the hydraulic pressure in the hydraulic pressure chamber 20 is configured to counteract the biasing spring force of the shutoff control valve 14.

いま車速ゼロの状態でハンドル操作を行ったとすると、
車速センサーポンプ13が作動していないため、2つの
絞り弁16,17には液圧が作用せず、従ってそのセッ
トばね1B、19のばね力によって弁16が通路10を
全開し、弁17が通路10を遮断している。
Assuming you operate the steering wheel when the vehicle speed is zero,
Since the vehicle speed sensor pump 13 is not operating, no hydraulic pressure is applied to the two throttle valves 16 and 17. Therefore, the spring force of the setting springs 1B and 19 causes the valve 16 to fully open the passage 10, and the valve 17 to open the passage 10 fully. The passage 10 is blocked.

一方、操舵制御弁室1には路面抵抗に比例した液EEP
□が発生して液圧通路8に作用し、該通路8の液圧を上
昇させると共に、固定絞り99通路10を介して液圧室
20にもPlの液圧が作用する。
On the other hand, the steering control valve chamber 1 contains a liquid EEP proportional to the road resistance.
□ is generated and acts on the hydraulic pressure passage 8, increasing the hydraulic pressure in the passage 8, and the hydraulic pressure Pl also acts on the hydraulic pressure chamber 20 via the fixed throttle 99 passage 10.

なお固定絞り9は、液圧通路8内の圧力が一定値以下に
低下するのを防ぐためのものである。
Note that the fixed throttle 9 is provided to prevent the pressure within the hydraulic pressure passage 8 from decreasing below a certain value.

このとき、遮断制御弁14に働くばね15のセットばね
力をFa、遮断制御弁14の液圧作用面積をんとすると
、Fa≧P1x Aaまでは遮断制御弁14は、ばね1
5の付勢により作動せず、反動室5にもP□の液圧が作
用する。
At this time, if the set spring force of the spring 15 acting on the cutoff control valve 14 is Fa, and the hydraulic pressure acting area of the cutoff control valve 14 is Fa, then the cutoff control valve 14 will not operate until Fa≧P1x Aa.
It does not operate due to the bias of 5, and the hydraulic pressure of P□ also acts on the reaction chamber 5.

液圧通路8の液圧がさらに大きくなりP2となれば、液
圧室20ではP2x Aaの圧力が生じ、Fa(P2x
Aaとなって、遮断制御弁14をそのばね15に抗し
て左行させ、これにより該弁14が液圧通路8を遮断す
る。
When the hydraulic pressure in the hydraulic pressure passage 8 further increases and reaches P2, a pressure of P2x Aa is generated in the hydraulic pressure chamber 20, and Fa(P2x
Aa, the shutoff control valve 14 is moved to the left against its spring 15, and thereby the valve 14 shuts off the hydraulic passage 8.

すなわち反動室5には22以上の液圧が作用しないため
、ハンドル操作トルクは第3図におけるO P2
VOの線に沿って変化する。
In other words, since a hydraulic pressure of 22 or more does not act on the reaction chamber 5, the handle operating torque is O P2 in FIG.
It varies along the line of VO.

従ってセットばね力Faを小さな値に設定しておけば、
ハンドル操作トルクが殆んど上昇せず極めて軽い力でハ
ンドル操作が行われる。
Therefore, if the set spring force Fa is set to a small value,
The steering wheel operation torque hardly increases and the steering wheel is operated with extremely light force.

自動車が走行して車速がVlまで増大すると、車速セン
サーポンプ13がそれに対応した流量の液を吐出し、固
定絞り24を設けておくことによって、通路21に車速
に対応した液圧P3が発生する。
When the vehicle is running and the vehicle speed increases to Vl, the vehicle speed sensor pump 13 discharges liquid at a corresponding flow rate, and by providing the fixed throttle 24, a hydraulic pressure P3 corresponding to the vehicle speed is generated in the passage 21. .

従って液圧室22,23の液圧もP3となる。絞り弁1
6のセットばね力をFb、絞り弁17のセットばね力を
Fc、絞り弁16の液圧作用面積をAb、絞り弁17の
液圧作用面積をAcとすれば、FC<P3×ACになっ
たとき絞り弁17が左方へ移動を開始し、同様にFl)
−CP3xAbとなったとき絞り弁16が左方に移動を
始める。
Therefore, the hydraulic pressure in the hydraulic pressure chambers 22 and 23 also becomes P3. Throttle valve 1
6's set spring force is Fb, the set spring force of the throttle valve 17 is Fc, the hydraulic pressure acting area of the throttle valve 16 is Ab, and the hydraulic pressure acting area of the throttle valve 17 is Ac, then FC<P3×AC. At that time, the throttle valve 17 starts moving to the left, and similarly Fl)
-CP3xAb, the throttle valve 16 starts moving to the left.

絞り弁16,17には、分岐通路10との間に絞り部1
6a、17aをそれぞれ形成してあり、各弁16.17
の左方移動で絞り部16aの絞り率が増大(開き面積の
減少)し、絞り部17aの絞り率が減少(開き面積の増
大)して行く。
The throttle valves 16 and 17 have a throttle portion 1 between them and the branch passage 10.
6a and 17a, respectively, and each valve 16.17
By moving leftward, the aperture ratio of the aperture portion 16a increases (the opening area decreases), and the aperture ratio of the aperture portion 17a decreases (the aperture area increases).

この状態において、ハンドルを操作して路面抵抗に比例
した液圧P、が液圧通路8に作用した場合、遮断制御弁
14のセットばね力Faと、液圧室20に作用する液圧
ア、により発生した力AaxP4がFa=AaxP、に
なるまで反動室5にP、の液圧が働き、それ以上の圧力
Fa (Aa x P、になると、遮断制御弁14が左
方に移動し、液圧通路8を遮断して反動室5の液圧はP
4より高くならないことになる。
In this state, when the handle is operated and a hydraulic pressure P proportional to the road resistance acts on the hydraulic passage 8, the set spring force Fa of the cutoff control valve 14 and the hydraulic pressure A acting on the hydraulic chamber 20, A hydraulic pressure of P acts on the reaction chamber 5 until the force AaxP4 generated by AaxP becomes Fa=AaxP, and when the pressure exceeds Fa (Aa x P), the shutoff control valve 14 moves to the left and the liquid The pressure passage 8 is shut off and the hydraulic pressure in the reaction chamber 5 is P.
It will not be higher than 4.

しかし、車速センサーポンプ13の液圧によって、絞り
弁16.17の絞り率が前記の如く変化し、絞り弁16
の絞り率の増大は、液圧室20に作用する圧力を低下さ
せ、同様に、絞り弁17の絞り率の減少も液圧室20の
圧力を低下させるように働くために、下記の作動が行わ
れる。
However, depending on the hydraulic pressure of the vehicle speed sensor pump 13, the throttling ratio of the throttle valves 16 and 17 changes as described above.
An increase in the throttling ratio of the throttle valve 17 lowers the pressure acting on the hydraulic chamber 20, and a decrease in the throttling ratio of the throttle valve 17 also works to lower the pressure of the hydraulic chamber 20. Therefore, the following operation is performed. It will be done.

すなわち絞り部16aにおける圧力降下と流量Qとの関
係は、流量係数をC9流体密度をρ、絞り面積をα1と
するとき、 絞り部17aにおける圧力降下と流量Qの関係は、絞り
面積をα2とするとき、 ここでP5は、絞り弁16と17との間、すなわち液圧
室20の液圧、P6は、絞り弁17から渓流通路11側
の圧力であった、該圧力P6=0である。
In other words, the relationship between the pressure drop in the throttle part 16a and the flow rate Q is as follows: When the flow coefficient is C9, the fluid density is ρ, and the throttle area is α1, the relationship between the pressure drop in the throttle part 17a and the flow rate Q is as follows: When, P5 is the hydraulic pressure between the throttle valves 16 and 17, that is, the hydraulic pressure chamber 20, P6 is the pressure from the throttle valve 17 to the mountain stream passage 11 side, and the pressure P6 = 0. .

し、α1が小さくなる。Therefore, α1 becomes smaller.

すなわち絞り弁16の絞り率の増大(α□の減少)、絞
り弁17の絞り率の減少(α2の増大)によりPs<P
、となる。
That is, due to the increase in the throttling rate of the throttle valve 16 (decrease in α□) and the decrease in the throttle rate of the throttle valve 17 (increase in α2), Ps<P
, becomes.

すなわち以上において、液圧室20に直接P、の液圧が
作用したときよりも低い液圧P5が遮断制御弁に作用す
ることになるので、遮断制御弁14は前記の如く液面通
路8の圧力がP、になっても該通路8を開いたままであ
って、液圧室20の圧力が、P5≧P4、すなわち液圧
通路8の圧力がP7になることにより作動して該通路8
を遮断する。
In other words, in the above, a lower hydraulic pressure P5 acts on the shutoff control valve than when the hydraulic pressure P directly acts on the hydraulic pressure chamber 20, so the shutoff control valve 14 is operated in the liquid level passage 8 as described above. Even when the pressure reaches P, the passage 8 remains open, and the passage 8 is activated when the pressure in the hydraulic chamber 20 becomes P5≧P4, that is, the pressure in the hydraulic passage 8 reaches P7.
cut off.

従って反動室5には、P4よりも高いP7の液圧が作用
し、操舵反力を発生する。
Therefore, a hydraulic pressure P7 higher than P4 acts on the reaction chamber 5, generating a steering reaction force.

それ以上に液圧通路8の液圧が上昇した場合は、遮断制
御弁14が該通路8を遮断しているため、反動室5には
P7より以上の液圧は作用せず、操舵トルクは第3図の
OP7 Vtに沿って変化することになる。
If the hydraulic pressure in the hydraulic pressure passage 8 rises more than that, the shutoff control valve 14 shuts off the passage 8, so no hydraulic pressure higher than P7 acts on the reaction chamber 5, and the steering torque decreases. It will change along OP7 Vt in FIG.

車速かさらに増大してV2になると、車速センサーポン
プ13からの流量がさらに増大して液圧室22,23に
、前記よりさらに高い液圧が作用し、絞り弁16,17
をさらに左方に移動させ、前記車速V□時に比べて絞り
部16aの絞り面積α□が減少、絞り部17aの絞り面
積α2が増大し、P[がV□のときよりさらに大きくな
る。
When the vehicle speed further increases to V2, the flow rate from the vehicle speed sensor pump 13 further increases, and a higher hydraulic pressure than the above acts on the hydraulic pressure chambers 22 and 23, causing the throttle valves 16 and 17 to
is further moved to the left, the throttle area α□ of the throttle portion 16a decreases and the throttle area α2 of the throttle portion 17a increases compared to when the vehicle speed is V□, and becomes even larger than when P[ is V□.

このα1 比が大きくなれば、液圧室20の圧力がさらに低下し、
遮断制御弁14を作動させるに必要な液圧通路8の圧力
は、前記V1の車速の場合よりもさらに大きいことが必
要となる。
As this α1 ratio increases, the pressure in the hydraulic chamber 20 further decreases,
The pressure in the hydraulic pressure passage 8 required to operate the cutoff control valve 14 needs to be greater than that at the vehicle speed of V1.

すなわち反動室5には、車速V1のときよりもさらに大
きい液圧が働き、舷窓の液圧がP7よりさらに高いP8
になって遮断制御弁14が液圧通路8を遮断し、操舵ト
ルクは第3図のOP8 V2に沿って変化する。
That is, an even greater hydraulic pressure acts on the reaction chamber 5 than when the vehicle speed is V1, and the hydraulic pressure at the porthole is higher than P7 at P8.
Then, the shutoff control valve 14 shuts off the hydraulic pressure passage 8, and the steering torque changes along OP8V2 in FIG.

車速がv2よりもさらに高速になると、車速センサーポ
ンプ13からの流量がさらに増大して、液圧室22,2
3の圧力を高圧とし、遂に絞り弁16が分岐通路10を
遮断し、絞り弁17は同通路10を全開する。
When the vehicle speed becomes higher than v2, the flow rate from the vehicle speed sensor pump 13 further increases, and the hydraulic pressure chambers 22, 2
3 is made high pressure, the throttle valve 16 finally shuts off the branch passage 10, and the throttle valve 17 fully opens the passage 10.

これによって液圧室20の圧力はゼロ近くまで低下し、
遮断制御弁14は通路8を開放したままとなる。
As a result, the pressure in the hydraulic chamber 20 drops to near zero,
The shutoff control valve 14 leaves the passage 8 open.

従って反動室5には、路面抵抗負荷に応じた液圧が直接
作用して、操舵トルクが第3図のQ−Vmaxに沿って
変化することになる。
Therefore, a hydraulic pressure corresponding to the road resistance load acts directly on the reaction chamber 5, and the steering torque changes along Q-Vmax in FIG. 3.

すなわち第3図は、車速ゼロ、 Vl、 V2. Vm
axのときの操舵トルクT(タテ軸)を、路面抵抗R(
ヨコ軸)の変化に対応して示したものである。
That is, in FIG. 3, the vehicle speed is zero, Vl, V2. Vm
The steering torque T (vertical axis) at the time of ax is expressed as the road resistance R (
The figures are shown in response to changes in the horizontal axis).

図中25は遮断制御弁14部のドレーン孔、26は絞り
弁16.17部のドレーン孔、27,28は車速センサ
ーポンプ13の機能を保障するためのチェックバルブで
ある。
In the figure, 25 is a drain hole of the cutoff control valve 14 section, 26 is a drain hole of the throttle valve 16 and 17 sections, and 27 and 28 are check valves for ensuring the function of the vehicle speed sensor pump 13.

また第3図の線〇−MANUは動力舵取装置が作動せず
、手動による操舵トルクと路面抵抗の関係を示したもの
である。
The line 0-MANU in FIG. 3 indicates the relationship between manual steering torque and road resistance when the power steering device is not operating.

ところで自動車の舵取装置は、高速運転になるほど操舵
トルクに対する路面抵抗負荷が小さくなるのが一般であ
り、従って高速走行時における液圧通路8の液圧はあま
り高くならない。
By the way, in the steering device of an automobile, the road surface resistance load relative to the steering torque generally decreases as the vehicle is driven at high speed, and therefore, the hydraulic pressure in the hydraulic pressure passage 8 does not become very high when the vehicle is traveling at high speed.

このために、前述の如き制御機構において、例えば第3
図のVmaxになるような自動車の走行時のハンドルの
ふらつき等の要因が容易に解消されない場合が生ずる。
For this reason, in the control mechanism as described above, for example, the third
There may be cases where factors such as the wobbling of the steering wheel when the vehicle is running, which causes Vmax in the figure, cannot be easily resolved.

このような場合には、第1図および第2図に示す如く、
遮断制御弁14と反動室5との間の液圧通路8′と、車
速センサーポンプ13の液圧通路21の延長通路21′
との液圧の高い方の圧力を検出して作動し、該高い方の
液圧を反動室5に供給するチェックバルブ30を設ける
In such a case, as shown in Figures 1 and 2,
A hydraulic passage 8' between the shutoff control valve 14 and the reaction chamber 5, and an extension passage 21' of the hydraulic passage 21 of the vehicle speed sensor pump 13.
A check valve 30 is provided which is activated by detecting the higher pressure of the hydraulic pressure and supplies the higher hydraulic pressure to the reaction chamber 5.

すなわちチェックバルブ30は、通常は前記両通路8’
、21’を開いて、双方を反動室5に連通させるべく互
いに反対方向に作用するばね31゜32を働かせ、該バ
ルブ30の左室33を、パイロット通路34を介して液
圧通路8′に連通させ、右室35をパイロット通路36
を介して延長通路21′に連通させて、左室33に液圧
通路8′の液圧を、右室35に車速センサーポンプ13
により発生した液圧を作用させる。
That is, the check valve 30 normally operates in both passages 8'.
, 21' are opened, and the springs 31 and 32 act in opposite directions to connect both to the reaction chamber 5, and the left chamber 33 of the valve 30 is connected to the hydraulic passage 8' via the pilot passage 34. The right ventricle 35 is connected to the pilot passage 36.
The hydraulic pressure of the hydraulic pressure passage 8' is communicated with the left chamber 33 and the vehicle speed sensor pump 13 is communicated with the right chamber 35 through the extension passage 21'.
Apply the hydraulic pressure generated by

すなわち通路8′と21′との液圧が等しい間、云い換
えれば路面抵抗負荷で生ずる液圧と車速により発生する
液圧が等しい間は、チェックバルブ30をばね31,3
2のバランスにより中立位置に保ち、両通路8’、21
’をバルブ30の周溝30a、30bを介して反動室5
に連通させているが、路面抵抗負荷により生ずる液圧が
、車速により発生する液圧よりも高くなると、パイロッ
ト通路34を介して左室33に働く液圧が、右室35に
働く液圧よりも高くなり、チェックバルブ30を右行さ
せて通路21′と反動室5との連通を遮断し、液圧通路
8′の液圧を反動室5に作用させる。
That is, while the hydraulic pressures in the passages 8' and 21' are equal, in other words, while the hydraulic pressure generated by the road resistance load and the hydraulic pressure generated by the vehicle speed are equal, the check valve 30 is closed by the springs 31 and 3.
Both passages 8', 21 are kept in a neutral position by the balance of 2.
' through the circumferential grooves 30a, 30b of the valve 30 to the reaction chamber 5.
However, when the hydraulic pressure generated by the road resistance load becomes higher than the hydraulic pressure generated by the vehicle speed, the hydraulic pressure acting on the left ventricle 33 via the pilot passage 34 becomes higher than the hydraulic pressure acting on the right ventricle 35. Then, the check valve 30 is moved to the right to cut off the communication between the passage 21' and the reaction chamber 5, and the hydraulic pressure of the hydraulic passage 8' is applied to the reaction chamber 5.

一方、車速により発生する液圧の方が、路面抵抗負荷に
より生ずる液圧よりも高くなると、前記とは逆に延長通
路21′からパイロット通路36を介して右室35に働
く液圧が左室33の液圧よりも高くなり、チェックバル
ブ30が左行させられ、反動室5に車速により発生した
液圧を作用させ、路面抵抗負荷により生じた液圧の液圧
通路8′と反動室5との連通を遮断する。
On the other hand, when the hydraulic pressure generated by the vehicle speed becomes higher than the hydraulic pressure generated by the road resistance load, the hydraulic pressure acting on the right ventricle 35 from the extension passage 21' via the pilot passage 36, contrary to the above, increases to the left ventricle. 33, the check valve 30 is moved to the left, and the hydraulic pressure generated by the vehicle speed is applied to the reaction chamber 5, and the hydraulic pressure generated by the road resistance load is transferred to the hydraulic pressure passage 8' and the reaction chamber 5. Cut off communication with.

すなわち前記により、液圧通路8′と延長通路21′と
のいずれか高い方の液圧が反動室5に作用するので、反
動室5の液圧が低すぎてハンドルのふらつきを生ずると
いうような不都合が解消される。
That is, because of the above, the higher hydraulic pressure of either the hydraulic pressure passage 8' or the extension passage 21' acts on the reaction chamber 5, so that the hydraulic pressure in the reaction chamber 5 is too low, causing the steering wheel to wobble. The inconvenience will be resolved.

この考案は以上のような構成であって、絞り弁16.1
7を2個設けた理由は、以上の説明からも明らかなよう
に、絞り弁を1個としたものに対して液圧遮断制御弁1
4の液圧室20に作用する圧力降下を大きくとることが
できるので、車速センサーポンプに高容量のものを必要
とせず、かつ遮断制御弁14の作動を確実に行わせるこ
とができる。
This invention has the above configuration, and the throttle valve 16.1
As is clear from the above explanation, the reason for providing two hydraulic cutoff control valves is that one hydraulic cutoff control valve is provided compared to one throttle valve.
Since the pressure drop acting on the hydraulic pressure chamber 20 of No. 4 can be increased, a high-capacity vehicle speed sensor pump is not required, and the shutoff control valve 14 can be operated reliably.

そして各絞り弁に高圧の液圧が直接作用せず、絞り効果
の不良原因を除き、弁の保護ができる。
In addition, high hydraulic pressure does not directly act on each throttle valve, which eliminates the cause of poor throttle effect and protects the valves.

さらに他の利点として、通常、高圧の液体を絞りを介し
て低圧に流した場合にキャビテーションを起こし騒音の
原因となるが、この考案は2つの絞り弁で2段の圧力降
下を生じさせているから、キャビテーションを防止して
騒音発生の原因を取り除いており、また自動車が高速走
行から急減速を行った際、従来のものでは液圧の応答性
によるハンドル操作トルクの急激な軽減を生じて運転者
に非常な不安感を与えるが、この考案は前述の如く2段
の絞り弁を配置して、第1段の絞り弁を絞り側に、第2
段の絞り弁を開放側に作動するようにしであるため、急
減速時には第1段の絞り弁が開放側に作動して十分な流
量を確保し、第2段の絞り弁が絞り側に作動して第2の
絞りを通過する流量が低下し、その結果、両絞り部の流
量変化によって液圧遮断制御弁14の液圧室20におけ
る液圧の急速な低下を防ぎ、従って反動室5内の油圧の
急激な低下がなく、ハンドル操作トルクの急激な変化が
なくなって安定した操舵を行うことができる。
Another advantage is that normally, when a high-pressure liquid is passed through a throttle to a lower pressure, cavitation occurs and causes noise, but this design uses two throttle valves to create a two-stage pressure drop. This prevents cavitation and eliminates the cause of noise generation.In addition, when a car suddenly decelerates from high speed, conventional systems cause a sudden reduction in steering torque due to the responsiveness of hydraulic pressure, making it difficult to drive. However, this idea has two stages of throttle valves arranged as mentioned above, with the first stage throttle valve on the throttle side and the second stage throttle valve on the throttle side.
The throttle valves in each stage are designed to operate to the open side, so during sudden deceleration, the first stage throttle valve operates to the open side to ensure sufficient flow, and the second stage throttle valve operates to the throttle side. As a result, the flow rate through the second restriction decreases, and as a result, the change in the flow rate of both restriction portions prevents a rapid drop in the hydraulic pressure in the hydraulic chamber 20 of the hydraulic cut-off control valve 14, and therefore prevents the hydraulic pressure in the reaction chamber 5 from decreasing rapidly. There is no sudden drop in oil pressure, and sudden changes in steering torque are eliminated, allowing stable steering.

而してこの考案を適用した動力舵取装置においては、 ■ 車速および路面抵抗に応じて反動力が変化し、高速
走行時の安定性と、低速時の操舵トルクの軽減を兼ね備
えた理想的な操舵特性が得られ、 ■ 高速走行時は、チェックバルブを設けることにより
車速センサーポンプから供給される液圧で反動力を得る
ので、その操舵の安定性がさらに向上し、 ■ 少なくとも2個の絞り弁を設けたことにより、応答
性が極めて良く、急激な減速によるハンドル操舵トルク
の急激な変化をなくして、その不安定要素を完全に解消
し、 ■ 2つの絞り弁に働かせたばねのばね特性を適宜選択
し調整することのみで、種々の反動作用特性が容易に特
られる。
Therefore, in a power steering system to which this idea is applied, the reaction force changes according to vehicle speed and road resistance, making it ideal for both stability at high speeds and reduction of steering torque at low speeds. ■ When driving at high speeds, by providing a check valve, the recoil force is obtained from the hydraulic pressure supplied from the vehicle speed sensor pump, further improving the stability of the steering; ■ At least two throttles By installing a valve, the response is extremely good, eliminating sudden changes in steering torque due to sudden deceleration, completely eliminating the unstable factor, ■ The spring characteristics of the spring acting on the two throttle valves Various reaction characteristics can be easily specified simply by selecting and adjusting appropriately.

等理想的な動力舵取装置を提供することができる。It is possible to provide an ideal power steering device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の主要部を示す断面図、第2図はその一
部の拡大図、第3図は作動特性を示す線図である。 1・・・・・・操舵制御弁室、2・・・・・・油圧ポン
プ、4・・・・・・主回路、5・・・・・・反動室、6
.8.8’・・・・・・液圧通路、7・・・・・・操舵
力制御機構、9・・・・・・固定絞り、10・・・・・
・分岐通路、11・・・・・・渓流通路、13・・・・
・・車速センサーポンプ、14・・・・・・液圧遮断制
御弁、15・・・・・・ばね、16,17・・・・・・
絞り弁、18,19・・・・・・ばね、20.22.2
3・・・・・・液圧室、21・・・・・・通路、24・
・・・・・固定絞り、30・・・・・・チェックバルブ
、31,32・・・・・・ばね、34,36・・・・・
・パイロット通路。
FIG. 1 is a sectional view showing the main part of the embodiment, FIG. 2 is an enlarged view of a part thereof, and FIG. 3 is a diagram showing the operating characteristics. 1...Steering control valve chamber, 2...Hydraulic pump, 4...Main circuit, 5...Reaction chamber, 6
.. 8.8'...Hydraulic pressure passage, 7...Steering force control mechanism, 9...Fixed throttle, 10...
・Branch passage, 11...Mountain stream passage, 13...
... Vehicle speed sensor pump, 14 ... Hydraulic pressure cutoff control valve, 15 ... Spring, 16, 17 ...
Throttle valve, 18, 19... Spring, 20.22.2
3... Hydraulic pressure chamber, 21... Passage, 24...
... Fixed throttle, 30 ... Check valve, 31, 32 ... Spring, 34, 36 ...
・Pilot passage.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] (1)操舵機構内に、操舵反力を運転者に感知させるた
めの液圧反動室を備え、該反動室に供給する液圧の上昇
で操舵反力が上昇するようになった動力舵取装置におい
て、操舵制御弁室の液圧の変化を液圧反動室に伝達する
液圧通路に、車速および路面抵抗負荷に応じた液圧を前
記反動室に供給する操舵力制御機構を設け、該制御機構
は前記液圧通路を車速および路面抵抗負荷に応じて開閉
する液圧遮断制御弁と、前記液圧通路から分岐し固定絞
りを介して路面抵抗負荷を前記遮断制御弁に働かせるた
めの液圧室を含む分岐通路と、該分岐通路に設けた少な
くとも2つの絞り弁と、車速の増減により流量を変化す
る車速センサーポンプとを含み、前記絞り弁の一方を前
記固定絞りと液圧室との間に、他方を液圧室より後方の
戻流通路側にそれぞれ配置して、車速の増大に伴ない前
記固定絞りと液圧室との間で分岐油路の絞りを閉じ側に
変化させ、液圧室より後方の戻流通路側で分岐油路の絞
りを開き側に変化させる如く、前記車速センサーポンプ
の液圧で、前記2つの絞り弁を制御することを特徴とす
る操舵力制御装置。
(1) A power steering system in which a hydraulic reaction chamber is provided in the steering mechanism to allow the driver to sense the steering reaction force, and the steering reaction force increases as the hydraulic pressure supplied to the reaction chamber increases. In the device, a steering force control mechanism is provided in a hydraulic passage that transmits a change in hydraulic pressure in a steering control valve chamber to a hydraulic reaction chamber, and a steering force control mechanism that supplies hydraulic pressure to the reaction chamber according to vehicle speed and road resistance load; The control mechanism includes a hydraulic cut-off control valve that opens and closes the hydraulic passage according to vehicle speed and road resistance load, and a hydraulic cut-off control valve that branches from the hydraulic passage and applies road resistance load to the cut-off control valve via a fixed throttle. It includes a branch passage including a pressure chamber, at least two throttle valves provided in the branch passage, and a vehicle speed sensor pump that changes the flow rate according to an increase or decrease in vehicle speed, and one of the throttle valves is connected to the fixed throttle and the hydraulic pressure chamber. In between, the other is arranged on the return passage side behind the hydraulic pressure chamber, and as the vehicle speed increases, the throttle of the branch oil passage is changed to the closing side between the fixed throttle and the hydraulic pressure chamber, A steering force control device characterized in that the two throttle valves are controlled by the hydraulic pressure of the vehicle speed sensor pump so as to change the throttle of the branch oil passage to the open side on the return passage side behind the hydraulic pressure chamber.
(2) 前記操舵力制御機構が、前記遮断制御弁で制
御した液圧と、車速センサーポンプにより発生する液圧
の高い方の液圧を前記反動室に供給するチェックバルブ
を含む実用新案登録請求の範囲(1)記載の操舵力制御
装置。
(2) A utility model registration request in which the steering force control mechanism includes a check valve that supplies the higher of the hydraulic pressure controlled by the cutoff control valve and the hydraulic pressure generated by the vehicle speed sensor pump to the reaction chamber. The steering force control device according to range (1).
JP10230578U 1978-07-24 1978-07-24 Steering force control device in power steering device Expired JPS609098Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10230578U JPS609098Y2 (en) 1978-07-24 1978-07-24 Steering force control device in power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10230578U JPS609098Y2 (en) 1978-07-24 1978-07-24 Steering force control device in power steering device

Publications (2)

Publication Number Publication Date
JPS5591766U JPS5591766U (en) 1980-06-25
JPS609098Y2 true JPS609098Y2 (en) 1985-04-01

Family

ID=29041763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10230578U Expired JPS609098Y2 (en) 1978-07-24 1978-07-24 Steering force control device in power steering device

Country Status (1)

Country Link
JP (1) JPS609098Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179173U (en) * 1983-05-19 1984-11-30 三菱自動車工業株式会社 power steering device

Also Published As

Publication number Publication date
JPS5591766U (en) 1980-06-25

Similar Documents

Publication Publication Date Title
JPH0316305B2 (en)
JPH0392477A (en) Hydraulic reaction force device of power steering device
US4768605A (en) Apparatus for use in a power steering system
JPH0262430B2 (en)
US5361584A (en) Hydrostatic drive system
JPS63188574A (en) Hydraulic control device for power steering
US4905784A (en) Power-assisted steering system for automotive vehicle
JPH0815866B2 (en) Power steering hydraulic control device
JPS609098Y2 (en) Steering force control device in power steering device
US5207780A (en) Hydraulic valve device for automotive power steering gear
JPH0544385B2 (en)
JP3188067B2 (en) Power steering device
JPH0243672B2 (en)
EP0158450A1 (en) Demand-responsive flow control valve mechanism
JPH0124664B2 (en)
JPS582100B2 (en) Steering force control device for power steering device
JPH0788134B2 (en) Active suspension device
JPH0316306B2 (en)
JPS5814353B2 (en) Steering force control device for power steering device
JP2502351B2 (en) Power steering control device
JPH0828507A (en) Pilot pressure oil supplying device
JPH0216940Y2 (en)
JPS6132851Y2 (en)
JPH0152229B2 (en)
JPH0156943B2 (en)