JPS6089448A - Continuous production of terephthalic acid glycol ester - Google Patents

Continuous production of terephthalic acid glycol ester

Info

Publication number
JPS6089448A
JPS6089448A JP19734483A JP19734483A JPS6089448A JP S6089448 A JPS6089448 A JP S6089448A JP 19734483 A JP19734483 A JP 19734483A JP 19734483 A JP19734483 A JP 19734483A JP S6089448 A JPS6089448 A JP S6089448A
Authority
JP
Japan
Prior art keywords
reaction
terephthalic acid
product
reaction chamber
bhet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19734483A
Other languages
Japanese (ja)
Other versions
JPH047339B2 (en
Inventor
Yoshito Koike
小池 義人
Toshiya Ohashi
大橋 敏也
Toshio Jinbo
神保 敏夫
Hitoshi Otsubo
大坪 人志
Eiji Ichihashi
市橋 瑛司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP19734483A priority Critical patent/JPS6089448A/en
Publication of JPS6089448A publication Critical patent/JPS6089448A/en
Publication of JPH047339B2 publication Critical patent/JPH047339B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce high-quality BHET continuously, in high efficiency, by reacting terephthalic acid with ethylene glycol using mutually connected plural reaction chambers, taking out a part of the product from the first reaction chamber, and recovering the product together with the BHET delivered from the last reaction chamber. CONSTITUTION:In the continuous production of terephthalic acid glycol ester (BHET) by the reaction of terephthalic acid with ethylene glycol, the reaction is carried out in mutually connected plural chambers, preferably 2-3 chambers, especially two chambers. A part of the esterificaton reaction product containing unreacted terephthalic acid particles as suspended matter is taken out of the first reaction chamber, and filtered to obtain a product free from the unreacted terephthalic acid particles. The product is combined with the BHET delivered from the last reaction chamber to obtain BHET having various characteristics and having low by-produced diethylene glycol content, in high efficiency. The residual part of the reaction mixture of the first reaction chamber is transferred to the second reaction chamber.

Description

【発明の詳細な説明】 本発明はテレフタル酸(TPA)とエチレングリコール
([!G)とを反応させてテレフタル酸グリコールエス
テル、すなわちビス(β−ヒドロキシエチル)テレフタ
レート及び/又はその低重合体(BIIIET)を連続
的に製造する方法に関するものであり、ジエチレングリ
コール(DUG)濃度が低く。
DETAILED DESCRIPTION OF THE INVENTION The present invention produces terephthalic acid glycol ester, that is, bis(β-hydroxyethyl) terephthalate and/or its low polymer ( BIIIET) with a low diethylene glycol (DUG) concentration.

耐熱性のよいポリエステルを形成し得るBIIETを含
む性状の異なる[1lIETを同時に効率よく製造する
方法を提供するものである。
The present invention provides a method for simultaneously and efficiently producing IETs with different properties, including BIIETs that can form polyesters with good heat resistance.

今日、工業的に使用されているポリエステル。Polyester is used industrially today.

特にポリエチレンテレフタレートは高度の結晶性。In particular, polyethylene terephthalate is highly crystalline.

高軟化点を有し2強度・耐薬品性・耐熱性・耐候性・電
気絶縁性等の点で優れた性質を有しているため、繊維を
はじめ、フィルムその他の成形品として産業上広く利用
されている。
It has a high softening point and excellent properties in terms of strength, chemical resistance, heat resistance, weather resistance, electrical insulation, etc., so it is widely used industrially as fibers, films, and other molded products. has been done.

一般にポリエステルが各工業分野で用いられる際1通常
は、溶融押し出し、引き取り・延伸・熱処理等の成形工
程での耐熱性あるいは、フィルムの場合には磁性層の塗
布や金属蒸着の際の耐熱性あるいは成形品とした場合の
2次加工工程での耐熱性さらには最終製品となった場合
の耐熱性が要求されている。
In general, when polyester is used in various industrial fields, it usually requires heat resistance during forming processes such as melt extrusion, drawing, stretching, and heat treatment, or in the case of films, heat resistance during coating of magnetic layers and metal vapor deposition. Heat resistance is required in the secondary processing process when molded products are made, and also heat resistance when the final products are made.

このためには、副反応の結果化じるポリエステル中のD
HiJ度を低減させることが、一つの重要な課題とされ
ている。ポリエステルは通常エステル化工程とそれに引
き続く重縮合工程により製造されているが、従来より、
DUG濃度を低減させる目的でその影響力の大きいエス
テル化工程において、それぞれ触媒や添加剤の開発や改
良あるいはDUG濃度を低減できるプロセスの開発が行
われてきたが、それらは同時に何らかの欠点もをしてい
た。
For this purpose, D in the polyester resulting from side reactions is required.
Reducing the HiJ degree is considered to be one important issue. Polyester is usually produced by an esterification process followed by a polycondensation process, but traditionally,
In the esterification process, which has a large influence in order to reduce the DUG concentration, efforts have been made to develop and improve catalysts and additives, and to develop processes that can reduce the DUG concentration, but at the same time, they also have some drawbacks. was.

たとえば、特公昭34−2594号公報をはじめとし。For example, including Japanese Patent Publication No. 34-2594.

数多く提案されているアルカリ金属化合物等を触媒や添
加剤として添加することは、それ自体DUG濃度の低減
には寄与するものの、同時に色調・粘度・強度あるいは
他の物理的性質を損ねたり5重縮合速度の遅延を引き起
こしたりするという欠点があった。
Although the addition of alkali metal compounds as catalysts and additives, which have been proposed many times, contributes to reducing the DUG concentration, it also impairs color tone, viscosity, strength, and other physical properties, and may cause pentacondensation. This has the disadvantage of causing speed delays.

一方、DEC濃度を低減させるプロセスとしては従来よ
り、ジメチルテレフタレートとEGとをエステル交換反
応させてBll[!Tを製造するエステル交換法があっ
たが、連続操作に不向きなことやジメチルテレフタレー
トがTPAに比べて高価格であり。
On the other hand, as a process for reducing the DEC concentration, a conventional process has been to carry out a transesterification reaction between dimethyl terephthalate and EG. There was a transesterification method for producing TPA, but it was not suitable for continuous operation and dimethyl terephthalate was more expensive than TPA.

かつエステル交換法に比べてTPAとEGとを直接エス
テル化する。いわゆる直接エステル化法の方が工程が簡
略化できる等のメリットを有するため。
Moreover, compared to the transesterification method, TPA and EG are directly esterified. This is because the so-called direct esterification method has advantages such as a simpler process.

次第に直接エステル化法へと移行して現在に至っている
。従って、現在は多少コストアンプになっても特に低D
IEG濃度を必要とする品種に対してのみ、エステル交
換法が用いられているのが一般的である。
Gradually, the process shifted to direct esterification, which continues to be the case today. Therefore, even if the cost amplifier is a little higher now, it is especially low D.
Generally, the transesterification method is used only for varieties that require high IEG concentrations.

さて、前記直接エステル化法を採用したときにおいても
、エステル交換法に優れるとも劣らない低DEG濃度の
高品質のBll[!Tを製造する方法も提案されている
Now, even when the above-mentioned direct esterification method is adopted, high quality Bll[! A method for manufacturing T has also been proposed.

たとえば、特公昭46−22463号公報Gこ開示され
ているようにTPAをBIIETに懸濁させ、 IEG
の沸点以上の温度で気状のEGを反応させる方法や特開
昭50−24236号公報に開示されているように、未
反応TP八精粒子懸濁している状態のエステル化反応物
から未反応のTPAP子を分離することにより1反応率
一定で、かつ0804度の低いBII[!Tを得る方法
等が提案されている。
For example, as disclosed in Japanese Patent Publication No. 46-22463, TPA is suspended in BIIET and IEG
As disclosed in JP-A No. 50-24236 and a method of reacting gaseous EG at a temperature higher than the boiling point of By separating the TPAP molecules, the reaction rate is constant and the BII [! Methods for obtaining T have been proposed.

しかし、これらの方法を採用した場合においても、前者
の場合は1反応率やDEC濃度にバラツキが生じて問題
となっており、後者の場合には1反応塩度を低くすれば
1口[!G濃度は低下するが、生産性が悪く、また外乱
により反応率が変動したときに系が極めて不安定になる
という問題点を有していた。
However, even when these methods are adopted, in the former case, variations in the per-reaction rate and DEC concentration occur, which is a problem, and in the latter case, if the salinity per reaction is lowered, one mouth [! Although the G concentration is reduced, there are problems in that productivity is poor and the system becomes extremely unstable when the reaction rate fluctuates due to disturbance.

このように、低DEC濃度の高品質のB111!Tを直
接エステル化法で連続的に効率よく製造する方法は。
In this way, high quality B111 with low DEC concentration! What is the method for continuously and efficiently producing T using a direct esterification method?

いまだ十分工業的に完成したものとは言えなかった。It could not be said that it had been fully industrialized yet.

本発明者らは、かかる問題点を解消するため鋭意研究を
重ねた結果、連続する複数の反応槽を用いて反応させ、
最終反応槽からの反応物を生成物として取り出すだけで
なく、第1反応槽がらの反応物の一部を5反応物を濾過
し、未反応のTPAP子を除去して生成物として取り出
すことによって。
As a result of extensive research in order to solve this problem, the present inventors conducted a reaction using a plurality of consecutive reaction vessels,
In addition to taking out the reactant from the final reactor as a product, a portion of the reactant from the first reactor is filtered to remove unreacted TPAP particles and taken out as a product. .

低oucz度のBIIETを含む性状の異なったBII
ETを効率よく得ることができることを見出し本発明を
完成した。
BII with different properties including BIIET with low oucz degree
The present invention was completed by discovering that ET can be obtained efficiently.

すなわち1本発明はTPAとt!Gとを反応させてBI
IETを連続的に製造するに際し9反応を連続した2槽
以上の反応槽を用いて行い、第1反応槽からの未反応T
PAP子が懸濁している状態のエステル化反応物の一部
を1反応物を濾過して未反応TPAP子を除去して生成
物として取り出し、残部を第2反応槽に移送することを
特徴とするものである。
That is, one aspect of the present invention is TPA and t! BI by reacting with G
When continuously producing IET, nine reactions are performed using two or more consecutive reaction vessels, and unreacted T from the first reaction vessel is
A part of the esterification reaction product in which PAP molecules are suspended is filtered to remove unreacted TPAP molecules and taken out as a product, and the remainder is transferred to a second reaction tank. It is something to do.

本発明におけるエステル化の方法としては2通常111
1ETの存在する反応槽にT’P^とI!Gからなるス
ラリーを連続的に供給してエステル化させる方法が用い
られる。このBIIETには、一部TIIAやEGの残
基以外の成分を含有していてもよく、また、 BIIE
Tは公知の任意の方法によって得られたものでよいが。
The method of esterification in the present invention is 2 usually 111
In the reaction tank where 1ET is present, T'P^ and I! A method is used in which a slurry consisting of G is continuously supplied and esterified. This BIIET may partially contain components other than TIIA and EG residues, and BIIE
T may be obtained by any known method.

前記方法によって得られたものをそのまま用いることが
好ましい。原料は通常TPAとEGからなるスラリーと
して供給されるがスラリーの[!G/ TPAのモル比
は通常1.2〜2.0.好ましくは1.4〜1.8゜最
適には1.5〜1.7とするのが好ましい。このスラリ
ーにはもちろん一部に他の酸成分、たとえばイソフタル
酸、5−ナトリウムスルホイソフタル酸、アジピン酸、
セバシン酸、ナフタレンジカルボン酸、ジフェニルスル
ホンジカルボン酸等又は他のグリコール成分、たとえば
テトラメチレングリコール、ネオペンチルグリコール、
114−シクロヘキサンジメタツール等が30モル%を
越えない程度含まれていてもよい。
It is preferable to use the material obtained by the above method as it is. The raw material is usually supplied as a slurry consisting of TPA and EG, but the slurry [! The molar ratio of G/TPA is usually 1.2 to 2.0. The angle is preferably 1.4 to 1.8 degrees, most preferably 1.5 to 1.7 degrees. Of course, this slurry also contains some other acid components such as isophthalic acid, 5-sodium sulfoisophthalic acid, adipic acid,
sebacic acid, naphthalene dicarboxylic acid, diphenylsulfone dicarboxylic acid, etc. or other glycol components such as tetramethylene glycol, neopentyl glycol,
114-cyclohexane dimetatool and the like may be contained to an extent not exceeding 30 mol%.

また、エステル化反応は、常圧、加圧のいずれでもよい
が、 DEC濃度を抑制するためには9通常ゲージ圧0
.5kg/cJ以下、好ましくは0.15kg/ c+
1以下、最適には0.05kg/−以下とするのが好適
である。
In addition, the esterification reaction may be carried out at normal pressure or at elevated pressure, but in order to suppress the DEC concentration,
.. 5kg/cJ or less, preferably 0.15kg/c+
1 or less, most preferably 0.05 kg/- or less.

一方、エステル化反応の温度は通常220〜270°C
1好ましくは240〜270℃、最適には250〜26
0℃である。220℃未満では実質的に、エステル化反
応が進行せず、一方、270℃を越えるとDIEG濃度
が増大してともに好ましくない。
On the other hand, the temperature of the esterification reaction is usually 220 to 270°C.
1 Preferably 240-270°C, optimally 250-26
It is 0°C. If the temperature is lower than 220°C, the esterification reaction will not substantially proceed, while if it exceeds 270°C, the DIEG concentration will increase, which is not preferred.

mlのやり方でエステル化させると、エステル化反応率
が90%程度となった時点で未反応のTP^粒子の懸濁
は見られなくなり1反応物は透明となる。ところがこの
ままポリエステル製造の第2の工程である重縮合工程に
供給すると反応速度が低下し1重縮合時間の遅延を引き
起こしたり、低重゛合皮のBIIETの飛散量が多くな
るので原料原単位を悪化させたり5重縮合工程におりる
留出蒸気の抽気系統に閉塞を起こしたりして好ましくな
いため。
When esterification is carried out in the 1ml method, when the esterification reaction rate reaches about 90%, suspension of unreacted TP^ particles is no longer observed and the 1 reactant becomes transparent. However, if it is fed as is to the polycondensation step, which is the second step in polyester production, the reaction rate will decrease, causing a delay in the first polycondensation time, and the amount of BIIET from low-density synthetic leather will increase, so it is difficult to reduce the raw material consumption rate. This is because it is undesirable because it may cause deterioration or blockage of the distillate vapor extraction system that goes into the pentacondensation process.

通富はこのエステル化反応率を90〜98%、好ましく
は93〜98%、最適には94〜96%という比較的高
反応率のB11IuTが生成するまで反応させることが
必要となり、その結果、生産性の低下やD[G濃度の増
大を招くことになる。
Tsutomu needs to react until B11IuT is produced at a relatively high reaction rate of 90 to 98%, preferably 93 to 98%, optimally 94 to 96%, and as a result, This will lead to a decrease in productivity and an increase in the D[G concentration.

従来より、エステル化反応を数段の連続槽を用いて行う
ことにより反応効率をあげ、 DUG濃度の増大を抑制
することが公知であるが、むやみに槽数を増加すること
は経済的でないばかりか、自ずからDUG濃度の抑制に
も限界がある。
It has been known to increase the reaction efficiency and suppress the increase in DUG concentration by carrying out the esterification reaction using several consecutive tanks, but it is not economical to increase the number of tanks unnecessarily. However, there are naturally limits to suppressing the DUG concentration.

ところが1本発明の方法によれば5通常用いられる程度
の数の複数の槽3好ましくは2〜3槽。
However, according to the method of the present invention, a plurality of tanks 3, preferably 2 to 3 tanks, as many as are normally used.

最適には2槽の連続槽を用いてBIIETを連続的に製
造する際、第1反応槽の総括エステル化反応率を未反応
TPA粒子が懸濁している状態とし、第1反応槽からの
反応物の一部を1反応物を濾過して未反応TP^粒子を
除去して生成物(BIIET)として取り出し、最終反
応槽からのBIIETとともに最終ポリマー用途に合わ
せた次工程の重縮合反応工程へ供給することによって本
発明の目的が達成されるのである。
Optimally, when continuously producing BIIET using two continuous tanks, the overall esterification reaction rate in the first reaction tank is set to a state where unreacted TPA particles are suspended, and the reaction from the first reaction tank is A part of the reactant is filtered to remove unreacted TP^ particles and taken out as a product (BIIET), and together with BIIET from the final reaction tank, it is sent to the next polycondensation reaction step tailored to the final polymer application. By providing this, the object of the present invention is achieved.

反応槽の温度、圧力を一定にしてやれば濾過後の811
1!Tはエステル化反応率、数平均重合度等の特性値が
一定値を示すことは、前記特開昭50−24236号公
報等に開示されているとおりであるが、具体的に示せば
第1〜3図のようになる。第1図は反応温度と濾過後の
BIIETの反応率との関係、第2図は総括エステル化
反応率と濾過後の BIIET中のDEC濃度との関係
、第3図は総括エステル化反応率と濾過後のBIIIE
Tの反応率との関係(反応温度250°C及び260℃
の場合)をそれぞれ示している。
If the temperature and pressure of the reaction tank are kept constant, 811 after filtration
1! As disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 50-24236, etc., T has constant characteristic values such as esterification reaction rate and number average degree of polymerization. ~It will look like Figure 3. Figure 1 shows the relationship between the reaction temperature and the reaction rate of BIIET after filtration, Figure 2 shows the relationship between the overall esterification reaction rate and the DEC concentration in BIIET after filtration, and Figure 3 shows the relationship between the overall esterification reaction rate and the DEC concentration in BIIET after filtration. BIIIE after filtration
Relationship between T and reaction rate (reaction temperature 250°C and 260°C
) are shown respectively.

1槽のみを用いて反応させた場合、安定した特性のi+
tt+Tを得るためには温度や圧力を一定に保たねばな
らず、しかも第1図に示すごとく重縮合工程に最も適し
たエステル化反応率94〜96%のB111uTを得よ
うとすれば250℃以下の一定温度に保つことが必要と
なり、このため反応速度が小さくなって生産性が上がら
ないという欠点がある。
When reacting using only one tank, i+ with stable characteristics
In order to obtain tt+T, the temperature and pressure must be kept constant, and as shown in Figure 1, in order to obtain B111uT with an esterification reaction rate of 94-96%, which is most suitable for the polycondensation process, the temperature and pressure must be kept constant at 250 °C. It is necessary to maintain the temperature at a constant temperature below, which has the disadvantage that the reaction rate becomes low and productivity does not increase.

また未反応TP^粒子も含めた総括エステル化反応率は
85%程度なりれば実質的な反応容量が減少し9反応効
率も悪くなる。
Furthermore, if the overall esterification reaction rate including unreacted TP^ particles is about 85%, the substantial reaction capacity will decrease and the reaction efficiency will also deteriorate.

ところで、現在のように少量多品種のポリエステルの望
まれる時代においては中間製品であるBIIETも多品
種必要であることはいうまでもない。
By the way, in the current era where small quantities of polyester are desired in many varieties, it goes without saying that BIIET, which is an intermediate product, is also required in many varieties.

本発明の方法によれば第1反応槽の温度、圧力や原料供
給速度を変えて総括エステル化反応率を変化させること
により、現在の要望に応えられるような異なった品質の
BIII!Tを同時に得ることが可能となるのである。
According to the method of the present invention, by changing the temperature, pressure, and feed rate of raw materials in the first reaction tank to change the overall esterification reaction rate, different quality BIII! This makes it possible to obtain T at the same time.

本発明において1反応物の濾過には公知の任意の濾過装
置を用いることができるが1通富10〜100μ、好ま
しくは20〜60μ、最適には30〜50μの網目のフ
ィルターを用いるのが効果的である。この網目サイズの
範囲より細かくても濾過効果が飽和状態となってしまう
だけでなく、かえって圧力損失を必要以上に大としたり
、フィルター寿命を縮めたりして好ましくなく、一方、
この網目サイズの範囲より粗いと未反応のTPA粒子が
十分濾過されずにフィルターの目を通って出てしまうた
め。
In the present invention, any known filtration device can be used to filter one reactant, but it is effective to use a filter with a mesh size of 10 to 100 μm, preferably 20 to 60 μm, and most preferably 30 to 50 μm. It is true. Even if the mesh size is finer than this range, not only will the filtration effect become saturated, but it will also undesirably increase the pressure loss and shorten the filter life.
If the mesh size is coarser than this range, unreacted TPA particles will not be sufficiently filtered and will come out through the meshes of the filter.

ともに好ましくない。Both are undesirable.

また、このフィルターを反応槽下部にとりつけて、未反
応TPA粒子を含まないBIIETのみを取り出す方法
でもよいが、外部に濾過装置を独立に設置し、しかも入
口1箇所、出口2箇所を有する濾過装置を用いるのが、
好ましい。すなわち、未反応TPA粒子の懸濁した実際
の生産量より過剰の、好ましくは生産量の数倍の量の反
応物を導入する入口と濾過層を通過した未反応TPA粒
子が除去された重縮合反応工程に供給するBIIET 
(実際の生産量に相当する)を送り出す出口と残りの未
反応TPA粒子の増加した反応物をリサイクル又は次の
反応槽に移送させるための出口を有する濾過装置が好適
であり、このような濾過装置を用いることによって、濾
過プロセスが円滑にしかも長寿命で運転可能となるので
ある。
It is also possible to install this filter at the bottom of the reaction tank and take out only the BIIET that does not contain unreacted TPA particles, but it is also possible to install an independent filtration device outside and have one inlet and two outlets. The use of
preferable. That is, a polycondensation process in which unreacted TPA particles passed through an inlet and a filtration layer in which an amount of reactant is introduced in excess of the actual production amount, preferably several times the production amount, in which unreacted TPA particles are suspended, are removed. BIIET supplied to the reaction process
A filtration device having an outlet for discharging (corresponding to the actual production amount) and an outlet for recycling or transferring the increased reactant of remaining unreacted TPA particles to the next reaction vessel is preferred; By using the device, the filtration process can be operated smoothly and with a long service life.

第4図は本発明の一実施態様を示すフローシートであり
、1は第1反応槽、2は第2(最終)反応槽、3はTP
Aと[Gとのスラリー を供給する原料供給ライン、4
はEG供給ライン、5は第1反応槽から第2反応槽への
送液ライン、6は反応物払い出しポンプ、7は濾過装置
を示し、濾過装置で未反応TPA粒子が除去されたBI
IUTは送液ライン8を経て重縮合工程に送られ、濾過
により未反応TP^粒子の増加した残りの反応物はリサ
イクルライン9により第1反応槽にリサイクルされるよ
うになっている。また、第2反応槽からのBIIETは
送液ライン10を経て重縮合工程に送られる。
FIG. 4 is a flow sheet showing one embodiment of the present invention, where 1 is a first reaction tank, 2 is a second (final) reaction tank, and 3 is a TP
Raw material supply line that supplies slurry of A and [G, 4
5 is the EG supply line, 5 is the liquid feeding line from the first reaction tank to the second reaction tank, 6 is the reactant dispensing pump, and 7 is the filtration device.
The IUT is sent to the polycondensation step via a liquid feed line 8, and the remaining reactant, which has an increased amount of unreacted TP^ particles due to filtration, is recycled to the first reaction tank via a recycle line 9. Further, BIIET from the second reaction tank is sent to the polycondensation process via the liquid feed line 10.

第5図は本発明の他の実施態様を示すフローシートであ
り、第1反応槽からの反応物を全量濾過装置に供給し、
濾過により未反応TPA粒子の増加した残りの反応物を
送液ライン11により、第2反応槽へ移送するようにし
たものである。
FIG. 5 is a flow sheet showing another embodiment of the present invention, in which the reactant from the first reaction tank is supplied to the total volume filtration device,
The remaining reactant, in which unreacted TPA particles have increased due to filtration, is transferred to the second reaction tank via a liquid transfer line 11.

なお、実施態様例にも示したように、濾過装置は第1反
応槽のみにつけ、他の反応層にはつけない方が制御が容
易で、好ましい。
As shown in the embodiment examples, it is preferable to attach the filtration device only to the first reaction tank and not to the other reaction layers because control is easier.

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例中、「部」は重量部を示し、特性値は次の方法に
より測定したものである。
In the examples, "parts" indicate parts by weight, and the characteristic values were measured by the following method.

+11 LIIEG濃度(モル%) メタノール還流下で2時間アルコリシスし、生成した[
Gと1)IuGとをガスクロマトグラフィーで分析定量
した。
+11 LIIEG concentration (mol%) Produced by alcoholysis for 2 hours under refluxing methanol [
G and 1) IuG were analyzed and quantified by gas chromatography.

(2)反応率 f (%) 後述の方法でめた酸価(AV)とケン化1m(SN)と
から次式で算出した。
(2) Reaction rate f (%) Calculated using the following formula from the acid value (AV) determined by the method described below and saponification 1m (SN).

N O酸価(八V) (当量/トン) 約3gのサンプルを精秤し、ジメチルホルムアミド40
m1に還流下で溶解させ、冷却後1/10規定のメタノ
ール性水酸化カリウム溶液で電位差滴定してめた。
N O acid value (8 V) (equivalent/ton) Accurately weigh about 3 g of sample and add dimethylformamide 40
ml under reflux, and after cooling, the solution was determined by potentiometric titration with a 1/10 normal methanolic potassium hydroxide solution.

0ケン化価(SN) (当量/トン) サンプル約0.5gを精秤し、過剰の1/2規定エタノ
ール性水酸化カリウム溶液で20℃で1時間アルカリ加
水分解し、過剰の水酸化カリウムを1/2規定の塩酸で
逆滴定してめた。
0 Saponification number (SN) (equivalent/ton) Approximately 0.5 g of the sample was accurately weighed and alkaline hydrolyzed with excess 1/2 N ethanolic potassium hydroxide solution at 20°C for 1 hour to remove excess potassium hydroxide. was determined by back titration with 1/2 normal hydrochloric acid.

実施例1 第4図に示した装置を用いて、 B111!Tの存在す
る第1反応槽1にEG/TPAモル比が約1.6のスラ
リーを102部/Ilr、第2反応槽2にUGを5部/
11rの割合で供給し、第1反応槽は温度255℃、圧
力0.05kg/c艷G、平均滞留時間6時間、第2反
応槽は温度255℃、圧力0.05kg/ c+a G
 、平均滞留時間3.5時間で反応させたところ、第1
反応槽の総括エステル化反応率は80%、第2反応槽の
総括エステル化反応率は94%、第1反応槽からの反応
物を濾過後のDIIIETのエステル化反応率は94%
、第1及ヒ第2反応槽カラ(D BIIET(7) D
[iG ij1度は0.110モル%及び1.12モル
%であった。
Example 1 Using the apparatus shown in FIG. 4, B111! 102 parts/Ilr of slurry with an EG/TPA molar ratio of approximately 1.6 was placed in the first reaction tank 1 containing T, and 5 parts/Ilr of UG was placed in the second reaction tank 2.
The first reaction tank has a temperature of 255°C, a pressure of 0.05kg/c+a G, and an average residence time of 6 hours, and the second reaction tank has a temperature of 255°C and a pressure of 0.05kg/c+aG.
, when the reaction was carried out at an average residence time of 3.5 hours, the first
The overall esterification reaction rate of the reaction tank is 80%, the overall esterification reaction rate of the second reaction tank is 94%, and the esterification reaction rate of DIIIET after filtering the reactant from the first reaction tank is 94%.
, 1st and 2nd reaction tank empty (D BIIET (7) D
[iG ij 1 degree was 0.110 mol% and 1.12 mol%.

なお、第1反応槽から第2反応槽への移送量は52部/
11rとした。またフィルターとしては網目サイズ40
μのステンレス製平織金網を用い、濾過装置への供給量
を125部/llrとし、 BIIIETを第1反応槽
から25部/llr、第2反応槽から52部/11rの
割合で重縮合工程に送った。
The amount transferred from the first reaction tank to the second reaction tank is 52 parts/
It was set to 11r. Also, as a filter, the mesh size is 40.
Using a stainless steel plain-woven wire mesh, the amount supplied to the filtration device was 125 parts/llr, and BIIIET was added to the polycondensation step at a rate of 25 parts/llr from the first reaction tank and 52 parts/11r from the second reaction tank. sent.

実施例2 第5図の装置を用いて、第1反応槽へのスラリー供給量
を110部/ Ilr、第2反応槽へのEG供給量を6
部/llrとし、実施例1と同一条件で反応させた。
Example 2 Using the apparatus shown in Fig. 5, the amount of slurry supplied to the first reaction tank was 110 parts/Ilr, and the amount of EG supplied to the second reaction tank was 6 parts/Ilr.
parts/llr, and the reaction was carried out under the same conditions as in Example 1.

エステル化反応物及びBll[iTの性状は実施例1と
ほぼ同じであり、 B111!Tの生産量は第1反応槽
から20部/ Ilr、第2反応槽から63部/11r
であった。
The properties of the esterification reaction product and Bll[iT are almost the same as in Example 1, and B111! The production amount of T is 20 parts/Ilr from the first reaction tank and 63 parts/11r from the second reaction tank.
Met.

比較例 実施例1において、第1反応槽に濾過装置をつけないで
、第1反応槽からの反応物を全量そのまま第2反応槽に
移送するようにし、第1反応槽へのスラリー供給量を1
10部/Ilr、第2反応槽へのEG供給量を8部/l
lrとし、実施例1と同一条件で反応させた。
Comparative Example In Example 1, a filtration device was not attached to the first reaction tank, and the entire amount of the reactant from the first reaction tank was transferred to the second reaction tank as it was, so that the amount of slurry supplied to the first reaction tank was 1
10 parts/Ilr, EG supply amount to the second reaction tank 8 parts/l
lr, and the reaction was carried out under the same conditions as in Example 1.

得られたBIIBTはエステル化反応率94%、 DE
C濃度1.10%で、生産量は83部/11rであった
The obtained BIIBT had an esterification reaction rate of 94%, DE
At a C concentration of 1.10%, the production amount was 83 parts/11r.

このように1本発明の方法によれば、低DIltGa度
のBIIIETと通常のDEC濃度のIIIIIETと
を同時に効率よく製造することができる。
As described above, according to the method of the present invention, BIIIET with a low DIltGa degree and IIIET with a normal DEC concentration can be efficiently produced simultaneously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応温度と濾過後の旧JETの反応率との関係
、第2図は総括エステル化反応率と濾過後のBIIBT
中のDEC濃度との関係、第3図は総括エステル化反応
率と濾過後のBII[iTの反応率との関係をそれぞれ
示すグラフ、第4図及び第5図は本発明の実施態様を示
すフローシートである。 1−第1反応槽、2−第2反応槽。 3−原料供給ライン、7−濾過装置。 特許出願人 日本エステル株式会社 代理人児 玉 雄 三 1iイち・シ1に度(’C) 11回 ¥21〕 弄富、j含エステルイし反応↑(%) ¥3回
Figure 1 shows the relationship between reaction temperature and reaction rate of old JET after filtration, Figure 2 shows the overall esterification reaction rate and BIIBT after filtration.
Figure 3 is a graph showing the relationship between the overall esterification reaction rate and the reaction rate of BII[iT after filtration, respectively. Figures 4 and 5 show embodiments of the present invention. It is a flow sheet. 1-first reaction tank, 2-second reaction tank. 3-raw material supply line, 7-filtration device. Patent applicant Nippon Ester Co., Ltd. Agent Yuji Tama 11 times 11 times ¥21] Ester-containing reaction ↑ (%) ¥3 times

Claims (1)

【特許請求の範囲】[Claims] +11テレフタル酸とエチレングリコールとを反応させ
てテレフタル酸グリコールエステルを連続的に製造する
に際し9反応を連続した2槽以上の反応槽を用いて行い
、第1反応槽からの未反応テレフタル酸粒子が懸濁して
いる状態のエステル化反応物の一部を1反応物を濾過し
て未反応テレフタル酸粒子を除去して生成物として取り
出し、残部を第2反応槽に移送することを特徴とするテ
レフタル酸グリコールエステルの連続製造法。
+11 When terephthalic acid and ethylene glycol are reacted to continuously produce terephthalic acid glycol ester, nine reactions are performed using two or more consecutive reaction vessels, and unreacted terephthalic acid particles from the first reaction vessel are Terephthal, which is characterized in that part of the suspended esterification reaction product is filtered to remove unreacted terephthalic acid particles and taken out as a product, and the remainder is transferred to a second reaction tank. Continuous production method for acid glycol esters.
JP19734483A 1983-10-21 1983-10-21 Continuous production of terephthalic acid glycol ester Granted JPS6089448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19734483A JPS6089448A (en) 1983-10-21 1983-10-21 Continuous production of terephthalic acid glycol ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19734483A JPS6089448A (en) 1983-10-21 1983-10-21 Continuous production of terephthalic acid glycol ester

Publications (2)

Publication Number Publication Date
JPS6089448A true JPS6089448A (en) 1985-05-20
JPH047339B2 JPH047339B2 (en) 1992-02-10

Family

ID=16372910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19734483A Granted JPS6089448A (en) 1983-10-21 1983-10-21 Continuous production of terephthalic acid glycol ester

Country Status (1)

Country Link
JP (1) JPS6089448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073549C (en) * 1998-03-10 2001-10-24 辽阳市石油化工研究所 Method for preparing mixed ester terephthalate
US10500670B2 (en) 2015-11-06 2019-12-10 Elco Enterprises, Inc. Flexible wire guide system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078944A (en) * 1983-10-06 1985-05-04 Nippon Ester Co Ltd Continuous production of terephthalic acid glycol ester

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078944A (en) * 1983-10-06 1985-05-04 Nippon Ester Co Ltd Continuous production of terephthalic acid glycol ester

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073549C (en) * 1998-03-10 2001-10-24 辽阳市石油化工研究所 Method for preparing mixed ester terephthalate
US10500670B2 (en) 2015-11-06 2019-12-10 Elco Enterprises, Inc. Flexible wire guide system

Also Published As

Publication number Publication date
JPH047339B2 (en) 1992-02-10

Similar Documents

Publication Publication Date Title
KR101663586B1 (en) Dioctylterephthalate manufacturing method increased reaction coversion rate through unique reaction temperature control
US7098360B2 (en) Processes employing multiple successive chemical reaction process steps and apparatus therefore
US3639448A (en) Process for producing bis(beta-hydroxyethyl)-terephthalate and/or prepolymer thereof
US3241926A (en) Apparatus for continuously polycondensing polymethylene glycol esters of aromatic dicarboxylic acids
CN100348642C (en) Method for preparing calcium carbonate modified polyester
CN1058959C (en) Low pressure process for the manufacture of cyclohexanedicarboxylate esters
AU660371B2 (en) Process for the preparation of monomeric terephthalic diesters and diols from polyesters
JPS6089448A (en) Continuous production of terephthalic acid glycol ester
JPS6072845A (en) Continuous preparation of terephthalic acid glycol ester
JPH0361660B2 (en)
JPH09291141A (en) Production of polyester
JP3681244B2 (en) Continuous production method of polyester
JP2000191761A (en) Production of polyester
EP0399029A1 (en) An improved process for production of polycarboxylic aromatic acids
CN114630816B (en) Hydrogenation of phthalate-based compounds
JP3484596B2 (en) Polyester production method
JPH09309863A (en) Batch type esterifying reactor
JPH0637433B2 (en) Method for producing terephthalic acid glycol ester
JPS5828267B2 (en) Continuous esterification method of terephthalic acid
EP0383929A1 (en) Process for producing polyester ether copolymer
JPS5950660B2 (en) Esterification method
JP3536609B2 (en) Polyester production method
JPH10237017A (en) Production of diacetoxybutene
JP2000336162A (en) Continuous production of polyester
KR20020055839A (en) Method for preparing crude terephthalic acid