JPS6089054A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS6089054A
JPS6089054A JP58196045A JP19604583A JPS6089054A JP S6089054 A JPS6089054 A JP S6089054A JP 58196045 A JP58196045 A JP 58196045A JP 19604583 A JP19604583 A JP 19604583A JP S6089054 A JPS6089054 A JP S6089054A
Authority
JP
Japan
Prior art keywords
entrance window
window
radiation detector
resin
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58196045A
Other languages
Japanese (ja)
Other versions
JPH0259582B2 (en
Inventor
Yuzo Yoshida
吉田 祐三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58196045A priority Critical patent/JPS6089054A/en
Publication of JPS6089054A publication Critical patent/JPS6089054A/en
Publication of JPH0259582B2 publication Critical patent/JPH0259582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/001Details
    • H01J47/002Vessels or containers
    • H01J47/004Windows permeable to X-rays, gamma-rays, or particles

Abstract

PURPOSE:To increase the strength of a radiation detector charged with a high pressure gas by preparing the window of the detector by stacking a plural number of resin plates in such a manner as to make carbon fibers of slice direction perpendicular to those of channel direction. CONSTITUTION:The window section 13a of a case 13 closed with a lid 14 has a window 15 consisting of a carbon fiber reinforced resin and the case 13 is charged with a detector element and a high pressure gas, thereby constituting a radiation detector. The window 15 is formed by stacking a plural number of plates (15A-15L) each consisting of carbon fibers orienting in one direction and impregnated with a resin. It is formed, for example, by stacking two resin plates made of carbon fibers orienting in 0 deg. direction, one resin plate made of carbon fibers orienting in 90 deg. direction and two resin plates made of carbon fibers orienting at 0 deg. direction in that order. As a result, a high density resolution is achieved by reducing the amount of X-ray absorption. In addition, it is possible to obtain a radiation detector which can be safely used by equalizing its strength in 0 deg. direction and its strength in 90 deg. direction.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、放射線断層撮影装置に使用される放射線検出
器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiation detector used in a radiation tomography apparatus.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

放射線断層撮影装置の一つとしてコンピュータ・トモグ
ラフィ装置(CT装置)かある。この装置は第1図に示
すように例えば偏平な扇状のファンビームX1FXをパ
ルス的に曝射するX#il源1と、このX線を検出する
複数の放射線検出系子りを並設してなる放射線検出器2
とを被検体6を挾んで対峙させ、かつこれらX線源1及
び放射線検出器2を前記被検体6を中心に互いに同方向
に同一角速度で回転移動させ、被検体6断面の種々の方
向に対するX#J吸収データを収集する。そして充分な
データを収集した後、このデータを電子計算機で解析し
、被検体断面の個々の位置に対するX#i!吸収率な算
出して、その吸収率に応じた階調度で前記被検体断面を
再構成するようにしたもので、組成に応じて2000段
階にも及ぶ階副度で分析できるので、軟質組織から硬質
組織に至るまで明確な断層像が得られる。
A computer tomography device (CT device) is one type of radiation tomography device. As shown in Fig. 1, this device includes an X#il source 1 that emits, for example, a flat, fan-shaped fan beam X1FX in a pulsed manner, and a plurality of radiation detection systems that detect this X-ray. radiation detector 2
The Collect X#J absorption data. After collecting sufficient data, this data is analyzed by an electronic computer, and the X#i! This method calculates the absorption rate and reconstructs the cross section of the subject with a gradation level corresponding to the absorption rate.It can perform analysis in as many as 2000 gradation levels depending on the composition, so it is possible to analyze from soft tissue to Clear tomographic images can be obtained down to hard tissue.

ここで、前記放射線検出器2は、例えばそれぞれ電離箱
を構成する多数の放射線検出系子からなりXe(キセノ
ン)等の高圧ガスが封入された放射線検出器として構成
され、被検体3の断面を透過したX線のエネルギーを電
離電流として検出し、これをXSa収データとして出力
する。
Here, the radiation detector 2 is configured as a radiation detector that includes a large number of radiation detection systems each forming an ionization chamber, and is filled with a high-pressure gas such as Xe (xenon), and detects a cross section of the subject 3. The energy of the transmitted X-rays is detected as ionization current, and this is output as XSa collection data.

すなわち、このxIR吸収データの収集にあたりては、
電離箱を構成する各放射線検出素子とX線源とを結ぶ線
上(これをX線バスという)を透過してきたX線のエネ
ルギーを電離電流として検出してこれな所定の時間積分
し、その積分値を所定の時定数の放電回路にて放電して
その放電時間値を各X線パスについてのX線吸収データ
とするものである。
In other words, when collecting this xIR absorption data,
The energy of the X-rays that have passed through the line connecting each radiation detection element that makes up the ionization chamber and the X-ray source (this is called the X-ray bus) is detected as an ionization current, integrated over a predetermined time, and The value is discharged in a discharge circuit having a predetermined time constant, and the discharge time value is used as the X-ray absorption data for each X-ray pass.

ところで、最終的な再構成画像の良否は放射線検出器の
もつ、感度、分解能(空間分解能、密度分M能)で定ま
るため、優れたCT装置を得るためには、高感度、高分
解能の放射線検出器を使用しなければなら゛ない。この
うち感度はPL値(ガス圧X検出素子央行長: atm
* cm )で規定されるものであり、一般には60 
atm*cm程度であり、その時のエネルギー吸収効率
は40〜60%である。又、空間分解能は電極素子の配
列ピンチにより規定されるものであり、0.5 ztn
〜0.6關径の物質が見えれば優秀といえる。
By the way, the quality of the final reconstructed image is determined by the sensitivity and resolution (spatial resolution, density resolution M capability) of the radiation detector, so in order to obtain an excellent CT device, it is necessary to use radiation with high sensitivity and high resolution. A detector must be used. Among these, the sensitivity is the PL value (gas pressure
*cm), generally 60
It is about atm*cm, and the energy absorption efficiency at that time is 40 to 60%. In addition, the spatial resolution is defined by the arrangement pinch of the electrode elements, and is 0.5 ztn
If you can see a substance with a diameter of ~0.6, it can be said to be excellent.

密度分解能とは、臨床においていかに密度差の小さい物
質が識別できるかの能力である。この能力は放射線検出
器の入射窓を透過して検出素子に到達する低エネルギー
フォトンに比例する。伺故ならば、白質と灰白質との線
吸収係数(cm)差は低エネルギーにおいて有意差な有
するからである。
Density resolution is the ability to identify substances with small density differences in clinical practice. This ability is proportional to the low energy photons that pass through the radiation detector's entrance window and reach the detection element. This is because the difference in linear absorption coefficient (cm) between white matter and gray matter is significant at low energies.

しかしながら、放射線検出器2は第2図及び第3図に示
すように、円弧状箱形をなし、この箱形の本体4はファ
ンビームX線FXの広がり角θに対応して、その入射面
側壁に入射窓4aを有しているため、低エネルギーフォ
トンは検出素子に到達する前に前記入射窓に吸収されて
しまう。通常、前記箱形の本体4は入射窓4aなも含め
て、X線透過率が良好なアルミニウムで被覆され、然も
入射窓4aは他の部分よりも肉薄になっているが、低エ
ネルギーフォトンの入射窓での吸収が避けられなかった
。従って、高密度分解能を得るためには、X線入射窓が
ないことが理想的であるが、前記箱形の本体4の内部に
例えばXe(キセノン)ガス等の高圧ガスを充填する必
要上、X線入射窓の存在は必要なものであった。
However, as shown in FIGS. 2 and 3, the radiation detector 2 has an arcuate box shape, and the box-shaped body 4 has an incident surface corresponding to the spread angle θ of the fan beam X-rays FX. Since the side wall has the entrance window 4a, low energy photons are absorbed by the entrance window before reaching the detection element. Normally, the box-shaped main body 4, including the entrance window 4a, is coated with aluminum, which has good X-ray transmittance, and although the entrance window 4a is thinner than other parts, low energy photons Absorption at the entrance window was unavoidable. Therefore, in order to obtain high-density resolution, it is ideal to have no X-ray entrance window, but since it is necessary to fill the inside of the box-shaped main body 4 with high-pressure gas such as Xe (xenon) gas, The presence of an X-ray entrance window was necessary.

また、箱形の本体4内部にキセノンガス等の高圧ガスが
充填されているため、X線入射窓4aにはその内部から
の応力がかかり、そのかかる応力も入射窓4aのスライ
ス方向たる0°方回(第4図参照)と入射窓4aのチャ
ンネル方向たる90°方向(第4図参照)とでは、第5
図に示すように、0°方向10にかかる応力の方が90
0万回11にかかるそれよりもほぼ2倍の応力がかかる
。従って、この破竹する内部からの応力に対して適切に
対処するためには、入射窓部材自体の強度を90°方回
よりも0°方回に2倍の強さを有することが理想的であ
る。
In addition, since the inside of the box-shaped main body 4 is filled with high-pressure gas such as xenon gas, stress is applied from inside the X-ray entrance window 4a, and the applied stress is also 0°, which is the slice direction of the entrance window 4a. (see Fig. 4) and the 90° direction which is the channel direction of the entrance window 4a (see Fig. 4).
As shown in the figure, the stress applied in the 0° direction 10 is 90°
The stress is almost twice as much as that applied to 110,000 cycles. Therefore, in order to appropriately deal with this stress from within, it is ideal for the entrance window member itself to have twice the strength in the 0° direction than in the 90° direction. be.

〔発明の目的〕[Purpose of the invention]

本発明は前記事情に基づいてなされたものであり、高密
度分解能を得ることができると共に、内部から入射窓に
発生する応力に対して強に的に安全な強度を有する放射
線検出器を提供することを目的とする。
The present invention has been made based on the above-mentioned circumstances, and provides a radiation detector that can obtain high-density resolution and has a strong strength that is extremely safe against stress generated in the entrance window from inside. The purpose is to

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本発明のa要は、高圧ガスを
封入した放射線検出器において、一方向に配向した炭素
繊維に樹脂を含浸してなる複数の樹脂含浸板な、炭素繊
維の配回方向がスライス方向とチャンネル方向とが相互
に直交するように積層し、スライス方向での強度とチャ
ンネル方向での強度とをほぼ等しくしてなる入射窓部材
を備えたことを特徴とするものである。
The key point of the present invention to achieve the above object is that, in a radiation detector filled with high-pressure gas, carbon fibers are arranged in a plurality of resin-impregnated plates made by impregnating carbon fibers oriented in one direction with resin. It is characterized by comprising an entrance window member which is laminated so that the slice direction and the channel direction are orthogonal to each other, and whose intensity in the slice direction and the intensity in the channel direction are approximately equal. .

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面を参照しながら具体的に説明
する。
Embodiments of the present invention will be specifically described below with reference to the drawings.

第6図は本発明における放射線検出器の一実施例を示す
断面図である。同図において、16はファンビームX@
FXの当たる入射面側壁をくり抜いた窓部13aを有す
るケース本体であり、アルミニウムにより成形されてい
る。14はこのケース本体13の上部開口部を閉塞して
いる蓋である。
FIG. 6 is a sectional view showing an embodiment of the radiation detector according to the present invention. In the same figure, 16 is a fan beam
The case body has a window portion 13a cut out from the side wall of the incident surface where the FX hits, and is molded from aluminum. Reference numeral 14 denotes a lid that closes the upper opening of the case body 13.

15は炭素繊維強化樹脂(以下、CFRPという)から
なる入射窓であり、この入射窓15はケース本体16の
内側面に前記窓部13aを閉塞するように固定されてい
る。16はケース本体130内側面に固定された入射窓
15を補強するための補強部材で、前記窓部13aに対
応する箇所に穴部16aを有する額縁形状をなしている
(第7図参照)。この補強部材16を用いて入射窓15
を補強するには、まず、入射窓15をシート状の接着剤
を用いてケース本体16に貼着した後、第5図に示すよ
うに入射窓15を補強部材16のそれぞれの胸囲の対応
箇所に設けたネジ孔にネジ17を差し込みネジ止するこ
とによって、ケース本体16に貼着された入射窓15を
強固に補強するものである。尚、ここで使用されている
入射窓15及び補強部材16は、いずれも検出器の円弧
形状に合致するように曲率な有している(第7図参照)
Reference numeral 15 denotes an entrance window made of carbon fiber reinforced resin (hereinafter referred to as CFRP), and this entrance window 15 is fixed to the inner surface of the case body 16 so as to close the window 13a. Reference numeral 16 denotes a reinforcing member for reinforcing the entrance window 15 fixed to the inner surface of the case body 130, and has a frame shape with a hole 16a at a location corresponding to the window 13a (see FIG. 7). By using this reinforcing member 16, the entrance window 15
To reinforce the entrance window 15, first attach the entrance window 15 to the case body 16 using a sheet of adhesive, and then attach the entrance window 15 to the corresponding part of the chest circumference of the reinforcing member 16 as shown in FIG. The entrance window 15 attached to the case body 16 is strongly reinforced by inserting and screwing the screw 17 into the screw hole provided in the case body 16. Incidentally, the entrance window 15 and the reinforcing member 16 used here both have a curvature that matches the arc shape of the detector (see Fig. 7).
.

ところで、前記入射窓15を構成するCFRPは、第8
図に示すように、一方向に配回した炭素繊維に樹脂な含
浸してなる複数枚のプリプレグ(樹脂浸透加工材)15
八〜15Lを重ね合わせて一体化したものである。そし
て、この重合されるプリプレグの何枚かは炭素繊維方向
を変えている。すなわち、第9図に示すように、まず炭
素繊維方向が0°方向(以下、0°方回と略称する)の
プリプレグ15Aと15Bが重合され、次に炭素繊維方
向が90°方向(以下、90’方回と略称する)のプリ
プレグ15Cが重合され、次いで0°方向のプリプレグ
15Dと15B、90°方向のプリプレグ15Fと15
G、0°方向のプリプレグ15Hと15I&順次に重合
し、さらに90°方向のプリプレグ15Jを重ね合せ、
最後には0°方回のプリプレグ15にと15Lを重ねて
、これらを一体化して入射窓150部材たるCFRPが
構成されている。換言すれば、入射窓15は0°方向の
プリプレグか8枚と90°方回のプリプレグが4枚とで
構成されている。従って、プリプレグの強度は炭素繊維
方向の方が強いため、上記のように06方回と90°方
向のプリプレグの枚数割合を2:1にすれば、これな重
合してなる入射窓150強度も0°方回の万が90°方
回よりも2倍の強さを有することになる。このことは検
出器の入射窓に発生する応力に対して理想的な強度を有
することになり、強度的に安全なCFRPよりなる入射
窓となる。
By the way, the CFRP constituting the entrance window 15 is
As shown in the figure, multiple sheets of prepreg (resin-impregnated material) 15 are made by impregnating carbon fibers arranged in one direction with resin.
It is made by overlapping and integrating 8 to 15L. The direction of the carbon fibers in some of the prepregs to be polymerized is changed. That is, as shown in FIG. 9, first prepregs 15A and 15B with the carbon fiber direction in the 0° direction (hereinafter referred to as 0° direction) are polymerized, and then the carbon fiber direction is in the 90° direction (hereinafter referred to as 0° direction). Prepreg 15C in the 90' direction is polymerized, followed by prepregs 15D and 15B in the 0° direction, and prepregs 15F and 15 in the 90° direction.
G, prepregs 15H and 15I in the 0° direction are polymerized sequentially, and then prepreg 15J in the 90° direction is superimposed,
Finally, the prepregs 15 and 15L are stacked on top of the prepreg 15 in the 0° direction, and these are integrated to form the CFRP that is the member of the entrance window 150. In other words, the entrance window 15 is made up of eight 0° prepreg sheets and four 90° prepreg sheets. Therefore, the strength of the prepreg is stronger in the carbon fiber direction, so if the ratio of the number of prepreg sheets in the 06 direction and the 90 degree direction is set to 2:1 as described above, the strength of the entrance window 150 formed by polymerization can also be increased. A 0° rotation is twice as strong as a 90° rotation. This means that the entrance window of the detector has ideal strength against the stress generated in the entrance window, resulting in an entrance window made of CFRP that is safe in terms of strength.

ここで、CFRPはアクリル繊維、レーヨン繊維等を高
温(200〜300℃)で炭炎化し、更に昇温(700
〜1800℃)して炭化させた炭素繊維をレジン(エポ
キシ樹脂等)で含浸したもので、その体積含有率は繊維
60%、レジ740係が一般的である。そして、このC
FRPの特性としては、■X線透過率がアルミニウム当
量で’10(60KV〜10QKV)■引張強度が〜1
2OK、9/關2(繊維方向)■弾性率が約12000
 K、!i’ /mu”が上げられる。これは、従来の
入射窓の材質として使用されていたアルミニウムと比較
すると、透過率及び強度において数段も優れている。従
って、このCFRPを前記実施例の如く入射窓の材質と
して使用すれば、入射窓のX、l透過率が増すため、検
出素子自身に到達するX線が増大し、S/Nが同上する
ことは勿論、X#3!の低エネルギー側の入射窓での吸
収が少なくなるため、吸収係数差の倣小な白質や灰白質
の識別が可能になり、密度分解度の同上を図ることがで
きる。第12図は、この密度分解度の向上を示すために
、シミュレーション結果においてX線入射窓をアルミニ
ウムからCFRPにしたことによる検出素子でのX線吸
収スペクトルの変化を示したグラフである。同図におい
て、61はX線入射窓をアルミニウムにした場合の検出
素子でのX線吸収スペクトルであり、32はX線入射窓
をCFR,Pにした場合の検出素子でのX線吸収スペク
トルである。この結果、検出系子での低エネルギー側の
吸収はCFRPを用いた場合の方が15〜20%も向上
していることがわかる。但し、この結果は入射窓の厚さ
をアルミニウムとCFRPを共に同厚にした場合である
。向、図中において60は入射窓の前面(入射窓を透過
するが■)でのXMAスペクトルを表わす。
Here, CFRP is made by carbonizing acrylic fibers, rayon fibers, etc. at high temperatures (200 to 300°C), and then further increasing the temperature (700°C).
It is made by impregnating carbon fibers that have been carbonized at temperatures up to 1,800°C with a resin (epoxy resin, etc.), and the volume content of the fibers is generally 60% and the register size is 740%. And this C
The characteristics of FRP are: ■ X-ray transmittance is '10 in aluminum equivalent (60KV ~ 10QKV) ■ Tensile strength is ~1
2 OK, 9/2 (fiber direction) ■Modulus of elasticity is approximately 12,000
K! i'/mu". This is much superior in transmittance and strength to aluminum, which has been used as a material for conventional entrance windows. If used as the material for the entrance window, the X and l transmittance of the entrance window increases, which increases the number of X-rays that reach the detection element itself, which not only increases the S/N ratio but also reduces the energy of X#3! Since the absorption at the side entrance window is reduced, it becomes possible to identify white matter and gray matter with small absorption coefficient differences, and it is possible to achieve the same density resolution.Figure 12 shows this density resolution. In order to show the improvement, this is a graph showing the change in the X-ray absorption spectrum in the detection element due to changing the X-ray entrance window from aluminum to CFRP in the simulation results. This is the X-ray absorption spectrum at the detection element when aluminum is used, and 32 is the X-ray absorption spectrum at the detection element when the X-ray incidence window is CFR, P. As a result, the It can be seen that absorption on the energy side is improved by 15 to 20% when CFRP is used.However, this result is obtained when the thickness of the entrance window is the same for both aluminum and CFRP. In the figure, 60 represents the XMA spectrum in front of the entrance window (although it is transmitted through the entrance window, ▪).

本発明は前記実施例に限定されず、本発明の要旨の範囲
内で変更して実施することができる。例えば、第10図
及び第11図に示すように、CF’RPよりなる入射窓
15の周囲を直接にネジ止により補強するのではなく、
入射窓150周縁な額緯状の補強部材26により当接す
ることによってケース本体13に入射窓15を補強する
形態をとっている。すなわち、CFRPよりなる入射窓
15を介在して、補強部材26とケース本体16をネジ
27により直接にネジ止する構造となっている。補強部
材26の外側(入射窓を介在する側と反対側)の下端2
6bはテーパ状になっており、この下端26bはケース
本体16の内部底面に形成されている同様のテーパ状の
溝13bに埋め込まれた状態でネジ止されている。ガス
が封入されて内圧がかかると、補強部材の下端26aに
は入射窓の窓厚方向に力が発生する。いわゆるセルフシ
ールの構造となっている。尚、C1i’RPの入射窓1
5を補強部材26で補強する際には、前述の実施例と同
様に予め入射窓15をシート状接着剤でケース本体16
に貼着しておくものとする。第10図及び第11図で示
した実施例によると、CFRPよりなる入射窓15にネ
ジ孔をあける必要がないため、その孔の周囲に応力集中
が発生することがないので、強度的にはより安定した構
造になっている。
The present invention is not limited to the embodiments described above, and can be implemented with modifications within the scope of the gist of the present invention. For example, as shown in FIGS. 10 and 11, instead of directly reinforcing the periphery of the entrance window 15 made of CF'RP with screws,
The entrance window 15 is reinforced in the case body 13 by abutting against the reinforcing member 26 in the shape of a frame at the periphery of the entrance window 150. That is, the structure is such that the reinforcing member 26 and the case body 16 are directly screwed together with the screws 27 with the entrance window 15 made of CFRP interposed therebetween. Lower end 2 of the outer side of the reinforcing member 26 (the side opposite to the side with the entrance window interposed)
6b has a tapered shape, and the lower end 26b is embedded in a similar tapered groove 13b formed on the inner bottom surface of the case body 16 and is screwed. When gas is sealed and internal pressure is applied, a force is generated at the lower end 26a of the reinforcing member in the window thickness direction of the entrance window. It has a so-called self-sealing structure. Incidentally, the entrance window 1 of C1i'RP
5 with the reinforcing member 26, the entrance window 15 is attached to the case body 16 with a sheet adhesive in advance, as in the previous embodiment.
shall be affixed to. According to the embodiment shown in FIGS. 10 and 11, there is no need to drill a screw hole in the entrance window 15 made of CFRP, so stress concentration does not occur around the hole, so the strength is reduced. It has a more stable structure.

また、前記実施例に示したようなプリプレグの配列状態
(第9図参照)に必ずしもする必要はなく、プリプレグ
の繊維方向が08方向に向いたものと90°方向へ向い
たものとの枚数割合を2=1の比率になるようにプリプ
レグを重合すれば足りる。
In addition, it is not necessary to arrange the prepregs as shown in the above example (see Figure 9), and the ratio of the number of prepregs in which the fiber direction is oriented in the 08 direction and that in which the fiber direction is oriented in the 90° direction is not necessarily required. It is sufficient to polymerize the prepreg so that the ratio of 2=1.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、検出器の入射窓を複数枚
のプリプレグを重合してなる炭素繊維強化樹脂により構
成し、然もプリプレグの配列に工夫な凝らすことにより
、高密度分解能の向上に寄与できると共に、検出器の入
射窓に発生する応力に対して強度的に安全な強度を有す
る放射線検出器を提供することができる。
As explained above, the present invention improves high-density resolution by constructing the entrance window of the detector from carbon fiber-reinforced resin made by polymerizing multiple sheets of prepreg, and by carefully arranging the prepregs. Therefore, it is possible to provide a radiation detector having a strength that is strong and safe against stress occurring in the entrance window of the detector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCT装置の概要を示す説明図、第2図は従来の
放射線検出器の一例を示す斜視図、第3図はその断面図
、第4図は検出器の入射窓に発生する応力な示すための
説明図、第5図は検出器の容器内の内圧と入射窓に発生
する応力との関係図、第6図は本発明に係る放射線検出
器の一実施例を示す断面図、第7図は前記実施例に使用
する入射窓と補強部材を示す斜視図、第8図は本発明の
狭部である入射窓の構成を示す概略斜視図であり、第9
図はその詳細を示すための説明図、第10図は本発明の
他の実施例を示す断面図、第11図はその実施例で使用
する入射窓と補強部材を示す斜視図、第12図は本発明
における放射線検出器によるシミュレーション結果を示
すグラフである。 15・・・入射窓(入射窓部材)、 15A〜15L・
・・プリプレグ(樹脂含浸板)。 代理人 弁理士 則 近 憲 佑(ほか1名)(l萄 第4図 竺 只 M 内h (Ks/c、l) 未 υ し\ 第7図 特開昭GO−89054(6)
Fig. 1 is an explanatory diagram showing an overview of a CT device, Fig. 2 is a perspective view showing an example of a conventional radiation detector, Fig. 3 is a sectional view thereof, and Fig. 4 is a stress generated in the entrance window of the detector. FIG. 5 is a diagram showing the relationship between the internal pressure in the container of the detector and the stress generated in the entrance window. FIG. 6 is a sectional view showing an embodiment of the radiation detector according to the present invention. FIG. 7 is a perspective view showing the entrance window and reinforcing member used in the embodiment, FIG. 8 is a schematic perspective view showing the structure of the entrance window which is the narrow part of the present invention, and FIG.
The figures are explanatory diagrams showing the details, FIG. 10 is a sectional view showing another embodiment of the present invention, FIG. 11 is a perspective view showing the entrance window and reinforcing member used in that embodiment, and FIG. 12 is a graph showing simulation results using a radiation detector according to the present invention. 15... Entrance window (incidence window member), 15A to 15L.
...Prepreg (resin-impregnated board). Agent Patent attorney Kensuke Chika (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 高圧ガスを封入した放射線検出器において、一方向に配
回した炭素繊維に樹脂を含浸してなる複数の樹脂含浸板
を、炭素繊維の配向方向がスライス方向とチャンネル方
向とが相互に直交するように積層し、スライス方向での
強度とチャンネル方向での強度とをほぼ等しくしてなる
入射窓部材を備えたことを特徴とする放射線検出器。
In a radiation detector filled with high-pressure gas, a plurality of resin-impregnated plates made by impregnating carbon fibers arranged in one direction with resin are arranged so that the orientation direction of the carbon fibers is perpendicular to the slice direction and the channel direction. What is claimed is: 1. A radiation detector comprising: an entrance window member which is laminated to have substantially equal intensity in the slice direction and in the channel direction.
JP58196045A 1983-10-21 1983-10-21 Radiation detector Granted JPS6089054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196045A JPS6089054A (en) 1983-10-21 1983-10-21 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196045A JPS6089054A (en) 1983-10-21 1983-10-21 Radiation detector

Publications (2)

Publication Number Publication Date
JPS6089054A true JPS6089054A (en) 1985-05-18
JPH0259582B2 JPH0259582B2 (en) 1990-12-12

Family

ID=16351272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196045A Granted JPS6089054A (en) 1983-10-21 1983-10-21 Radiation detector

Country Status (1)

Country Link
JP (1) JPS6089054A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013049784A1 (en) * 2011-09-30 2013-04-04 Composite Mirror Applications, Inc. Solar collector having a substrate with multiple composite plies
EP2525383A3 (en) * 2011-05-16 2014-01-01 Brigham Young University Carbon composite support structure
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
US9502206B2 (en) 2012-06-05 2016-11-22 Brigham Young University Corrosion-resistant, strong x-ray window

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749879A (en) * 1980-09-10 1982-03-24 Toshiba Corp Detector for radiation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5749879A (en) * 1980-09-10 1982-03-24 Toshiba Corp Detector for radiation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2525383A3 (en) * 2011-05-16 2014-01-01 Brigham Young University Carbon composite support structure
US9076628B2 (en) 2011-05-16 2015-07-07 Brigham Young University Variable radius taper x-ray window support structure
WO2013049784A1 (en) * 2011-09-30 2013-04-04 Composite Mirror Applications, Inc. Solar collector having a substrate with multiple composite plies
US9502206B2 (en) 2012-06-05 2016-11-22 Brigham Young University Corrosion-resistant, strong x-ray window

Also Published As

Publication number Publication date
JPH0259582B2 (en) 1990-12-12

Similar Documents

Publication Publication Date Title
Diederich et al. Radiation exposure associated with imaging of the chest: comparison of different radiographic and computed tomography techniques
Augustin et al. ωo production by e+ e− annihilation
Lu et al. Dual energy imaging with a dual-layer flat panel detector
Lee et al. Patient dosimetry quality assurance program with a commercial diode system
McTiernan et al. Center-to-limb variations of characteristics of solar flare hard X-ray and gamma-ray emission
JPS6089054A (en) Radiation detector
JPS59216075A (en) Radiation detector
Rouse Characterisation of impact damage in carbon fibre reinforced plastics by 3D X-ray tomography
Rodgers et al. The biophysical properties of 3.9-GeV nitrogen ions: II. Microdosimetry
Rapaport et al. A dual-mode industrial CT
Vallières et al. Low-energy proton calibration and energy-dependence linearization of EBT-XD radiochromic films
Brown et al. Neutron radiography in biologic media: techniques, observations, and implications
US10429323B2 (en) Method and apparatus for performing multi-energy (including dual energy) computed tomography (CT) imaging
Schmidt et al. Evaluation of cassette performance: physical factors affecting patient exposure and image contrast.
Burgess Contrast effects of a gadolinium filter
JPS59216076A (en) Radiation detector
JPS60170782A (en) Radiation detector
Terry et al. Half‐value layer and intensity variations as a function of position in the radiation field for film‐screen mammography
Podgorsak et al. Superficial and orthovoltage x‐ray beam dosimetry
De Souza et al. Alpha particle radiography with the CR-39 nuclear track detector
JPS6074253A (en) Radioactive ray detector
Alston-Garnjost et al. Total cross section of the reaction K− p→ K¯ 0 n from 515 to 1065 MeV/c
JPS61172538A (en) X-ray diagnostic apparatus
Herman et al. Visibility and sharpness of lung structure at 90, 140, and 350 kV.
Basharat et al. Experimental optimization of the exposure allocation for xenon-enhanced dual-energy x-ray imaging of lung function