JPS6088803A - Steam turbine controller - Google Patents
Steam turbine controllerInfo
- Publication number
- JPS6088803A JPS6088803A JP19402883A JP19402883A JPS6088803A JP S6088803 A JPS6088803 A JP S6088803A JP 19402883 A JP19402883 A JP 19402883A JP 19402883 A JP19402883 A JP 19402883A JP S6088803 A JPS6088803 A JP S6088803A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- turbine
- pressure
- control valve
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/20—Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は複数個の蒸気加減弁を有する蒸気タービンの蒸
気タービン制御装置C:間するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a steam turbine control device C for a steam turbine having a plurality of steam control valves.
一般に、蒸気タービンの制御製置は、蒸気発生装置から
の高温高圧蒸気を複数個の蒸気加減弁により、タービン
に流入する蒸気量を制御してタービンの回転数及び出力
の制御を行う。また複数個の蒸気加減弁が開いていると
きC:、弁が正常に開/閉することを確認するための弁
テストを行うのが一般的である。この弁テストの方法は
複数個開いている弁のうちのひとつを選択して弁を強制
的に閉めて弁の閉方向動作と開方向の動作を確認するも
のである。この弁テストのとき該当の弁を強制的に閉め
ることによってそれまでのタービンへの蒸気流入量が減
少して、ひいてはターヒン出力の減少になるために、従
来では第1図に示すような回路を制御装置C:附加して
タービンの出力減少を抑えるようにしている。Generally, in the control and installation of a steam turbine, the rotation speed and output of the turbine are controlled by controlling the amount of high-temperature, high-pressure steam flowing into the turbine using a plurality of steam control valves. Furthermore, when a plurality of steam control valves are open, a valve test is generally performed to confirm that the valves open and close normally. This valve test method selects one of the multiple open valves, forcibly closes the valve, and confirms the valve's operation in the closing direction and opening direction. During this valve test, forcibly closing the relevant valve reduces the amount of steam flowing into the turbine, which in turn reduces the output of the turbine. Control device C: Additionally, it is designed to suppress a decrease in the output of the turbine.
第1図に2つの蒸気加減弁を有する従来の蒸気タービン
制御装置を示す。タービンへの蒸気流量値を設定された
蒸気流量指令Q、は加算器1を通してqとなる。そして
蒸気流量指令を蒸気加減弁開度指令I:変換する加減弁
開度関数器2人及び2Bにそれぞれ入力して、加減弁開
度指令PIAJニーPtnに変換される。そして加減弁
開度指令PIAとPIB加算器3Aと3Bに入力して弁
テスト時に閉となる接点4Aと4Bを通したバイアス信
号と加算されてP2AとP!Bとなって加減弁駆動器5
Aと5Bに入力する。そして加減弁駆動器5Aと5Bか
らの出力によって蒸気加減弁6Aと6Bの開度な調整す
る。FIG. 1 shows a conventional steam turbine control device having two steam control valves. The steam flow rate command Q, in which the steam flow rate value to the turbine is set, passes through the adder 1 and becomes q. Then, the steam flow rate command is input to the steam control valve opening command I: converting control valve opening function unit 2 and 2B, respectively, and is converted into the control valve opening command PIAJ knee Ptn. Then, the control valve opening command PIA is input to PIB adders 3A and 3B, and is added to the bias signal passed through contacts 4A and 4B, which are closed during the valve test, and P2A and P! B becomes the regulator valve driver 5
Enter in A and 5B. The opening degrees of the steam control valves 6A and 6B are adjusted by outputs from the control valve drivers 5A and 5B.
蒸気加減弁開度をiMI整することによってタービン7
への蒸気量を調整しタービンの出力を変化させて、ター
ビンに連結されている発電機8の出力を変化させる。By adjusting the opening degree of the steam control valve iMI, the turbine 7
The output of the generator 8 connected to the turbine is changed by adjusting the amount of steam supplied to the turbine and changing the output of the turbine.
Jたタービン70ηル一段落蒸気圧力値P1はタービン
出力に比例する特性をもっており、この圧力値は流量変
換器9によって圧力信号から流量信号に変換され実蒸気
流i Q、となる、そして先の蒸気流量設定見、と加算
器10によって減算され流量偏差Q4となる。流量偏差
Q4tlゲイン器11によって増幅されてQ、となり前
述の弁テスト時C二閉となる接点4八又は4Bのいずれ
力)ひとつでも閉となったときに同時に閉となり、4A
と4Bの接点がともに開となってから一定時限後に開と
なる接点臆を通して加算器lに入力される。The steam pressure value P1 in one stage of the turbine 70η has a characteristic that it is proportional to the turbine output, and this pressure value is converted from a pressure signal to a flow rate signal by the flow rate converter 9 to become the actual steam flow iQ, and the steam pressure value P1 is proportional to the turbine output. The flow rate setting value is subtracted by the adder 10 to obtain the flow rate deviation Q4. The flow rate deviation Q4tl is amplified by the gain device 11 and becomes Q, and when any one of the contacts 48 or 4B closes during the valve test mentioned above, it closes at the same time, and 4A
The signal is input to the adder 1 through the contact point 1, which opens after a certain period of time after the contacts 4B and 4B are both opened.
以上の構成において弁テストのためI:接点4Aを閉に
すると、加減弁開度指令P、Aは減少して蒸気加減弁6
Aを閉め方向に制御するためにタービン7への蒸気流入
量が減少する。このときタービン第一段落蒸気圧力P1
も減少するために流量変換器9の出力Q、も減少するの
で、蒸気流量指令qと実蒸気流量Q1間に差が生じる。In the above configuration, when I: contact 4A is closed for valve testing, the control valve opening commands P and A decrease and the steam control valve 6
In order to control A in the closing direction, the amount of steam flowing into the turbine 7 is reduced. At this time, the turbine first stage steam pressure P1
Since the output Q of the flow rate converter 9 also decreases, a difference occurs between the steam flow rate command q and the actual steam flow rate Q1.
そして偏差信号qはゲイン器11にて増幅して加算器1
で加算される。Then, the deviation signal q is amplified by a gain unit 11 and sent to an adder 1.
is added.
そしてこのときのQ、はそれまでQ+= Qtであった
ものがQl + Qs I!:なってqの分だけ増加し
て加減弁開度関数器に入力される。And Q at this time was Q+=Qt, but now it is Ql + Qs I! :The result is increased by q and input to the regulator valve opening function unit.
このため加減弁開度関数器の出力は増加されるがA I
IIは接点4Nからのバイアスによって弁を強制閉する
ための信号が入力されているので、P、A値は増加せず
にB111lのF’taのみが増加して、蒸気加減弁6
B側のみが開方向に変化してタービンへの蒸気流入量が
増加することになる。このときの増加分はゲイン器11
の増幅度によって決定されるが流量偏差Q、がほぼ零す
なわち弁テスト前と弁テスト中にタービン蒸気流入量が
ほぼ停しくなるような増幅度に設定している。For this reason, the output of the regulating valve opening function device is increased, but A I
Since the signal for forcibly closing the valve is input to II by the bias from contact 4N, only F'ta of B111l increases without increasing the P and A values, and the steam control valve 6
Only the B side changes to the opening direction, and the amount of steam flowing into the turbine increases. The increase at this time is the gain unit 11
The flow rate deviation Q, which is determined by the amplification degree, is set to be approximately zero, that is, the amplification degree is set such that the turbine steam inflow amount almost stops before and during the valve test.
また弁テスト接点4Aを閉から開に戻し念ときには蒸気
加減弁は元の位置まで開方向に変化するがこのときはタ
ービンへの蒸気流入量が増加されるためにタービン第一
段落蒸気圧力も増加して流量偏差qは減少方向となり、
蒸気加減弁6Bは閉め方向に変化する。そして蒸気加減
弁6Aが元の位置に戻ったときに流量偏差Q4は零とな
って、このとき蒸気加減弁6Bも元の開度値まで戻るこ
とになる。尚、接点12の閉から開への時限は弁テスト
接点4Aを閉から開にして蒸気加減弁開度が閉から開の
元の位置に戻るのに要する時間以上に設定している。Also, when the valve test contact 4A is returned from closed to open, the steam control valve changes in the open direction to its original position, but at this time, the amount of steam flowing into the turbine increases, so the turbine first stage steam pressure also increases. Therefore, the flow rate deviation q will decrease,
The steam control valve 6B changes in the closing direction. When the steam control valve 6A returns to its original position, the flow rate deviation Q4 becomes zero, and at this time the steam control valve 6B also returns to its original opening value. The time limit for changing the contact 12 from closed to open is set to be longer than the time required for the valve test contact 4A to change from closed to open and for the steam control valve opening to return to its original position from closed to open.
以上の動作は蒸気流量指令Q、とタービン第一段落蒸気
圧力から変換された実蒸気流量Q、が等しい関係にある
ときのみ有効である。すなわち、主蒸気圧力又は温度を
一定にして蒸気加減弁開度を調整してタービン箭入蒸気
量を変化させてタービン出力を調整するいわゆる定圧運
転の場合に限って適用できる。The above operation is effective only when the steam flow rate command Q and the actual steam flow rate Q converted from the turbine first stage steam pressure are in an equal relationship. That is, it is applicable only to so-called constant-pressure operation in which the main steam pressure or temperature is kept constant and the opening degree of the steam control valve is adjusted to change the amount of steam entering the turbine to adjust the turbine output.
しかし、蒸気加減弁開度を一定にして主蒸気圧力値を調
整してタービン出力を調整する変圧運転においては蒸気
加減弁による絞り蒸気量と主蒸気圧力の相聞関係からタ
ービン第一段落蒸気圧力が変化するためにおのずと蒸気
流ね指令Q、と実蒸気流量とされているQ、値には差が
生じることになる。However, in variable pressure operation in which the turbine output is adjusted by adjusting the main steam pressure value while keeping the steam regulator opening constant, the turbine first stage steam pressure changes due to the correlation between the throttled steam amount by the steam regulator and the main steam pressure. Therefore, a difference naturally occurs between the steam flow command Q and the actual steam flow rate Q.
以上の主蒸気圧力と蒸気加減弁開度変化に対する第一段
落蒸気圧力の変化の様子を第2図に示す。FIG. 2 shows how the first stage steam pressure changes with respect to the above-mentioned main steam pressure and changes in the opening degree of the steam control valve.
Xlは主蒸気圧力の特性、為は主蒸気圧力がXlのよう
に変化したときのタービン第一段落蒸気圧力の特性、X
、は定格主蒸気圧力一定のときのタービン第一段落圧力
の特性である。この図から明らかなように主蒸気圧が定
格圧力値であるc−d間においてはタービン第一段落蒸
気圧力は蒸気流量設定又は蒸気加減弁開度C:等しく変
化しているが、その他の領域では主蒸気圧力によってタ
ービン第一段落蒸気圧力が変化していることがわかる。Xl is the characteristic of the main steam pressure, so is the characteristic of the turbine first stage steam pressure when the main steam pressure changes as Xl,
, is the characteristic of the turbine first stage pressure when the rated main steam pressure is constant. As is clear from this figure, between c and d, where the main steam pressure is the rated pressure value, the turbine first stage steam pressure changes equally between the steam flow rate setting and the steam control valve opening C: but in other regions, It can be seen that the turbine first stage steam pressure changes depending on the main steam pressure.
なお。In addition.
第2図の横軸は蒸気流量設定又は蒸気加減弁開度である
。The horizontal axis in FIG. 2 is the steam flow rate setting or the opening degree of the steam control valve.
以上のことから、変圧運転における弁テストで従来の方
式を採用した場合はタービン出力変動を抑えることがで
きないために従来では主蒸気圧力が定格圧力一定に達し
た領域でのみしか弁テストが笑施出来なかった。Based on the above, when the conventional method is used for valve testing in variable pressure operation, it is impossible to suppress turbine output fluctuations. I could not do it.
本発明は、タービンに導入する主蒸気圧力の変化と蒸気
流量設定ζ:左右されずに任意の出力でタービン出力変
動を抑えつつ弁テストを可能にすることのできる蒸気タ
ービン制御装置を得ることを目的とする。The present invention aims to provide a steam turbine control device that can perform valve tests while suppressing turbine output fluctuations at any output without being affected by changes in the main steam pressure introduced into the turbine and the steam flow rate setting ζ. purpose.
本発明は、主蒸気圧力信号によってタービン第一段落蒸
気圧力信号を補正してそのときの蒸気流量設定と等しく
なるような実蒸気流量信号を作成し、蒸気流量設定と実
蒸気流量の差1:よりタービン流入蒸気量が一定となる
ような蒸気加減弁開度の調整を行いタービン出力が弁テ
スト(二よって変動シないようにすることを特徴とする
。The present invention corrects the turbine first stage steam pressure signal using the main steam pressure signal to create an actual steam flow rate signal that is equal to the steam flow rate setting at that time, and the difference between the steam flow rate setting and the actual steam flow rate is 1: It is characterized by adjusting the opening degree of the steam control valve so that the amount of steam flowing into the turbine is constant, so that the turbine output does not fluctuate due to the valve test (2).
第3図に本発明による一実施例を示す。図中一点鎖線内
が本発明により附加した回路であり、一点鎖線以外の回
路(二ついては従来技術第1図と同一構成である。実流
量変換器は主蒸気圧力信号とタービン第一段落蒸気圧力
信号を入力してタービンに流入している実蒸気流量値q
を演算して出力するものである。本発明!二より附加し
た実流量変換器13の内部構成の一例を第4図(:示す
。FIG. 3 shows an embodiment according to the present invention. The circuits inside the dashed-dotted line in the figure are the circuits added according to the present invention, and the circuits other than the dashed-dotted line (two have the same configuration as the prior art in FIG. 1). Input the actual steam flow rate value q flowing into the turbine.
It calculates and outputs. This invention! An example of the internal configuration of the actual flow rate converter 13 that has been added is shown in FIG.
主蒸気圧力信号は係数器14 C入力して定格蒸気圧力
に対する現在の主蒸気圧力の比から係数値に1を出力し
て、この係数値は乗算器15に入力される。The main steam pressure signal is input to the coefficient unit 14C, which outputs a coefficient value of 1 based on the ratio of the current main steam pressure to the rated steam pressure, and this coefficient value is input to the multiplier 15.
さらに乗算器15にはタービン第一段落蒸気圧力信号を
も入力して、タービン第一段落蒸気圧力信号に係数値に
、を乗じて主蒸気圧力1言号によって補正されたタービ
ン第一段落蒸気圧力信号Iモ、を出力する。そして、こ
の信号は流量変換器9に入力して圧力信号から流量(i
号Q、に変換される。Further, the turbine first stage steam pressure signal is also input to the multiplier 15, and the turbine first stage steam pressure signal is multiplied by the coefficient value to obtain the turbine first stage steam pressure signal I model corrected by the main steam pressure 1 word. , outputs. Then, this signal is input to the flow rate converter 9 and the pressure signal is converted into the flow rate (i
It is converted into the number Q.
タービン第一段落蒸気圧力は蒸気加減弁6Aと6Bの弁
開度すなわちタービン流入蒸気量に比例するとともに、
主蒸気圧力にも比例している。簡易的な手洗で数量的に
示せば、主蒸気圧力が定格圧力直の100 %一定のと
き蒸気加減弁開度を全一1の100%U’R度としたと
きにはタービン第一段落圧力も100%となる。また主
蒸気圧力を100%定格圧力で、蒸気加減り「開度を5
0%開度(ニしたときには10(1%主蒸気圧力×50
%蒸気加減弁開度で50%のタービン第一段落蒸気圧力
となる。また主蒸気圧力を定格の5υチ圧力として蒸気
加減弁開度を1’00%一度にすると、50%主蒸気圧
力x 100 %蒸気加減弁開度で5u%のタービン第
一段落蒸気圧力となり、ここで(100%主蒸気圧力1
50%主蒸気圧力)=2倍の係数を係数器14が出力し
てこの係数を乗算器工5によってタービン第一段落蒸気
圧力と乗じると100%第一段落蒸気圧力相当となって
100チ蒸気加減弁開度と等しい信号が出力される。そ
してこの43号は流ff1K換器9によって流量値に変
換される。The turbine first stage steam pressure is proportional to the valve opening degree of the steam control valves 6A and 6B, that is, the amount of steam flowing into the turbine.
It is also proportional to the main steam pressure. To quantify it with a simple hand wash, when the main steam pressure is constant at 100% of the rated pressure, and the steam control valve opening is set to 100% U'R degrees, the turbine first stage pressure is also 100%. becomes. In addition, the main steam pressure is set to 100% rated pressure, and the steam adjustment "opening degree is set to 5
0% opening (when it is 10 (1% main steam pressure x 50
% steam control valve opening becomes 50% of the turbine first stage steam pressure. Also, if the main steam pressure is the rated 5υch pressure and the steam control valve opening is set to 1'00% at once, the turbine first stage steam pressure will be 5u% with 50% main steam pressure x 100% steam control valve opening. (100% main steam pressure 1
When the coefficient unit 14 outputs a coefficient of 50% main steam pressure) = 2 times, and this coefficient is multiplied by the turbine first stage steam pressure by the multiplier 5, it becomes equivalent to 100% first stage steam pressure, and the 100-chi steam control valve A signal equal to the opening degree is output. This number 43 is then converted into a flow rate value by the flow ff1K converter 9.
以上のような手洗でタービン第一段落蒸気圧力と主蒸気
圧力からそのときの蒸気加減弁6B側Q。After hand washing as above, the steam control valve 6B side Q is determined from the turbine first stage steam pressure and main steam pressure.
を演諜するのが実流量変換器13である。今、蒸気流量
指令Q、を50チとしたとき蒸気加減弁6Aは犯%、6
Bも50%開度にある、そしてこのときの主蒸気圧力を
定格の501圧力とすれば、タービン第一段落蒸気圧力
は(蒸気加減弁開度x主蒸気圧力)=(50%開度x5
0%圧力)=5%圧力となるが。The actual flow rate converter 13 performs this calculation. Now, when the steam flow rate command Q is set to 50, the steam control valve 6A is at 6%.
B is also at 50% opening, and if the main steam pressure at this time is the rated 501 pressure, the turbine first stage steam pressure is (steam control valve opening x main steam pressure) = (50% opening x 5
0% pressure) = 5% pressure.
このときの係数器14の出力は2倍となり、乗算器15
の出力R1は50%圧力となって、実蒸気量見、は関チ
となる。そしてこの実蒸気流量Q、= 50 %は蒸気
流量指令Q、と等しくなって流量偏差Q、f′i零とな
る。At this time, the output of the coefficient unit 14 is doubled, and the multiplier 15
The output R1 becomes 50% pressure, and the actual steam amount becomes a function. This actual steam flow rate Q, = 50% becomes equal to the steam flow rate command Q, and the flow rate deviation Q, f'i becomes zero.
この状態で弁テスト接点4Aを閉にして蒸気加減弁6A
を04開度まで閉め込むと、タービン第一段落蒸気圧力
は半分の125%圧力まで下がり、そしてこの信号は主
蒸気圧力信号で補正することにより、実流量Q3は5e
sと々る。そしてこのときのQ、は+25%となってQ
t値はそれまでの50%から増加して、蒸気加減弁6B
側が開方向に変化して、50%から100チ開度附近(
:なったところでタービン第一段落蒸気圧力#″t25
チ圧力となりs Qs値も艶チとなってバランスする。In this state, close the valve test contact 4A and steam control valve 6A.
When the valve is closed to the opening degree of 04, the turbine first stage steam pressure decreases to half the pressure, 125%, and by correcting this signal with the main steam pressure signal, the actual flow rate Q3 becomes 5e.
s Totoru. And at this time, Q is +25%, so Q
The t value increases from 50% and the steam control valve 6B
The side changes to the opening direction, and from 50% to around 100 degrees opening (
: When the turbine first stage steam pressure #″t25
The pressure becomes high, and the s Qs value also becomes smooth and balanced.
尚、このときのパランスする。尚、このときのバランス
値はゲイン器11のゲイン1:よって決定されるがここ
では無限大ゲインとして取扱っている。In addition, balance at this time. Note that the balance value at this time is determined by the gain 1 of the gain unit 11, which is treated as an infinite gain here.
蒸気条件が変化してもひとつの弁を閉方向に強制動作さ
せることζ二よって、残りの弁が開方向に動作して、常
にタービン蒸気流入量が一定となるためにタービン出力
の変化が生じない。また主蒸気圧力又は蒸気流量指令が
どのように変化してもタービン蒸気流入量が一定となる
ような蒸気加減弁の調整を行うことが可能とiる。以上
の説明では、2弁についてのみ説明しているが複数個の
蒸気加減弁を有する装置に適用することができる。Even if the steam conditions change, one valve is forced to operate in the closing direction. Therefore, the remaining valves operate in the open direction, and the amount of steam inflow to the turbine is always constant, resulting in a change in turbine output. do not have. Furthermore, it is possible to adjust the steam control valve so that the amount of steam flowing into the turbine remains constant no matter how the main steam pressure or steam flow rate command changes. In the above description, only two valves have been described, but the present invention can be applied to an apparatus having a plurality of steam control valves.
本発明I:よれば、定圧運転、変圧運転C二かかわらず
任意の出力C二2ける蒸気加減弁テストでもタービン出
力変動を抑えつつ行うことができる。According to the present invention I, a steam control valve test at any output C22 can be performed while suppressing turbine output fluctuations, regardless of constant pressure operation or variable pressure operation C2.
第1図は従来の蒸気タービン制御装置のブロック図、第
2図は蒸気流量設定又は蒸気加減弁開度C二対するター
ビン第一段落蒸気圧力の特性図、第3図は本発明による
蒸気タービン制御装置のブロック図、第4図は実流量変
換器のブロック図である。
1.3A、an、10;加算器
2A、2B ;加減弁開度関数器
4A、 4B、12 ;弁テスト接点
s A + s B =加減弁駆動器
6A、6B ;蒸気加減弁
7;蒸気タービン
8;発電機
9;流量変換器
ll;ゲイン器
13;実流量変換器
14;係数器
15;乗算器
(7317)代理人 弁理士 則近憲佑(ζま力)1名
)第1図
第2図
第3図Fig. 1 is a block diagram of a conventional steam turbine control device, Fig. 2 is a characteristic diagram of turbine first stage steam pressure versus steam flow rate setting or steam control valve opening C2, and Fig. 3 is a steam turbine control device according to the present invention. FIG. 4 is a block diagram of the actual flow rate converter. 1.3A, an, 10; Adder 2A, 2B; Adjuster valve opening function unit 4A, 4B, 12; Valve test contact s A + s B = Adjuster valve driver 6A, 6B; Steam adjuster valve 7; Steam turbine 8; Generator 9; Flow rate converter ll; Gain unit 13; Actual flow rate converter 14; Coefficient unit 15; Multiplier (7317) Agent: Patent attorney Norichika Kensuke (ζMaiki) 1 person) Figure 1 Figure 2 Figure 3
Claims (1)
閉テストにおいて、タービン第一段落蒸気圧力と主蒸気
圧力を入力して実蒸気流量を演算する演算器と、該演算
器出力と蒸気流量設定値を入力してその差を得るための
加算器1と、該第1の加算器の出力を増幅する増幅器と
、該増幅器の出力と該蒸気流量設定値を加算する第2の
加算器とを備え、加算器の出力により蒸気加減弁を制御
して蒸気加減弁の弁閉テスト時にタービン蒸気流入量を
一定に保つように制御することを特徴とする蒸気タービ
ン制御装置。In a valve closing test of a steam turbine control device having a plurality of steam control valves, a calculator is provided that calculates the actual steam flow rate by inputting the turbine first stage steam pressure and main steam pressure, and the output of the calculator and the steam flow rate set value. an adder 1 for inputting and obtaining the difference, an amplifier for amplifying the output of the first adder, and a second adder for adding the output of the amplifier and the steam flow rate set value. A steam turbine control device, characterized in that a steam control valve is controlled by the output of an adder to maintain a constant amount of turbine steam inflow during a valve closing test of the steam control valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19402883A JPS6088803A (en) | 1983-10-19 | 1983-10-19 | Steam turbine controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19402883A JPS6088803A (en) | 1983-10-19 | 1983-10-19 | Steam turbine controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6088803A true JPS6088803A (en) | 1985-05-18 |
Family
ID=16317736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19402883A Pending JPS6088803A (en) | 1983-10-19 | 1983-10-19 | Steam turbine controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6088803A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008000459A1 (en) * | 2006-06-28 | 2008-01-03 | Man Turbo Ag | Device and method for performing a functional test on a control element of a turbo engine |
-
1983
- 1983-10-19 JP JP19402883A patent/JPS6088803A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008000459A1 (en) * | 2006-06-28 | 2008-01-03 | Man Turbo Ag | Device and method for performing a functional test on a control element of a turbo engine |
CN101479678A (en) * | 2006-06-28 | 2009-07-08 | 曼涡轮机股份公司 | Device and method for performing a functional test on a control element of a turbo engine |
US8977518B2 (en) | 2006-06-28 | 2015-03-10 | Man Diesel & Turbo Se | Device and method for performing a functional test on a control element of a turbo engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2418708A (en) | Flow compensation for turbine control valve test | |
JPS6088803A (en) | Steam turbine controller | |
US4274260A (en) | Method and apparatus for regulating a steam turbine | |
EP0063360A1 (en) | Control apparatus for steam turbine | |
CN106642072A (en) | Linearity correction and control method for flow characteristic of temperature-reducing water regulating valve of thermal power generating unit | |
JPS6239919B2 (en) | ||
JP2001295607A (en) | Method and device for controlling load of thermal power plant | |
JPS6030403A (en) | Turbine control device | |
JPH07224610A (en) | Load control device for steam turbine | |
JP3817851B2 (en) | Fuel gas pressure control method and apparatus for gas fired boiler | |
JPH0843589A (en) | Test device and test method for main steam control valve | |
TWI691820B (en) | Steel plant controller | |
JPH06117202A (en) | Steam turbine inlet pressure control device | |
JPH108914A (en) | Turbine control device | |
JPS6337241B2 (en) | ||
JPH07324603A (en) | Controller for water feed turbine | |
JP2002147749A (en) | Automatic combustion control system | |
JP2965658B2 (en) | Turbine control method | |
JPH06250741A (en) | Intake valve controller | |
JP2960066B2 (en) | Steam turbine controller | |
JPS62240404A (en) | Turbine control device | |
JPH09229310A (en) | Water level controller | |
JPH04318295A (en) | Differential pressure control device | |
JPH08266095A (en) | Control method of turbine generator | |
JPS584161B2 (en) | steam turbine control device |