JPS6088539A - automatic diagnostic equipment - Google Patents

automatic diagnostic equipment

Info

Publication number
JPS6088539A
JPS6088539A JP19743283A JP19743283A JPS6088539A JP S6088539 A JPS6088539 A JP S6088539A JP 19743283 A JP19743283 A JP 19743283A JP 19743283 A JP19743283 A JP 19743283A JP S6088539 A JPS6088539 A JP S6088539A
Authority
JP
Japan
Prior art keywords
model
degree
disease name
item
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19743283A
Other languages
Japanese (ja)
Other versions
JPH0318459B2 (en
Inventor
嵯峨 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Nihon Denshi KK
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK, Nippon Telegraph and Telephone Corp filed Critical Nihon Denshi KK
Priority to JP19743283A priority Critical patent/JPS6088539A/en
Publication of JPS6088539A publication Critical patent/JPS6088539A/en
Publication of JPH0318459B2 publication Critical patent/JPH0318459B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は分析装置からの分析データと検体情+11に基
づいて代謝異常に関する論理診断処理を行4fい、代謝
異常名を抽出りる自動診断装置に関りる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic diagnostic device that performs logical diagnosis processing 4f regarding metabolic abnormalities based on analysis data from an analyzer and specimen information +11, and extracts names of metabolic abnormalities.

近年、先天性代謝異常のrill究の進歩は目覚ましい
ものがある。該先天性代謝異常症は/L体内の代謝経路
十の各反応段階で触媒の働ぎをりる酵素の欠損又は抑制
等にJ:る遺伝的な機能発現不全に因るものである。こ
の代謝異常は早期治療の効果が著しい為、早期発見の意
義は441めで人込い。該代謝異常の疾患は2000以
上あると予想されているが、この内、数100種類のも
のが種々の分析方法にJ、リアミノ酸、有機酸、糖、ス
ラロイド等を分析して診断出来ることが(「イ「められ
ている。
In recent years, there has been remarkable progress in research into inborn errors of metabolism. The congenital metabolic disorder is caused by a genetic malfunction due to the deficiency or inhibition of enzymes that act as catalysts at each reaction step of the metabolic pathway in the body. This metabolic abnormality is highly effective if treated early, so the significance of early detection is 441st. It is estimated that there are more than 2,000 metabolic disorders, and it is believed that several hundred of these can be diagnosed using various analytical methods such as J, amino acids, organic acids, sugars, and slaroids. (I'm being admired.

本発明は既存の分析装置からの分析データと検体情報と
から代謝異常に関づる診断を自動的に行なう新規な装置
を提供するものである。
The present invention provides a novel device that automatically diagnoses metabolic abnormalities based on analysis data and sample information from existing analyzers.

本発明は分析装置、項目毎の健常lll′l範囲(正妃
範囲)を示づ健常値テーブルが記憶されIc第1の記憶
−コニツ1〜、各項目に夫々関係りる病名とその病名の
項目への係わり程度を表わrJ重みとを示す項目・病名
テーブルが記憶された第2の記憶コーニット、各病名に
夫々関係する項目とモの項目の病名への係わり程度を承
り異常度モデル重みと論理モデル重みとを示J病名・項
[1テーブルが記憶された第3の記憶ユニツ1−1各病
名に夫々関係覆るモデル症状とそのモデル症状の病名へ
の係わり程度を示す重みとを示す病名・症状デープルが
記憶された第4の記憶゛Jニツ]〜、及び前記分析装置
からの検体分析データを規格化したものと検体情報に基
づき前記針常値デープルを参照し−C検体の異常項目の
検出とその異常度を算出し、該検出した異常項目に対し
、前記項目・病名テーブルを参照して検体の被疑病名の
抽出と該被疑病名の被疑度を算出し、該抽出された各被
疑病名に関し、前記病名・項目テーブルを参照すること
にJ:す、5“シ゛畠項目に閉覆る被疑の麿含を、検体
とデープルに載っているモデルにおいて一致し℃いる異
常11′i ITIの異常度と該異常項目の異常度しデ
ルの重み、該しデルの全ての異常項目の異常度モデルの
(Fみの和に基づいて算出した異1;5度モj゛ル一致
庶ど、検体とテーブルに載っているモデルにJ3いて一
致しくいる異常Ifi目の異常度と該異常項11の論理
しjルの重み、該モデルの全(の異常項目の論理モデル
の重みの和に阜づいて算出した論理モデル一致度どによ
り幹出し、更に同抽出された各被疑病名に関し、前記病
名・症状テーブルを参照づることにj、す、検体と1−
プルに載ってい、るモデルにJ3いC一致している症状
の程度と該症状のモデル症状の重み、該[デルの全ての
モデル症状の重みの和に基づいて症状モデル一致度を算
出する演算装動から成る自動診断装置である。。
The present invention is an analyzer, in which a healthy value table showing the healthy range (normal range) for each item is stored. A second memory Cornit stores an item/disease name table that indicates the degree of involvement with the item and the rJ weight, and abnormality model weights based on the items related to each disease name and the degree of involvement of the item with the disease name. The third memory unit 1-1 in which the disease name/term [1 table is stored shows the model symptoms that are related to each disease name and the weight that indicates the degree of relationship of the model symptoms to the disease name. A fourth memory in which the disease name/symptom table is stored, and the normal value table is referenced based on the normalized sample analysis data from the analyzer and the sample information to determine the abnormality of the C sample. Detect items and calculate their degree of abnormality. For the detected abnormal items, refer to the item/disease name table to extract the name of the suspected disease of the specimen and calculate the degree of suspicion of the name of the suspected disease. Regarding the name of the suspected disease, refer to the disease name/item table above to find the abnormality 11'i ITI that matches the sample and the model listed in the table. The abnormality degree of the abnormality of the abnormality of the abnormality item and the weight of the abnormality model of all the abnormality items of the corresponding del. , the abnormality degree of the abnormality Ifi which matches the sample and the model listed in the table, the weight of the logical model of the abnormal term 11, and the sum of the weights of the logical model of all abnormal items of the model. Based on the logical model matching degree calculated based on the results, the stem is identified, and the name of each suspected disease extracted is then referred to the disease name/symptom table.
An operation that calculates the degree of symptom model matching based on the degree of the symptom that matches the model listed in the pull, the weight of the model symptom for that symptom, and the sum of the weights of all model symptoms in the model. This is an automatic diagnostic device consisting of a .

第1図は本発明の一実施例としC示した自動診断装置の
概略図である。では、該図に従い、本発明の自動診断方
法を詳細に説明づる。尚、本実施例においては、分析装
置とし−(アミノlI錠分析装置を使用した。
FIG. 1 is a schematic diagram of an automatic diagnostic device shown in C as an embodiment of the present invention. The automatic diagnosis method of the present invention will now be explained in detail with reference to the figure. In this example, an amino lI tablet analyzer was used as the analyzer.

図中1はアミノ酸分析装置(・、該分析装置からの検体
分析データは中央制ill装冒(以後CPUと称吏ン2
の指令により、ディスモノ七り3に記憶される。該CP
Uは該ディスクメモリから検体分析データを読出し、該
データ即ら、前記アミノ酸分析装置のクロマトグラムの
各ピーク強度のデータとりデンションタイムのデータの
規格化を行イ1う。即ち、前記アミノ酸分4j装Ffに
おい乙は溶出条件に依り、同じ溶出成分ぐbリテンショ
ンタイムが!I¥’tZってし:Lうことがあるの(、
−rめ、各?Ff出成分成分じCリテンションタイムを
定めたΔリジナルのクロマトグラムを作成し、検イホの
り117トグラムの夫々のピークのりデンションタイム
が前記Aリジプルのクロマトグラムの各ピークの内どの
ピークのりデンションタイムの許容範囲にあるかに基づ
いく、ピークのリテンションターrl\を規格化覆る。
In the figure, 1 is an amino acid analyzer (・Sample analysis data from this analyzer is stored in a central illumination system (hereinafter referred to as CPU).
According to the command, it is stored in Dismono Shichiri 3. The CP
U reads the sample analysis data from the disk memory, takes the data, that is, the data of each peak intensity of the chromatogram of the amino acid analyzer, and normalizes the data of the retention time. That is, depending on the elution conditions, the retention time of the same eluted components may be the same depending on the elution conditions. I\'tZ :L Sometimes (,
-r, each? Create a Δoriginal chromatogram with the same C retention time as the Ff output component, and determine which peak retention time of each peak in the 117-togram is determined by which of the peaks in the A-retention chromatogram. Normalize the peak retention ratio based on whether the time is within the acceptable range.

そしく、該CPUの指令にJ、す、該規格化された分1
1データはデータファイルとしての記憶装置4に入力さ
れる。該データー7ノ・イルには又、マニアルにJ、す
、想省属竹(年齢、す(1別′:、q)、患者情報(既
往症、症状、投薬哲)、検体量8(検体N(1,)′!
iの検体情報が入力される、。
Then, according to the instructions of the CPU, the standardized minutes 1
1 data is input to the storage device 4 as a data file. The data 7 also includes manual information such as age, age, patient information (pre-existing conditions, symptoms, medication regimen), and sample size 8 (specimen N). (1,)′!
Sample information of i is input.

次に、CPtJ2は前記データファイル4 /Jl l
ら規格化した分析データと検体情報を胱出し、第1の記
憶ユニツ[〜5に記憶されている該溶出成分(以1麦、
項目ど称す−) fijの健常1直箱1用(j[;’i
t Wj相す1jンを年齢別に示した健常値テーブルを
参照して、規格化した分析データに基づい(異常項目の
検出とその異7F厄を測定りる。即ち、CP LJ 2
は規格化した分析データの各項目のピーク強度をヒスト
グラム化し、該第′1の記憶ユニット5から読出した各
項目の健常値範囲をそのヒストグラムに同時に人力しC
やる。又、そのヒストグラムに健常データの母集団の平
均値も入ツノしてやる。そしく−1該ヒスI−グラムを
表示装置6(陰極線色・及び若しく)Jプリンター)に
第2図に承り様に表示さける。
Next, CPtJ2 reads the data file 4 /Jl l
The standardized analytical data and sample information are extracted from the bladder and the eluted components stored in the first memory unit [5]
Item name -) For healthy 1 direct box 1 of fij (j[;'i
t Refer to the healthy value table showing the normal values for each age group, and based on the standardized analysis data (detect abnormal items and measure their differences, i.e., CP LJ 2
C converts the peak intensity of each item of the standardized analysis data into a histogram, and simultaneously inputs the healthy value range of each item read from the '1st storage unit 5 into the histogram.
do. Also, the average value of the population of healthy data is included in the histogram. Then-1, the His I-gram is displayed on the display device 6 (cathode ray color and/or J printer) as shown in FIG.

該第2図にd3いて、横q1+の番号(へo、>(1)
At d3 in Figure 2, the number on the horizontal q1+ (to o, > (1)
.

(2)、(3)、・・・・・・・・・はピーク番号で、
その内(1)はスレAニン(−l−1+r) 、(2>
はj7ラニン(△la) 、(3) GJグリシン(G
lyン、(lはバリン(Vale、(5)はメブAニン
(Mat) 。
(2), (3), ...... are peak numbers,
Among them, (1) is thread A nin (-l-1+r), (2>
is j7 lanine (△la), (3) GJ glycine (G
lyn, (l is valine (Vale), (5) is mebA nin (Mat).

・・・・・・・・・の項目である。縦軸の・印はピーク
強度を現わし、マーカ(−)とマーカ(−)の間は健1
1;値範囲、×印は健常データの母集団の平均値を夫々
示り一0該図からピーク強度が健1;シ仙範囲内に無い
ものが検体の異常項目である。次に、第3図に承り様に
、各項目のピーク強度の前記母集団の平均値からの標準
偏差(縦軸の・印)と、該各Jrj IIの肚常値を標
準偏差化して結んだらのく実線の111線)を表示Jる
。尚、実線の横軸は母集団の゛(j均値(×)、破線の
横線は2a、−2a <σ2@I’;1分散とづる)C
ある。次に、検体の各項1]のピーク強度の内n1集団
の平均値より大きいしのはその(1r1とR7Tf値ど
の比を、小さいしのはそのイ111ど健常値の最小値と
の比を夫々求め、この比を予め生体内の代謝効率に基づ
い(各項目毎に設定されたQrs定の域値に従つ(−5
,−4,−3,−2,−1゜0.1,2,3,4.5の
段階にレベル化づる。
This is the item... The mark on the vertical axis indicates the peak intensity, and the area between the markers (-) and 1 is the peak intensity.
1: value range, and the x mark indicates the average value of the population of healthy data, respectively.10 From the figure, the peak intensity is not within the normal range. Next, as shown in Figure 3, the standard deviation of the peak intensity of each item from the average value of the population (marked on the vertical axis) and the standard deviation of the normal value of each Jr. 111 line) is displayed. In addition, the solid horizontal axis is the population's ゛(j mean (x), the dashed horizontal line is 2a, -2a <σ2@I'; 1 variance)C
be. Next, if the peak intensity of each term 1] of the sample is larger than the average value of the n1 population, what is the ratio between that (1r1 and R7Tf value)? This ratio is determined in advance based on the metabolic efficiency in the body (according to the Qrs constant threshold set for each item (-5
, -4, -3, -2, -1° It is leveled into stages of 0.1, 2, 3, and 4.5.

このレベル化された餡が異常度で、第4図に承り様にヒ
ストグラム表示される。この揚台、I(t ;+:’;
 41+範囲内にある項L1 (1富項目)の異7i庶
をOどりる。更に、CP tJ 2は異常項目だりを抽
出しC1第5図に示づ様に、十の異常度の大きい順と−
の異常度の人さい順に夫々表示装防6に表示さける。。
This leveled bean paste is displayed as a histogram in Fig. 4 as an abnormality level. This platform, I(t;+:';
41+ The difference 7i of the term L1 (1 wealth item) that is within the range is o. Furthermore, CP tJ 2 extracts the abnormal items, and as shown in C1 Figure 5, they are sorted in descending order of abnormality degree and -
are displayed on the display device 6 in descending order of abnormality level. .

以上の処理を第1次診断と称1゜ 次に、CPU2は前
記第1次診断で検出された異、iP項目に対しC1第2
の記憶コニツ1〜7に記憶されIC項目・病名デープル
を参照して被疑病名の抽出と初期被疑1頁筒出を行4r
う。該項目・病名デーフルには第6図に承り様に、各項
目(スレオニン(1−br> 、バリン(Vat) 、
アラニン(Ala>、・・・・・・・・・)に夫々に関
係りる病名(12,7,75,/l、・・・・・・・・
・3.6.12.3.・・・・・・・・・とコード化さ
れている〉とその病名の項目への係わり程度を承りもの
としU I′l’iみ(Δ+ 1.A+ 2 、A+ 
3 、・・・・・・・・・Δ21゜△22.・・・・・
・・・・)が記憶され−(ある。
The above processing is called the primary diagnosis1.Next, the CPU 2 performs the C1 secondary diagnosis on the iP items detected in the primary diagnosis.
Extract the name of the suspected disease by referring to the IC item/disease name table stored in the memories 1 to 7 and write out the first page of the initial suspect in line 4r.
cormorant. As shown in Figure 6, each item (threonine (1-br>, valine (Vat),
Names of diseases related to alanine (Ala>, ・・・・・・・・・) (12, 7, 75, /l, ・・・・・・・・・
・3.6.12.3. . . . coded as .
3 ,・・・・・・Δ21゜△22.・・・・・・
...) is memorized and -( exists.

CI) U 2は該デープルを参照しC前記第1診断ぐ
検出された異常3n目(T hr、 Val、△la、
△「す。
CI) U2 refers to the daple and determines the 3nth abnormality detected in the first diagnosis (Thr, Val, Δla,
△ “S.

MeL、 l)n )夫々に関係Jる病名を全(抽出し
、第7図に承り様に、その内関係の深いものを例えは3
つ選択して各買常項目のリイドに表示Jる様に表示装置
6に指令を送る。この時、該第7図に承り様に検体情報
としく異常度+4(+)Galと異常度−5の乳酸す入
力される。又、同口4に=1−ト化された病名の実名を
表示装置の一部に表示覆る様にづる。次に、この様に抽
出された被疑病名毎に初期被疑1哀を線用づる。
Extract all the disease names that are related to each (MeL, l)n), and as shown in Figure 7, among them, the closely related ones are divided into 3
A command is sent to the display device 6 to select one item and display it on the lead of each purchased item. At this time, as shown in FIG. 7, the specimen information of abnormality level +4 (+) Gal and abnormality level -5 of lactic acid are inputted. In addition, the real name of the disease, which has been converted into =1-t, is written on a part of the display device so as to cover it. Next, for each suspected disease name extracted in this way, initial suspicion 1 is used as a line.

iを異t’A項日、1を病名、/を異花度、へをΦみ、
AmaXを前記デープル中最人中み、Aijを各項目に
関係りる病名につ(プられた特定の手I)とりれば、病
名Jの被疑度1つDl、iは 1) D L 、i−Σ(AijX l 7i l )
/ (AlllaX×(検体の異常)Ii tEl数)
〕・・・・・・・・(1)例えば、病名12(力工デ)
の被疑度はDD112−△+ + X5+Az 2 x
4−1−△3、×3+・・・・・・・・・/(Δmax
 xε3)である。
i is different t'A term day, 1 is disease name, / is different degree, Φ is,
If we take AmaX as the most popular among the above data and Aij as the disease name related to each item (specific move I), then the suspicion level of disease name J is 1 Dl, and i is 1) D L , i-Σ(AijX l 7i l)
/ (AllaX x (specimen abnormality) Ii tEl number)
]・・・・・・・・・(1) For example, disease name 12 (strength de)
The degree of suspicion is DD112-△+ + X5+Az 2 x
4-1-△3, ×3+・・・・・・・・・/(Δmax
xε3).

この様にして病名12.7,75.・・・・・・・・・
の被疑1肛を綽出し、CP U 2は第33図に承り様
(ご、病名を被疑庶の112bい順に表示装置6に表示
さける、3この場合、病名は実名で表示さける。双子の
操イ′1を第2次診断と称りる。
In this way, disease name 12.7, 75.・・・・・・・・・
The CPU 2 displays the names of the suspects on the display device 6 in the descending order of the suspects as shown in Figure 33. (3) In this case, the names of the illnesses are displayed using their real names. A'1 is called the secondary diagnosis.

次に、CI) LJ 2は前記第2次診rDi ”C抽
出され1.:各初期被疑病名(カエデ、フェニル・・・
・・・・・・)に関し、第3の記憶Jニラ1−8に記憶
された病名・slH目テーブルを参照りることにより、
順次、該抽出された病名(カエデ、フェニル、・・・・
・・・・・)のモデル異常項目を叶出し、前記第7図に
示1様な検体の屓常項目・被疑病名リス1へと並べて、
病名の異常項目モデルリストを表示装置6に表示さける
(第9図で示したしデルリストは)j]−デのリストで
ある)。では病名カエデを例に取っ“℃、異常項目に関
りる被疑の度合、即15被疑一致庶を次に測定づる。該
被疑一致度を測定覆る場合、異常度モデル−数匹ど論理
′Eデル一致庶を測定りる。異常度モデル−数匹は検体
と実際の統泪上の℃デルとの一致度を見るしので、論理
モデル−数匹は検体と理論上のモデルとの一致度を見る
ものである。
Next, CI) LJ 2 is extracted from the second consultation rDi ``C 1.: Name of each initial suspected disease (maple, phenyl...
(...), by referring to the disease name/slH table stored in the third memory Jnira 1-8,
Sequentially, the extracted disease names (maple, phenyl, etc.)
...), and arrange them into the normal items/suspected disease name list 1 for the specimen as shown in Figure 7 above.
An abnormal item model list of disease names is displayed on the display device 6 (the list shown in FIG. 9 is a list of )j]-de). Let's take the disease name Kaede as an example and measure the degree of suspicion related to the abnormality item, that is, the 15 suspicions.If the degree of suspicion is measured, then the abnormality degree model - several animals logic'E Measure the del agreement.Anomalous degree model - Some animals look at the degree of agreement between the specimen and the actual temperature model, so logical model - Some animals measure the degree of agreement between the specimen and the theoretical model. It is something to look at.

前記病名・項目テーブルには第10図に示71様に、各
病名(カエデ、フェニル、・・・・・・・・・)に対し
、関係りるI頁II (Thr、 Val、・・・・・
・・・・、 Mot、・・・・・・)と該各項目の病名
に対づる係わり程度を示1J!i′I:常1(lモデル
’Jみ(B+ + 、B+ 2、−−、−、r3+ n
 。
In the disease name/item table, as shown in FIG. 10, for each disease name (maple, phenyl, ...), the related I page II (Thr, Val, ...・・・
..., Mot, ......) and the degree of relationship of each item to the disease name 1J! i′I: Always 1 (l model'J only (B+ + , B+ 2, −−, −, r3+ n
.

・・・・・・・・・・・・+ B21.・・・・・・・
・・)と論理モデル車み(C1l+CI2+”””+C
1n+”””+C2+・・・・・・)が夫々記憶されて
いる。
・・・・・・・・・・・・+ B21.・・・・・・・・・
) and the logical model car (C1l+CI2+"""+C
1n+"""+C2+...) are respectively stored.

病名jの異常度モデル一致度AG1jは、Slを検体と
−しデルに、1夕いて一致し−(いる異?i! J1ロ
ー11(例、病名カエデにJ3いてはll+r、 va
l、 Met)の異常度/モデルリストに上かつ(いる
各ソe−’jF+項目の異常度モデルの市みの和、Mi
を検体どUデルにおいC一致しくいる異常項1」lの5
”4X′:”; I哀しデルの重み/′[−デルリスト
に上がつくいる各異畠Jf!目の異常度モデルの重みの
和とりれば、ΔG1j =1− (Σl Si −1v
li l ) /2・・・・・・・・・(2) である。例えば、病名カエデについくは、1 (lり/
 (13t I十B+ 2 十B+ +t )−B++
/(I3+++13+2+r3+n)1114/(B+
 + +B+ 2 +B+ n ) −Bl 2 (1
3+ + 1[3+ 2 −1−BI II ) l−
1−I AI (13+ + −11’(、2+B+n
) l:3+n N3++ +B+2−l−13tn)
1〕/2 でめられる。
The abnormality model agreement degree AG1j for the disease name j is 1 night when Sl is the sample and Del is the same.
The sum of the abnormality degree models of the abnormality degree models for each item that is on the model list and (Met), Mi
When the sample is sampled, the abnormal term 1, which is consistent with C, is 5 of 1.
``4X':''; The weight of I sad Del/' [-Each different Hatake Jf that is higher on the Del list! If we take the sum of the weights of the eye abnormality model, ΔG1j = 1− (Σl Si −1v
li l ) /2 (2). For example, the disease name Kaede is 1 (lri/
(13t I 10B+ 2 10B+ +t) -B++
/(I3+++13+2+r3+n)1114/(B+
+ +B+ 2 +B+ n ) -Bl 2 (1
3+ + 1 [3+ 2 -1-BI II) l-
1-I AI (13+ + -11'(, 2+B+n
) l:3+n N3++ +B+2-l-13tn)
1]/2.

次に、病名、1の論理モデル−数匹AG2jは、前記3
iにおいて異常度モデルの重みを論理七デルの重みとし
たものをEl、前記1yliにおいて異7:3七フー′
ルの重みを論理モデルの重みどしたしのを−[1とりれ
ば、 ΔG2j−1−(Σl Ei −−I’i l ) /
2・・・・・・・・・(3) である。例えば、病名カエデについ(は1 (15/ 
<C+ + +C+ 2 +CI I+ > −C+ 
1/ (C+ + +C12斗C+ n ) l +l
 4/(C+ + +C+ 2 +C+ n ) C1
2/ (C+ ++C+ 2 +C+ n ) 14−
l 4/ (’(:+ + −1−(、+2→−C+ 
n ) C+ n / (C+ + +C+ 24−C
+n)l)/2 でめられる。
Next, the logical model of disease name 1-several animals AG2j is
In i, the weight of the anomaly degree model is the weight of the logical seven dels, and in the above 1yli, the difference 7:37 fu'
If we take the weight of the model and the weight of the logical model as -[1, then ΔG2j-1-(Σl Ei −-I'i l ) /
2・・・・・・・・・(3) For example, regarding the disease name Kaede (ha1 (15/
<C+ + +C+ 2 +CI I+ > -C+
1/ (C+ + +C12 toC+ n) l +l
4/(C+ + +C+ 2 +C+ n ) C1
2/ (C+ ++C+ 2 +C+ n ) 14-
l 4/ ('(:+ + -1-(, +2→-C+
n ) C+ n / (C+ + +C+ 24-C
+n)l)/2.

以上の如き2°つの一致度につい”(は前記第2次診N
Jiで抽出された各病名について順次求められる。
Regarding the above 2 degree degree of concordance" (is the second examination N
Each disease name extracted by Ji is sequentially determined.

これら−数匹は0〜1の値を取り、Oの場合完全不一致
、1の場合完全一致である。異畠庶モデルー数匹の場合
、1に近い程実際のモデルに近く、Oに近い程遠いと診
断出来る。又、論理モデル−数匹の場合、1に近い程理
論上のモデルに近く、Oに近い程遠いと診断111来る
。これら2つの一致度は夫々CPU2の指令により、−
数匹のに11い順に病名とその病名σ片−数匹が表示装
置F16に表示されろく第11図参照)。以上の操作を
第3次診断と称り。
These - several animals take a value between 0 and 1, where O means a complete mismatch and 1 means a complete match. Different Hatake model - In the case of several animals, the closer it is to 1, the closer it is to the actual model, and the closer it is to O, the further away it can be diagnosed. In addition, in the case of a logical model of several animals, the closer it is to 1, the closer it is to the theoretical model, and the closer it is to O, the farther it is from the diagnosis 111. These two matching degrees are determined by the instructions of the CPU 2, respectively.
The disease names and disease name σ pieces of several animals are displayed in descending order on the display device F16 (see FIG. 11). The above operations are called tertiary diagnosis.

次に、CPU2は前記第2次診りで抽出され1.X被疑
病名(力]−デ、フ1ニル、・・・・・・・・・)に関
し、第4の記憶ユニツ1〜9に記憶された病名・症状デ
ープルから該抽出された病名に関係りるモデル症状(Δ
、○1ロ、◎)を呼び出し、前記検体情報からの検体の
症状(Δ、×、☆、◎)とその程度(+2.+3.−1
−2. +4 )と共に表示装置i′l 6に表示さけ
る。第12図は該表示したちのひ、記号化されl〔症状
の実名し表示されでいる。該病名・症状デープルには第
13図に示づ様に、各病名(カエデ、〕■ニル・・・・
・・・・・)、該各病名に関係りるモデル症状(Δ、○
2口、・・・・・・・・・、◎)及びしデル症状の病名
の係わり程度を現ねり車み(1)】1、DI2.1つ 
+ 3 、− ・=、 DI n 、 −−l)、 D
21、・・・・・・)が記1Qされている。そしC1検
体の各被疑病名に関し、該病名・症状テーブル9を参照
して、症状−数匹をめる。病名jσ月、i状一致反ΔG
 3 jは、1−11を該病名にJ3いて検体どモデル
どで一致しでいる症状i (例、病名力]デにJ5い−
(は△ど◎〉の稈I哀/該病名Jに関係りる全−Cのモ
デル症状の重みの和、Qiを病名jにあい(検体とモデ
ルとて一致している症状1のしデル症状の重み/該病名
Jに関係りる仝℃のモデル症状の手みの和とりれば、 Δ G3j=1 〜 く Σ (l 1−1i −Qi
 l ) /2・・・・・・・・・(4) である。
Next, CPU2 is extracted in the second examination and 1. Regarding the suspected disease name (power) - de, f1nir,... model symptoms (Δ
, ○1ro, ◎) and call the specimen's symptoms (Δ, ×, ☆, ◎) and their severity (+2.+3.-1
-2. +4) is displayed on the display device i'l6. In Figure 12, the actual name of the symptom is symbolized and displayed. In the disease name/symptom table, as shown in Figure 13, each disease name (Kaede, ] ■ Niru...
...), model symptoms related to each disease name (Δ,○
2 mouths, ......, ◎) and the degree of involvement of the disease name of the symptoms (1)] 1, DI2.1
+ 3 , - ・=, DI n , --l), D
21,...) is written in 1Q. Then, for each suspected disease name of the C1 specimen, refer to the disease name/symptom table 9 and select the number of symptoms. Disease name jσ month, i-like coincidence antiΔG
3j is J3 with 1-11 as the disease name, and symptoms i (e.g., disease name) that match in the specimen, model, etc.
(Ha△do◎〉's culm I sad/The sum of the weights of all C model symptoms related to the disease name J, Qi for the disease name j (the weight of symptom 1 that matches the sample and model) If we take the weight of the symptoms/the sum of the model symptoms at ℃ related to the disease name J, then Δ G3j=1 ~ Σ (l 1-1i −Qi
l ) /2 (4).

例えば、病名カエデについてめると、 1 − (12,/ (DI l →−1)+ 2 I
lン 1 3−LJ)In−D++/(D++ +D+
2−11)+341)+n)−+4/ (Dt + −
1−DI 2−tl)+ 3 +D+ n ) l)+
 n/ (DI 1+I)+ 2 +D+ 3 +1)
I n ))/である。この症状−数匹は第2次診WI
C抽出された被疑病名について夫々求められる。該一致
麻は0〜1の値を取り、1に近い程理論上のモデルに近
く、0に近い稈遠いと診断出来る。この様にし請求めら
れた一致度は第14図に示づ様に、CI−)し1の指令
により11°ろい順に病名ど」Lに表示装置(5に表示
される。
For example, regarding the disease name Kaede, 1 - (12, / (DI l → -1) + 2 I
In-D++/(D++ +D+
2-11)+341)+n)-+4/ (Dt+-
1-DI 2-tl)+ 3 +D+ n) l)+
n/ (DI 1+I)+ 2 +D+ 3 +1)
I n ))/. This symptom - some animals are on second visit WI
C. Each of the extracted suspected disease names is requested. The coincidence hemp takes a value from 0 to 1, and the closer it is to 1, the closer it is to the theoretical model, and the closer it is to 0, the more distant the culm can be diagnosed. As shown in FIG. 14, the degree of coincidence requested in this way is displayed on the display device (5) in order of disease name (11°) in accordance with the command from CI (1).

次にCl) U 2は前記第2次診…1でめた病名、1
の初期被疑用DI)Lj、第3次診断でめた異、jii
Next, Cl) U 2 is the name of the disease determined in the second consultation...1.
DI for initial suspicion) Lj, abnormalities found in the tertiary diagnosis, jii
.

度モデルー数匹ΔG 1 ’J 、論理[デル一致麻Δ
G2J及び前記症状モデル−数匹ΔG 3 、jを変数
どりる一次関数f (α、β、γ、δ)を総合評価(1
rITVjとし′C粋出Jる。この時定数α、β、γ。
degree model - several animals ΔG 1 'J, logic [del match hemp Δ
A comprehensive evaluation (1
rITVj and 'C's best Jru. These time constants α, β, and γ.

δは経験的にめられるパラメータ(L!y)る1、これ
を式に現わりと、 丁Vj−α(1)l]j>十β(ΔG ′I 、));
−γ (AG2j)4− δ (AG3j > ・・・
 ・・・ ・・・ (1ラ )と4Tす、病名抽出の総
合的診断に使われる3、第15)図はこの様にして0出
された各病名の総合計価(1r1を値の高い順に病名ど
共に表示装置6に表示させたものである。又、第16図
は、各病名fυに、総合評価値T、初期被疑度A、界常
庶七fル一致1旦B、論理モデル−数匹C9症状一致度
1つをバーグラノ表示さけたものである。
δ is an empirically determined parameter (L!y) 1, which can be expressed as:
-γ (AG2j)4- δ (AG3j > ...
... ... (1ra) and 4T are used for comprehensive diagnosis of disease name extraction 3. Figure 15) shows the total value of each disease name extracted as 0 in this way (1r1 is the highest value) The names of the diseases are displayed in order on the display device 6. In addition, in FIG. -Several animals C9 symptom concordance of 1 is avoided by bargrano display.

尚、本システムの判断基準は全て各テーブルの中の数値
に持たけ、システムのプログラムフl−1−と切離しで
おり、且つテーブルのバックアップファイル1幾横を持
たI!(いるので、ユーザーが前記゛j−フル内容を改
九Jすることにより、任意の診断論理を設定づることが
出来る。又、前記実施例ではアミノ酸の分析データを例
に上げたが、有機酸データ、糖データ、拡散データ、グ
アニジンデータ等の分析データも使用覆ることが可能ぐ
ある。
The judgment criteria of this system are all based on the numerical values in each table, and it is separated from the system's program file I-1-, and it has a table backup file I! (Therefore, the user can set any diagnostic logic by modifying the above full contents.Also, in the above example, amino acid analysis data was taken as an example, but organic acid Analytical data such as sugar data, diffusion data, and guanidine data can also be used.

本発明にJ:れば、的確な病名診断がI’J fil:
となり又、七フルパターンどの一致の度合がfil i
Q化されているの゛C1検体の病名の被疑の度合が明確
になり、診断に名しく有効である。
With the present invention, accurate disease diagnosis is possible.
Also, the degree of matching of the seven full patterns is fil i
The degree of suspicion of the disease name of the Q-coded C1 specimen becomes clear, and it is very effective for diagnosis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例とじ℃示した自動診断装置の
1llif略図、第2図〜第16図は本発明の詳細な説
明を補足りる為の表示装回に表示されたちのCある。 1二アミノ酸分析装置 2:中央制till ’4 R’l (CP U )3
:ディスクメモリ 4:デ゛−タノンフイル 5:第1の記憶ユニツ1゛ 6:表示装置 7:第2の記憶」ニット 8:第3の記憶ユニット 9:第4の記憶ユニツ1へ 特5′[出願人 L1本電子株式会社 代表者 伊藤 −夫 第3図 第5図 第7図 第8図 第9図 第1)図 第12図 第14図 第19図 第16図
Fig. 1 is a schematic diagram of an automatic diagnostic device according to an embodiment of the present invention, and Figs. . 12 Amino acid analyzer 2: central control till '4 R'l (CPU)3
:Disk memory 4:Data storage unit 5:First storage unit 1'6:Display device 7:Second storage unit 8:Third storage unit 9:Fourth storage unit 1Special 5'[ Applicant L1 Hondenshi Co., Ltd. Representative: Mr. Ito Figure 3 Figure 5 Figure 7 Figure 8 Figure 9 Figure 1) Figure 12 Figure 14 Figure 19 Figure 16

Claims (2)

【特許請求の範囲】[Claims] (1)分析装置、項目毎の健常111範囲(正常範囲)
を承り4iP常値テーブルが記憶された第1の記憶ユニ
ッ1〜、各項目に夫々関係する病名とその病名の項目へ
の係わり程度を表わす重みとを示す項目・病名テーブル
が記憶された第2の記憶ユニツ1〜、各病名に夫々関係
する項目とその項目の病名への係4つり程度を示J異常
度モデル重みど論理モデル重みとを示す病名・項目テー
ブルが記憶された第3の記憶ユニット、各病名に夫々関
係づるモデル症状とそのモデル症状の病名への係わり程
度を示′1j重みとを示り病名・症状テーブルが記憶さ
れた第4の記憶ユニツ1へ、及び前記分析装置からの検
体分析テーラを規格化したものと検体情報に塁つぎ前記
健常値テーブルを参照して検体の異常In目の検出どそ
の異常度を樟出し、該検出した異常項目に対し、前記項
目・病名テーブルを参照して検体の被疑病名の抽出と該
被疑病名の被疑度を算出し、該抽出された各被疑病名に
関し、前記病名・項目デープルを参照づることにより、
異常JずI[1に関りる被疑の度合を、検体とデープル
に載っているモデルにおいて一致している異常項目の異
7j’+ Iaと該異常項目の異常度モデルの重み、該
モデルの全ての異常項目の異常度モデルの重みの和に基
づいて算出した異常度モデル一致度と、検体とテーブル
に載っているモデルにおいて一致している¥11常項目
の異常度と該異常項目の論理−しデルの重み、該モデル
の全ての異常項目の論理モデルの重みの和に基づいて算
出した論理モデル一致度とにより算出し、更に同抽出さ
れた各被疑病名に関し、前記病名・症状テーブルを参照
することにより、検体とデープルに載っ℃いるモデルに
おいて一致しCいる症状の程度と該症状の−しデル症状
の手み、該モデルの全(のモデル症状の千みの和に基づ
いて症状モデル一致度を幹出りる演n装置から成る自動
診断装置。
(1) Analyzer, healthy 111 range for each item (normal range)
The first storage unit 1~ stores a 4iP normal value table, and the second storage unit stores an item/disease name table indicating a disease name related to each item and a weight representing the degree of involvement of the disease name with the item. A third memory stores a disease name/item table showing the items related to each disease name and the degree of relationship of the item to the disease name, the abnormality degree model weight, and the logical model weight. The unit indicates the model symptoms associated with each disease name and the degree of relationship of the model symptoms to the disease name, and sends the model symptoms to the fourth storage unit 1 in which the disease name/symptom table is stored, and from the analyzer. Based on the standardized sample analysis tailor and the sample information, the degree of abnormality of the detected abnormality in the sample is determined by referring to the above-mentioned healthy value table, and the above-mentioned item/disease name is determined for the detected abnormal item. By referring to the table, extracting the suspected disease name of the specimen and calculating the degree of suspicion of the suspected disease name, and referring to the disease name/item table for each extracted suspected disease name,
The degree of suspicion related to abnormality Jzu I [1 is determined by calculating the degree of suspicion regarding the abnormality 7j' + Ia of the abnormality item that matches the model listed in the specimen and the model listed in the daple, the weight of the abnormality degree model of the abnormality item, and the weight of the abnormality degree model of the abnormality item, and the weight of the abnormality degree model of the abnormality item, and the weight of the abnormality degree model of the abnormality item Anomaly degree model matching degree calculated based on the sum of the weights of the abnormality degree models of all abnormal items, the abnormality degree of the ¥11 normal item that matches the sample and the model listed in the table, and the logic of the abnormality item. - calculated based on the weight of the del, and the logical model matching degree calculated based on the sum of the weights of the logical model of all abnormal items of the model, and further, for each extracted suspected disease name, the disease name/symptom table is By referring to the sample and the model listed on the table, the degree of the symptoms that match and the degree of the symptoms, the symptoms based on the sum of all the model symptoms of the model. An automatic diagnosis device consisting of a performance device that determines the degree of model matching.
(2)分析装置、項目毎の健常値範囲(正常範囲)を示
づ健常値テーブルが記憶された第1の記憶ユニッ1へ、
各項目に夫々関係づる病名とその病名の項目への係わり
程度を表わり重みとを示り゛項目・病名テーブルが記憶
された第2の記憶ユニット、各病名に大々関係づる項目
とぞの項目の病名への係わり程度を示づ異常度モデル重
みと論理モデル重みとを示り一病名・項目テーブルが記
憶された第3の記憶ユニツ1へ、各病名に夫々関係りる
モデル症状とそのモデル症状の病名への係わり程度を示
り重みとを示す病名・症状テーブルが記憶された第4の
記憶ユニツ1へ、及び前記分417装首からの検体分析
データを規格化したものと検体情報に基づき前記健弾値
テーブルを参照して検体のbre:塁項目の検出とその
異常度を算出し、該検出した5’4常項目に対し、前記
項目・病名デープルを参照して検体の被疑病名の抽出と
該被疑病名の被疑度を算出し、該抽出された各被疑病名
に関し、前記病名・項目テーブルを参照することにより
、異常項目に関り−る被疑の度合を、検体とデープルに
載っているモデルにおいて一致している異常項[1の巽
1:1度ど該異常項目の異常度モデルの重み、該モデル
の全ての異常項目の’A 78度モデルの重みの和に基
づいて算出した異;弔磨七デル一致1兵と、検体と)−
−プルに載っている−しデルにa3い−て一独しCいる
異常項目の異常度と該異常項目の論理モデルの重み、該
モデルの全ての異常項目の論理モデルの手みの和に基づ
いて算出した論理モデル一致度とにより算出し、更に同
抽出された各被疑病名に関し、前記病名・症状テーブル
を参照づることにより、検体とテーブルに載っているモ
デルにおいて一致している症状の程度と該症状のモデル
症状の巾み、該モデルの全てのモデル症状の重みの和に
基づいて症状モデル一致1肛を算出し、且つ前記算出し
た病名の初期被疑1哀、異常度モデル一致度ど論理モデ
ル一致度及び症状モデル一致度を変数と覆る一次関数を
総合評価領としで算出りる演停装置から成る自動診断装
置。
(2) The analyzer goes to the first storage unit 1 in which a healthy value table indicating the healthy value range (normal range) for each item is stored;
The second storage unit stores the item/disease name table, which displays the disease name related to each item, the degree of relationship of that disease name to the item, and the weight. The abnormality model weight and logical model weight indicating the degree of relationship of the item to the disease name are transferred to the third storage unit 1 in which the disease name/item table is stored, and the model symptoms and their associated symptoms are respectively related to each disease name. To the fourth memory unit 1 in which a disease name/symptom table indicating the degree of involvement of the model symptoms to the disease name and the weight is stored, and the standardized sample analysis data from the 417 necks above and the sample information. Based on the above-mentioned healthy bullet value table, detect the bre:base item of the specimen and calculate its abnormality level, and for the detected 5'4 normal item, refer to the above-mentioned item/disease name table to determine the suspect of the specimen. By extracting the disease name and calculating the degree of suspicion of the suspected disease name, and referring to the disease name/item table for each extracted suspected disease name, the degree of suspicion related to the abnormal item can be calculated based on the specimen and the table. The anomaly terms that match in the model [1 Tatsumi 1:1 degree] Based on the weight of the anomaly degree model of the anomaly item, the sum of the weights of the 'A 78 degree model of all the anomaly items of the model Calculated difference: 1 soldier who matched Shima Shichidel and the specimen) -
The abnormality degree of the abnormal item that is listed in the pull and is alone in C on Del, the weight of the logical model of the abnormal item, and the sum of the moves of the logical model of all abnormal items of the model. The extent of the symptoms that match between the specimen and the model listed in the table is determined by referring to the disease name/symptom table for each extracted suspected disease name. The symptom model match is calculated based on the width of the model symptoms of the symptom, the sum of the weights of all model symptoms of the model, and the initial suspicion of the disease name calculated above, the degree of abnormality model match, etc. An automatic diagnostic device comprising a stop device that calculates a linear function that covers the logical model matching degree and the symptom model matching degree as variables as a comprehensive evaluation area.
JP19743283A 1983-10-21 1983-10-21 automatic diagnostic equipment Granted JPS6088539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19743283A JPS6088539A (en) 1983-10-21 1983-10-21 automatic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19743283A JPS6088539A (en) 1983-10-21 1983-10-21 automatic diagnostic equipment

Publications (2)

Publication Number Publication Date
JPS6088539A true JPS6088539A (en) 1985-05-18
JPH0318459B2 JPH0318459B2 (en) 1991-03-12

Family

ID=16374413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19743283A Granted JPS6088539A (en) 1983-10-21 1983-10-21 automatic diagnostic equipment

Country Status (1)

Country Link
JP (1) JPS6088539A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211129A (en) * 1988-06-28 1990-01-16 Nozomi Miyasaka Clinical diagnostic auxiliary device
JP2001330599A (en) * 2000-05-24 2001-11-30 Shimazu S D Kk Metabolic error screening diagnostic device by gc/ms

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522365B2 (en) * 2009-10-13 2014-06-18 とみ子 久原 Method for acquiring abnormality level of metabolite, method for determining metabolic abnormality, and program thereof, apparatus for acquiring abnormality level of metabolite, and diagnostic program based on determination of metabolic abnormality

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387649A (en) * 1977-01-12 1978-08-02 Hiroshi Yamagami Devece for judging patient
JPS5894059A (en) * 1981-11-30 1983-06-04 Minebea Kk Diagnosing device
JPS58178481A (en) * 1982-04-14 1983-10-19 Hitachi Ltd Diagnosing method of disease condition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387649A (en) * 1977-01-12 1978-08-02 Hiroshi Yamagami Devece for judging patient
JPS5894059A (en) * 1981-11-30 1983-06-04 Minebea Kk Diagnosing device
JPS58178481A (en) * 1982-04-14 1983-10-19 Hitachi Ltd Diagnosing method of disease condition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0211129A (en) * 1988-06-28 1990-01-16 Nozomi Miyasaka Clinical diagnostic auxiliary device
JPH046374B2 (en) * 1988-06-28 1992-02-05 Nozomi Myasaka
JP2001330599A (en) * 2000-05-24 2001-11-30 Shimazu S D Kk Metabolic error screening diagnostic device by gc/ms

Also Published As

Publication number Publication date
JPH0318459B2 (en) 1991-03-12

Similar Documents

Publication Publication Date Title
US6099469A (en) Reflex algorithm for early and cost effective diagnosis of myocardial infractions suitable for automated diagnostic platforms
Newton-Howes et al. The prevalence of personality disorder in schizophrenia and psychotic disorders: systematic review of rates and explanatory modelling
Walters A meta‐analysis of the gene‐crime relationship
Kety The significance of genetic factors in the etiology of schizophrenia: results from the national study of adoptees in Denmark
Brockington et al. The distinction between the affective psychoses and schizophrenia
Andersen et al. Myasthenia gravis requiring pyridostigmine treatment in a national population cohort
Moreno et al. Olive, grass or both? Molecular diagnosis for the allergen immunotherapy selection in polysensitized pollinic patients
Harvey et al. Factor structure of cognition and functional capacity in two studies of schizophrenia and bipolar disorder: Implications for genomic studies.
WO2009007734A1 (en) Method and apparatus for diagnosing an allergy of the upper respiratory tract using a neural network
Spitzer et al. Research diagnostic criteria
Sentell et al. Racial/Ethnic Variation in Prevalence Estimates for United States Prediabetes under Alternative 2010 American Diabetes Association Criteria
Zdep et al. The graphoanalytic approach to selecting life insurance salesmen.
Nilsson et al. Family burden of cardiovascular mortality: risk implications for offspring in a national register linkage study based upon the Malmö Preventive Project
Hahn et al. A new scoring system for increasing the sensitivity of the MMSE.
JPS6088539A (en) automatic diagnostic equipment
Gaumer et al. Effects of state prospective reimbursement programs on hospital mortality
Hing et al. Relative utility of serum troponin and the OESIL score in syncope
Murray et al. Assessing the performance and clinical impact of a computerized prognostic system in severe head injury
Sims et al. Familial and individual influences on blood pressure
Geweke et al. Clinical evaluation vs. economic evaluation: the case of a new drug
JP4629784B2 (en) Clinical diagnosis support system
Copeland et al. The early recognition of dementia in the elderly: A preliminary communication about a longitudinal study using the gms–agecat package (community version)
Wing et al. Epidemiology of depressive disorders in the community
Nutting et al. The impact of a maternal and child health care program on the quality of prenatal care: an analysis by risk group
Igila Quality assurance in medical laboratories in developing countries: assessment of pre-analytical errors in a chemical pathology laboratory in a tertiary hospital in Nigeria