JPS6088206A - Flow fluctuation supplessing method and construction of branch pipes in recycling piping system in bwr plant - Google Patents

Flow fluctuation supplessing method and construction of branch pipes in recycling piping system in bwr plant

Info

Publication number
JPS6088206A
JPS6088206A JP19660083A JP19660083A JPS6088206A JP S6088206 A JPS6088206 A JP S6088206A JP 19660083 A JP19660083 A JP 19660083A JP 19660083 A JP19660083 A JP 19660083A JP S6088206 A JPS6088206 A JP S6088206A
Authority
JP
Japan
Prior art keywords
cross
reducer
pipe
piping system
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19660083A
Other languages
Japanese (ja)
Inventor
Wataru Sagawa
渉 佐川
Isao Nemezawa
根目沢 勲
Akimasa Izumiyama
泉山 昭政
Koichi Suzuki
公一 鈴木
Nobuo Kosugi
小杉 伸夫
Hidetoshi Takehara
武原 秀俊
Takashi Ito
敬 伊東
Ikuo Kodama
小玉 郁夫
Yoichi Yoshinaga
吉永 洋一
Seiji Miura
三浦 誠二
Tadashi Mizuno
正 水野
Koichi Kotani
小谷 皓市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19660083A priority Critical patent/JPS6088206A/en
Publication of JPS6088206A publication Critical patent/JPS6088206A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/0015Whirl chambers, e.g. vortex valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Pipeline Systems (AREA)

Abstract

PURPOSE:To prevent fluctuation of branched fluid flow rate in a piping system in which a header has branch pipes provided with fluid outlets at least in three directions, by providing a swirlling flow inducing device on at least a side of the branch pipes or the vicinity. CONSTITUTION:In a piping system in which a cross branch pipe 5 connected to a header 4 has connection of horizontal branch pipes 6, 6 and a vertical riser pipe 8, the longitudinal section cofiguration of a reducer 11 connected right above the cross branch pipe 5 is manufactured to have a steep slanting surface on a side and a vertical surface on the opposite side in the same manner as the inner surface of the branch pipe 5. By this configuration, the outlet center point C1 and the inlet center point C2 are made eccentric and the eccentric reducer 11 comes to have a function of swirlling flow inducing device. Thus, on the vicinity of the cross branch pipe 5 a stable counterclockwise swirlling flow is produced and smooth branching of the flow to the horizontal branch pipe 6, 6 is made possible.

Description

【発明の詳細な説明】 本発明は、原子力プラントの配管系に係り、特に、沸騰
水型原子炉において炉心に供給する冷却材流量の調整を
行なう系統である原子炉再循環系の配管系(以後、再循
環系配管という)および前記配管系の内部流動に係わる
流量変動の抑制方法に図するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a piping system for a nuclear power plant, and in particular to a piping system for a nuclear reactor recirculation system, which is a system that adjusts the flow rate of coolant supplied to the reactor core in a boiling water reactor. The present invention provides a method for suppressing flow rate fluctuations related to the internal flow of the recirculation system piping (hereinafter referred to as recirculation system piping) and the internal flow of the piping system.

従来技術による再循環系配管を、第1図に示す。A recirculation system piping according to the prior art is shown in FIG.

1は、原子炉圧力容器を示す。以下、原子炉圧力容器1
に取付られる再循環系配管は、次のような構成となつて
いる。戻り曲管部8、千一字管付戻り曲管部9、入口弁
13、原子炉圧力容器1内に冷却水を強制循環させるた
めのポンプ11、ポンプ11を駆動するためのモーター
12、吐出管2、出口弁14、母管3、十字分岐管(以
下クロスと呼ぶ)4、ヘツダ曲管5、レジユーサ15、
千一字分岐部6、ライザー管7より、第1図に示すよう
に構成されている。沸騰水型原子炉の運転時において、
再循環系配管内を原子炉圧力容器1内の冷却水が流れる
1 indicates the reactor pressure vessel. Below, reactor pressure vessel 1
The recirculation system piping installed in the recirculation system has the following configuration. Return bent pipe section 8, return bent pipe section 9 with 1,100-character pipe, inlet valve 13, pump 11 for forced circulation of cooling water in the reactor pressure vessel 1, motor 12 for driving the pump 11, discharge Pipe 2, outlet valve 14, main pipe 3, cross branch pipe (hereinafter referred to as cross) 4, header bent pipe 5, reducer 15,
It is constructed as shown in FIG. 1 from a 1,000-character branch 6 and a riser pipe 7. When operating a boiling water reactor,
Cooling water in the reactor pressure vessel 1 flows through the recirculation system piping.

すなわち、ポンプ11が駆動され、原子炉圧力容器内の
冷却水は、曲管部8、千一字管付曲管部9、入口弁13
、吸込管10、ポンプ11、吐出管2、出口弁14、母
管3を順次、通過して、クロス4内に流入する。冷却水
は、クロス部4で流動経路が分けられ、その一部はクロ
ス4から、直接、レジユーサ15、ライザー管7を通し
て原子炉圧力容器1内のジユツトポンプ(図示せず)内
に吐出される。
That is, the pump 11 is driven, and the cooling water in the reactor pressure vessel is pumped through the bent pipe section 8, the bent pipe section 9 with a 101-ji pipe, and the inlet valve 13.
, the suction pipe 10, the pump 11, the discharge pipe 2, the outlet valve 14, and the main pipe 3, and then flow into the cloth 4. The flow path of the cooling water is divided by the cross portion 4, and a portion of the cooling water is directly discharged from the cross portion 4 through the reducer 15 and the riser pipe 7 into a jut pump (not shown) in the reactor pressure vessel 1.

大部分である残りの冷却水は、クロス4からヘツダー曲
管5に配設された複数個の千一字管分岐部6により分岐
せられ、ライザー管7を経てジユツトポンプ内に吐出さ
れる。
The remaining cooling water, which is the majority, is branched from the cross 4 by a plurality of 100-1-shaped pipe branches 6 disposed in the header curved pipe 5, and is discharged into the jut pump via the riser pipe 7.

第2図はクロス部4の詳細を示したものである。FIG. 2 shows details of the cross section 4.

第3図はその側面および平面図である。母管3からの流
れfoはクロス部4で、ヘツダー曲管5方向への流れf
1、f2と、レジユーサ75方向への流れf3の分岐流
れとなる。この分岐管部の流れは第4回、第5図に示す
ように、渦心が両側のヘツダー曲管を貫通するような旋
回をともなう流れ(第4図)と、分岐管中央部に大きな
旋回をともなう流れが無く、レジユーサ部15内で非常
に不規則な流動を呈する流れ(第5図)とげ交互に生ず
る場合がある。すなわち、クロス部内の流れは旋回流(
第4図)を生じせしめる渦の発生、済滅があつて、クロ
ス部を含む配管内の流動が不安定になるとともに、分岐
部におけるf1、f2、f3方向(第2図)の流動抵抗
が変化し、これに伴ない、各ライザー管への液量分配や
圧力損失が不規則に変動する場合がある。この様な流動
変動現象が生じると原子炉内への冷却水量が変動するか
ら、BWRの出力変動につながる可能性があり問題であ
る。
FIG. 3 is a side and plan view thereof. The flow fo from the main pipe 3 is the cross section 4, and the flow f in the direction of the header curved pipe 5.
1, f2, and a branched flow of f3 toward the reducer 75 direction. As shown in Figures 4 and 5, the flow in this branch pipe is divided into two types: a flow with a swirl in which the vortex center passes through the header curved pipes on both sides (Figure 4), and a flow with a large swirl in the center of the branch pipe. In some cases, the flow exhibits a highly irregular flow within the reducer section 15 (FIG. 5), with no flow accompanied by alternating barbs. In other words, the flow inside the cross section is a swirling flow (
The vortices that cause vortices (Fig. 4) occur and disappear, and the flow in the pipe including the cross section becomes unstable, and the flow resistance in the f1, f2, and f3 directions (Fig. 2) at the branch section increases. As a result, the liquid volume distribution and pressure loss to each riser pipe may fluctuate irregularly. When such a flow fluctuation phenomenon occurs, the amount of cooling water flowing into the reactor fluctuates, which may lead to fluctuations in the output of the BWR, which is a problem.

本発明の目的は、上記した従来技術の欠点を無くし、簡
単な構造で、効果的なBWR再循環配管系の流動変動を
抑制する方法;ならびにその具体的な配管系の構成を示
し、再循環系の流量変動の無い、より安定した運転が可
能な沸騰水型原子力プラントを提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above, and to effectively suppress flow fluctuations in a BWR recirculation piping system with a simple structure; It is an object of the present invention to provide a boiling water nuclear power plant that can operate more stably without system flow rate fluctuations.

本発明の特徴は、母管とヘツダー曲り管およびライザー
管の交差部である十字分岐管の内部に渦が発生したり消
減したりすることにより、再循環配管系内の流動が不安
定になる点に着目し、この不安定な流動を解消する手段
として、十字分岐管内の流れに常に安定した旋回流を生
じせしめることにより、再循環配管系の流動の安定化を
図る様にした点にある。
A feature of the present invention is that the flow within the recirculation piping system becomes unstable due to the generation and disappearance of vortices inside the cross-branch pipe, which is the intersection of the main pipe, header bend pipe, and riser pipe. As a means to eliminate this unstable flow, we created a stable swirling flow in the cross-branched pipe to stabilize the flow in the recirculation piping system. .

以下、本発明の実施例を具体的に説明する。第6図は本
発明による好適な一実施例である再循環配管系のクロス
部の概略図である。従来例(第3図)と同一構成は同一
符号で示す。母管3と対向する開口部に接続するレジユ
ーサ15は上流側開口部中心C1と下流側開口部中心C
2を結んだ直線が底面に対して傾いている偏心レジユー
サである。
Examples of the present invention will be specifically described below. FIG. 6 is a schematic diagram of a cross portion of a recirculation piping system according to a preferred embodiment of the present invention. Components that are the same as those of the conventional example (FIG. 3) are designated by the same reference numerals. The reducer 15 connected to the opening facing the main pipe 3 has an upstream opening center C1 and a downstream opening center C.
This is an eccentric retainer in which the straight line connecting 2 is inclined with respect to the bottom surface.

本実施例は上記の様に構成したので、母管からレジユー
サ部に通り技ける流れげ偏より、ヘツダー曲管に分岐す
る流れにより安定した旋回流を与えることができる。こ
れにより、クロス部内の流れを流体力学的に安定な状態
に保つことが可能となり、クロス分岐部での各放向への
流動抵抗に変動がなく、各ライザー管への流量分配が変
動せず一定となり、BWRの出力変動が防止される。ま
ん、原子炉内の流動も安定化されるから、構造、強度面
からも信頼の高いBWRプラントを提供することが可能
となる。
Since this embodiment is configured as described above, a stable swirling flow can be provided by the flow branching to the header curved pipe rather than the flow deflection passing from the main pipe to the reducer section. This makes it possible to maintain the flow within the cross section in a hydrodynamically stable state, with no fluctuations in the flow resistance to each direction at the cross branch, and no fluctuations in the flow distribution to each riser pipe. It becomes constant, and fluctuations in the BWR output are prevented. Since the flow inside the reactor is also stabilized, it becomes possible to provide a BWR plant with high reliability in terms of structure and strength.

第7図はレジユーサ部を十字分岐管とした再循環系分岐
配管の概略図である。本実施例の場合にはヘツダー曲管
に分岐する開口部が偏心レジユーサ部内に出来るので、
ヘツダー曲管内を貫通する渦心は、下流方向(ライザー
管方向)に遷移しにくくなるから、より安定な旋回流を
与えることができるので、上記と全く同様の効果が達成
される。
FIG. 7 is a schematic diagram of a recirculation system branch piping in which the reducer section is a cross-branched pipe. In the case of this embodiment, since the opening that branches into the header curved pipe is created in the eccentric resistor part,
Since the vortex core passing through the header curved pipe is less likely to shift in the downstream direction (in the direction of the riser pipe), a more stable swirling flow can be provided, so that exactly the same effect as above can be achieved.

第8図はクロス部4において、ヘツダー曲り管の軸中心
C3と母管の軸中心C4とを、ずらせて構成した例であ
り、分岐部での旋回流れを一方向回転に安定させること
ができるので、上記と同様の効果を得ることができる。
Fig. 8 shows an example in which the axial center C3 of the header bent pipe and the axial center C4 of the main pipe are shifted from each other in the cross section 4, and the swirling flow at the branch section can be stabilized to rotate in one direction. Therefore, the same effect as above can be obtained.

第9図は、上記の例でさらにレジユーサを偏心レジユー
サとした場合の各りを示している。
FIG. 9 shows the above example in which the reducer is further changed to an eccentric reducer.

第10図は、ライザー管7の管軸中心C5と母管3の管
軸中心C6を交差させた構造の再循環系配管の概略図で
あり、ヘツダー曲管5の管軸方向に渦心を有する旋回流
を発生し易い流路構成の例である。
FIG. 10 is a schematic diagram of a recirculation system piping structure in which the pipe axis center C5 of the riser pipe 7 and the pipe axis center C6 of the main pipe 3 intersect, and the vortex is centered in the pipe axis direction of the header curved pipe 5. This is an example of a flow path configuration that is likely to generate a swirling flow.

第11図は、クロス部流路内に旋回流を発生させる案内
羽根16を配設した構造の再循環系配管の概略図であり
、本実施例でも案内羽根により、旋回方向が一定の旋回
流を安定して発生せしめることができるので、上記と同
様の効果が達成される。
FIG. 11 is a schematic diagram of recirculation system piping having a structure in which guide vanes 16 are provided to generate a swirling flow in the cross section flow path. In this embodiment, the guide vanes also provide a swirling flow with a constant swirling direction. can be generated stably, so the same effect as above can be achieved.

以上述べた様に、本発明によれば、従来のBWR再循環
系配管の構造を大きく変更することなく、きわめて簡単
な構造により、クロス分岐部における旋回流の発生を安
定化することが可能となり、再循環系の流量変動を無く
し、出力変動の無い安定なBWRプラントを提供できる
As described above, according to the present invention, it is possible to stabilize the generation of swirling flow at the cross branch with an extremely simple structure without significantly changing the structure of the conventional BWR recirculation system piping. , it is possible to eliminate flow rate fluctuations in the recirculation system and provide a stable BWR plant with no output fluctuations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は沸騰水原子炉の従来の再循環系配管の構造図、
第2図は第1図に示される十字分岐管の構造図、第3図
は第2図に示される十字分岐管の側面図、第4図は十字
分岐管部に発生する旋回流の説明図、第5図は十字分岐
管部の旋回流が消滅した場合の内部流動状況を示す説明
図、第6図は本発明の好適な一実施例である再循環系配
管における十字分岐管の構造図、第7図は第6図に示す
本発明の他の実施例を示す十字分岐管の構造図、第8図
、第9図は本発明の他の実施例を示す十字分岐管の構造
図、第10図は他の実施例の説明図、第11図は本発明
の他の実施例で、配管内に旋回流れ発生装置を配設した
十字分岐部の構造図である。 1…原子炉圧力容器、3…母管、4…十字分岐管、5…
ヘツダー曲管、7…ライザー管、11…ポンプ、12…
モータ、15…レジユーサ、16…案内羽根。 代理人 弁理士 高橋明夫
Figure 1 is a structural diagram of the conventional recirculation system piping for a boiling water reactor.
Fig. 2 is a structural diagram of the cross-branched pipe shown in Fig. 1, Fig. 3 is a side view of the cross-branched pipe shown in Fig. 2, and Fig. 4 is an explanatory diagram of the swirling flow generated in the cross-branched pipe section. , FIG. 5 is an explanatory diagram showing the internal flow situation when the swirling flow in the cross-branched pipe disappears, and FIG. 6 is a structural diagram of the cross-branched pipe in the recirculation system piping according to a preferred embodiment of the present invention. , FIG. 7 is a structural diagram of a cross branch pipe showing another embodiment of the present invention shown in FIG. 6, FIGS. 8 and 9 are structural diagrams of a cross branch pipe showing other embodiments of the present invention, FIG. 10 is an explanatory diagram of another embodiment, and FIG. 11 is another embodiment of the present invention, which is a structural diagram of a cross branch section in which a swirling flow generating device is disposed in the pipe. 1...Reactor pressure vessel, 3...Main pipe, 4...Cross branch pipe, 5...
Header bent pipe, 7... riser pipe, 11... pump, 12...
Motor, 15...Register, 16...Guide vane. Agent Patent Attorney Akio Takahashi

Claims (7)

【特許請求の範囲】[Claims] 1.開口を四方に有する十字分岐部において、第1開口
は再循環ポンプ吐出口に連結している母管に接続され、
第1開口と対向する開口が、流路断面積が徐々に減少す
るレジユーサ部を有し、前記レジユーサ部の流路断面積
が最小となる部分に、前記レジユーサと一体にライザー
管が形成され、また、前記母管とレジユーサが接続され
ていない、前記十字分岐部の二つの開口には、それぞれ
ヘツダー曲管が接続されている沸騰水型原子力プラント
(以下BWRと呼ぶ)の再循環配管系において、十字分
岐部の流れが常に一定方向の安定した旋回流を呈し、そ
の渦心が前記母管の両側に対称に配設されたヘツダー曲
管内を貫通する様にして、再循環冷却水を安定して流動
させることを特徴とするBWR再循環配、管系における
流量変動抑制方法。
1. In the cross branch having openings on all sides, the first opening is connected to a main pipe connected to a recirculation pump outlet;
The opening facing the first opening has a reducer portion in which the cross-sectional area of the flow path gradually decreases, and a riser pipe is formed integrally with the reducer at a portion of the reducer portion where the cross-sectional area of the flow path is the smallest; In addition, in a recirculation piping system of a boiling water nuclear power plant (hereinafter referred to as BWR), a header bent pipe is connected to two openings of the cross branching part to which the main pipe and the reducer are not connected. , the flow at the cross branch always exhibits a stable swirling flow in a fixed direction, and the vortex center passes through the header curved pipes arranged symmetrically on both sides of the main pipe, thereby stabilizing the recirculated cooling water. A method for suppressing flow rate fluctuations in BWR recirculation piping and piping systems, characterized by causing the flow to flow.
2.開口を四方に有する十字分岐部において、第1開口
は再循環ポンプ吐出口に連結している母管に接続され、
第1開口と対向する開口が、流路断面積が徐々に減少す
るレジユーサ部を有し、前記レジユーサ部の流路断面積
が最小となる部分に、前記レジユーサと一体にライザー
管が形成され、また、前記母管とレジユーサが接続され
ていない、前記十字分岐部の二つの開口には、それぞれ
ヘツダー曲管が接続されている沸騰水形原子力プラント
(以下BWRと呼ぶ)の再循環配管系において、前記十
字分岐管部のレジユーサが前記母管の軸心に対して偏心
した偏心レジユーサで構成したことを特徴とするBWR
再循環配管系。
2. In the cross branch having openings on all sides, the first opening is connected to a main pipe connected to a recirculation pump outlet;
The opening facing the first opening has a reducer portion in which the cross-sectional area of the flow path gradually decreases, and a riser pipe is formed integrally with the reducer at a portion of the reducer portion where the cross-sectional area of the flow path is the smallest; In addition, in a recirculation piping system of a boiling water nuclear power plant (hereinafter referred to as BWR), a header bent pipe is connected to each of the two openings of the cross branch part to which the main pipe and the reducer are not connected. , a BWR characterized in that the resistor of the cross-branched pipe portion is constituted by an eccentric resistor that is eccentric with respect to the axis of the main pipe.
Recirculation piping system.
3.前記十字分岐管部が前記偏心レジユーサ部に前記ヘ
ツダー曲管に接続される二つの開口部を配設されること
により構成された特許請求範囲第2項記載のBWR再循
環配管系。
3. 3. The BWR recirculation piping system according to claim 2, wherein said cross-branched pipe section is configured by disposing two openings connected to said header bent pipe in said eccentric reducer section.
4.開口を四方に有する十字分岐部において、第1開口
は再循環ポンプ吐出口に連結している母管に接続され、
第一開口と対向する開口が、流路断面積が徐々に減少す
るレジユーサ部を有し、前記レジユーサ部の流路断面積
が最小となる部分に、前記レジユーサと一体にライザー
管が形成され、また、前記母管とレジユーサが接続され
ていない、前記十字分岐部の二つの開口には、それぞれ
ヘツダー曲管が接続されている沸騰水形原子力プラント
(以下BWRと呼ぶ)の再循環配管系において、前記十
字分岐管部の前記ヘツダー曲り管の軸心と母管の軸心と
をずらせて構成したことを特徴とするBWRの再循環配
管系。
4. In the cross branch having openings on all sides, the first opening is connected to a main pipe connected to a recirculation pump outlet;
The opening facing the first opening has a reducer portion in which the cross-sectional area of the flow path gradually decreases, and a riser pipe is formed integrally with the reducer at a portion of the reducer portion where the cross-sectional area of the flow path is the smallest; In addition, in a recirculation piping system of a boiling water nuclear power plant (hereinafter referred to as BWR), a header bent pipe is connected to each of the two openings of the cross branch part to which the main pipe and the reducer are not connected. . A recirculation piping system for a BWR, characterized in that the axis of the header bent pipe of the cross-branched pipe section and the axis of the main pipe are shifted from each other.
5.前記十字分岐管部において、前記レジユーサを偏心
レジユーサとしたことを特徴とする特許請求範囲第4項
記載のBWR再循環配管系。
5. 5. The BWR recirculation piping system according to claim 4, wherein in the cross branch pipe section, the reducer is an eccentric reducer.
6.開口を四方に有する十字分岐部において、第1開口
は再循環ポンプ吐出口に連結している母管に接続され、
第一開口と対向する開口が、流路断面積が徐々に減少す
るレジユーサ部を有し、前記レジユーサ部の流路断面積
が最小となる部分に、前記レジユーサと一体にライザー
管が形成され、また、前記母管とレジユーサが接続され
ていない、前記十字分岐部の二つの開口には、それぞれ
ヘツダー曲管が接続されている沸騰水形原子力プラント
(以下BWRと呼ぶ)の再循環配管系において、前記十
字分岐管部に接続されているライザー管の軸心が前記母
管の軸心と交差する様に構成されたことを特徴とするB
WR再循環配管系。
6. In the cross branch having openings on all sides, the first opening is connected to a main pipe connected to a recirculation pump outlet;
The opening facing the first opening has a reducer portion in which the cross-sectional area of the flow path gradually decreases, and a riser pipe is formed integrally with the reducer at a portion of the reducer portion where the cross-sectional area of the flow path is the smallest; In addition, in a recirculation piping system of a boiling water nuclear power plant (hereinafter referred to as BWR), a header bent pipe is connected to each of the two openings of the cross branch part to which the main pipe and the reducer are not connected. B, characterized in that the axial center of the riser pipe connected to the cross branch pipe section is configured to intersect with the axial center of the main pipe.
WR recirculation piping system.
7.開口を四方に有する十字分岐部において、第1開口
は再循環ポンプ吐出口に連結している母管に接続され、
第一開口と対向する開口が、流路断面積が徐々に減少す
るレジユーサ部を有し、前記レジユーサ部の流路断面積
が最小となる部分に、前記レジユーサと一体にライザー
管が形成さん、また、前記母管とレジユーサが接続され
ていない、前記十字分岐部の二つの開口には、それぞれ
ヘツダー曲管が接続されている沸騰水形原子力プラント
(以下BWRと呼ぶ)の再循環配管系において、前記十
字分岐管流路内部に旋回流発生装置を配設したことを特
徴とするBWR再循環配管系。
7. In the cross branch having openings on all sides, the first opening is connected to a main pipe connected to a recirculation pump outlet;
The opening facing the first opening has a reducer portion in which the cross-sectional area of the flow path gradually decreases, and a riser pipe is formed integrally with the reducer at a portion where the cross-sectional area of the flow path of the reducer portion is the minimum, In addition, in a recirculation piping system of a boiling water nuclear power plant (hereinafter referred to as BWR), a header bent pipe is connected to each of the two openings of the cross branch part to which the main pipe and the reducer are not connected. . A BWR recirculation piping system, characterized in that a swirling flow generator is disposed inside the cross-branched pipe flow path.
JP19660083A 1983-10-19 1983-10-19 Flow fluctuation supplessing method and construction of branch pipes in recycling piping system in bwr plant Pending JPS6088206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19660083A JPS6088206A (en) 1983-10-19 1983-10-19 Flow fluctuation supplessing method and construction of branch pipes in recycling piping system in bwr plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19660083A JPS6088206A (en) 1983-10-19 1983-10-19 Flow fluctuation supplessing method and construction of branch pipes in recycling piping system in bwr plant

Publications (1)

Publication Number Publication Date
JPS6088206A true JPS6088206A (en) 1985-05-18

Family

ID=16360438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19660083A Pending JPS6088206A (en) 1983-10-19 1983-10-19 Flow fluctuation supplessing method and construction of branch pipes in recycling piping system in bwr plant

Country Status (1)

Country Link
JP (1) JPS6088206A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550970B1 (en) * 2022-08-12 2023-07-05 (주)한맥기술 A pipe coupling device for increasing the flow rate of a fluid discharged from a fluid storage device and a pipe including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550970B1 (en) * 2022-08-12 2023-07-05 (주)한맥기술 A pipe coupling device for increasing the flow rate of a fluid discharged from a fluid storage device and a pipe including the same

Similar Documents

Publication Publication Date Title
US9347336B2 (en) Steam valve apparatus
US4614527A (en) Degasifier
JPS6088206A (en) Flow fluctuation supplessing method and construction of branch pipes in recycling piping system in bwr plant
EP0322504A2 (en) Shrouded inducer pump
US4993454A (en) Piping branch structure
JPH08135883A (en) Piping joint
JPS61160695A (en) Crossed piping structure
JPS6148697A (en) Crossed piping structure
JPH08210577A (en) Plant piping system
JP2003521612A (en) Equipment building and equipment operation method
JPH03105295A (en) Cross-branch pipe
US20160093408A1 (en) Jet pump for boiling water reactor and boiling water reactor
JPS63116032A (en) Jet mixer with by-pass device
JPS6047900A (en) Jet pump for nuclear reactor
JPS60147696A (en) Recirculating piping system for coolant of nuclear power plant
JPH06308276A (en) Nozzle of reactor pressure vessel
JPS60146195A (en) Recirculating piping system for coolant of nuclear power plant
JPS61175593A (en) Crossed branch tube of recirculation system of boiling watertype nuclear power plant
JPH065755A (en) Semiconductor cooling unit
JPS6195284A (en) Recirculating piping for boiling water type nuclear power plant
JP3345509B2 (en) Drain discharge device
JPS6088389A (en) Recirculating piping system of boiling-water type nuclear power plant
JPH01295010A (en) In-pipeline structure for turbulent flow control
JPS60104896A (en) Branching section of piping
JPH0827378B2 (en) Boiling water nuclear power plant