JPS608744B2 - How to measure persulfate ion concentration - Google Patents

How to measure persulfate ion concentration

Info

Publication number
JPS608744B2
JPS608744B2 JP54063076A JP6307679A JPS608744B2 JP S608744 B2 JPS608744 B2 JP S608744B2 JP 54063076 A JP54063076 A JP 54063076A JP 6307679 A JP6307679 A JP 6307679A JP S608744 B2 JPS608744 B2 JP S608744B2
Authority
JP
Japan
Prior art keywords
electrode
persulfate
ion concentration
potential difference
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54063076A
Other languages
Japanese (ja)
Other versions
JPS55154457A (en
Inventor
淳次 大上
重征 河合
和明 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP54063076A priority Critical patent/JPS608744B2/en
Publication of JPS55154457A publication Critical patent/JPS55154457A/en
Publication of JPS608744B2 publication Critical patent/JPS608744B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 本発明は過硫酸イオンを含むアルカリ性水溶液中の過硫
酸イオン濃度を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring persulfate ion concentration in an alkaline aqueous solution containing persulfate ions.

一般に過硫酸塩を酸化剤として用いた銅、銅合金等金属
の化学着色溶液は、酸化効果を高めるため強アルカリ性
溶液となし、しかも加溢して用いることが多い。しかし
、この着色溶液中の過硫酸塩は熱分解作用を受け易く、
金属イオン等が溶液中に存在すると触媒作用によりその
作用は一層激しくなる。したがって過硫酸塩を酸化剤と
して用いた着色溶液による金属の着色においては、この
着色溶液中の過硫酸イオン濃度を一定に維持するよう管
理することが着色製品の品質を一定に保つためには是非
とも必要であった。従来、過硫酸イオンの定量方法とし
ては、還元滴定法、ヨウ素滴定法、中和滴定法等が知ら
れているが、前二者は精度よく過硫酸イオン濃度を検出
するためには酸性溶液で行なわなければならず、後者は
加水分解を行なうためアルカリ濃度が高すぎると測定が
困難であり、またいずれの方法も反応がゆっくり進行す
るため最終的な結果を得るためにはかなりの時間を必要
とし、また測定操作も煩雑であった。
In general, chemically colored solutions for metals such as copper and copper alloys using persulfates as oxidizing agents are often made into strong alkaline solutions and overflowed in order to enhance the oxidizing effect. However, the persulfate in this coloring solution is susceptible to thermal decomposition,
If metal ions or the like are present in the solution, the catalytic action becomes even more intense. Therefore, when coloring metals with a coloring solution using persulfate as an oxidizing agent, it is essential to maintain the persulfate ion concentration in the coloring solution at a constant level in order to maintain a constant quality of the colored product. Both were necessary. Conventionally, methods for quantifying persulfate ions include reduction titration, iodine titration, and neutralization titration, but the former two require acidic solutions to accurately detect persulfate ion concentration. The latter involves hydrolysis, which makes measurement difficult if the alkaline concentration is too high, and both methods require a considerable amount of time to obtain final results as the reaction proceeds slowly. Moreover, the measurement operation was also complicated.

したがって、金属の着色作業における着色溶液中の過硫
酸イオン濃度を一定に管理するための短時間に測定でき
る好適な測定方法がなく、従来は作業者が感で管理して
いたため、品質の一定した着色製品を得ることが困難で
あった。本発明の目的は上述の点に鑑み、アルカリ性水
溶液中の過硫酸イオン濃度を短時間に精度よく且つ簡単
に測定する方法を提供することにある。
Therefore, there is no suitable measurement method that can be used in a short time to control the persulfate ion concentration in the coloring solution during metal coloring work. It was difficult to obtain colored products. In view of the above-mentioned points, an object of the present invention is to provide a method for measuring the persulfate ion concentration in an alkaline aqueous solution in a short time, accurately and easily.

即ち本発明の要旨は過硫酸のアルカリ金属塩のアルカリ
性水溶液に金属鋼電極、該水溶液に不溶性の電極及び参
照電極若しくは標準電極を浸潰し、前記金属銅電極と前
記不溶性の電極との間に一定電流をして前記金属鋼電極
と前記参照電極若しくは標準電極との間の電位差を測定
し、電流を流してからこの電位差が変曲点を示すまでの
時間を測定することを特徴とする過硫酸イオン濃度の測
定方法に存する。本発明において過硫酸イオン濃度の測
定対象となる溶液は過硫酸のアルカリ金属塩のアルカリ
性水溶液である。
That is, the gist of the present invention is to immerse a metal steel electrode, an electrode insoluble in the aqueous solution, and a reference electrode or standard electrode in an alkaline aqueous solution of an alkali metal salt of persulfuric acid; Persulfuric acid, characterized in that a current is applied to measure the potential difference between the metal steel electrode and the reference or standard electrode, and the time from when the current is applied until this potential difference shows an inflection point is measured. It consists in the method of measuring ion concentration. In the present invention, the solution whose persulfate ion concentration is to be measured is an alkaline aqueous solution of an alkali metal salt of persulfate.

上記過硫酸のアルカリ金属塩としてはたとえば過硫酸リ
チウム、過硫酸ナトリウム、過硫酸カリウム等があげら
れる。又上記アルカリ性水溶液はアルカリ性の水溶液で
あればよいがアルカリ金属の水酸化物又は炭酸塩、例え
ば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム
等の水溶液が好ましい。
Examples of the alkali metal salts of persulfate include lithium persulfate, sodium persulfate, potassium persulfate, and the like. The alkaline aqueous solution may be any alkaline aqueous solution, but aqueous solutions of alkali metal hydroxides or carbonates, such as sodium hydroxide, potassium hydroxide, and sodium carbonate, are preferred.

本発明において使用される不溶性の電極とは上記アルカ
リ性水溶液にほとんど溶解しない電極であって、たとえ
ば白金、金等の電極があげられる。
The insoluble electrode used in the present invention is an electrode that hardly dissolves in the above-mentioned alkaline aqueous solution, and includes, for example, an electrode made of platinum, gold, or the like.

本発明において使用される参照電極及び標準電極とは電
解質溶液の濃度及び温度が一定の際には一定の電極電位
を発生し、経時変化しない電極であって、参照電極とし
ては、たとえば白金、金等のアルカリ性水溶液にほとん
ど不溶性の電極があげられ、標準電極としては、たとえ
ば甘ュウ電極、銀・塩化銀電極、水素電極等があげられ
る。
The reference electrode and standard electrode used in the present invention are electrodes that generate a constant electrode potential when the concentration and temperature of the electrolyte solution are constant and do not change over time. Standard electrodes include, for example, a sweet electrode, a silver/silver chloride electrode, a hydrogen electrode, etc., which are almost insoluble in alkaline aqueous solutions.

本発明の測定方法で過硫酸イオン濃度を測定するには、
まず測定すべきアルカリ性水溶液に金属節電極と不落!
性の電極を浸潰し、金属鋼電極がプラス、不潟性の電極
がマイナスとなって、両電極間に電流が流れるように設
定する。上記電流は大きくなると測定時間が短かくなる
ので誤差が大きくなり逆に小さくなると測定時間が長く
なるので電流は0.5〜10肌A/c虎であるのが好ま
しく、より好ましくは1〜5mA/のである。又同時に
前記アルカリ性水溶液に参照電極若しくは標準電極を浸
潰し、前記金属鋼電極との間の電位差を測定できるよう
に設定する。
To measure persulfate ion concentration using the measurement method of the present invention,
First of all, use a metal electrode to measure the alkaline aqueous solution!
The metal steel electrode is set to be positive and the solid electrode is set to be negative, so that current flows between the two electrodes. As the above-mentioned current increases, the measurement time becomes shorter and the error increases; conversely, as the current decreases, the measurement time becomes longer, so the current is preferably 0.5 to 10 A/c, more preferably 1 to 5 mA. / is. At the same time, a reference electrode or a standard electrode is immersed in the alkaline aqueous solution, and the electrode is set so that the potential difference between it and the metal steel electrode can be measured.

電位差を測定するには、高いインピーダンスの例えば1
び。
To measure the potential difference, a high impedance e.g.
Beauty.

○以上のほとんど電流の流れない電位差計を組み込み、
しかも時間に対して一定速度で記録ができる電位差記録
計等を利用するのが好ましい。次に前記金属鋼電極と前
記不溶性の電極の間に電流を流し、前記金属鋼電極と前
記参照電極若しくは標準電極間の電位差を測定すると、
電位差は始めのうちは一定の基底状態にあるが一定時間
経過後急激に上昇変化し次の平衡状態に移行する。
Incorporating a potentiometer with almost no current flowing above ○,
Moreover, it is preferable to use a potentiometer or the like that can record at a constant speed over time. Next, when a current is passed between the metal steel electrode and the insoluble electrode and the potential difference between the metal steel electrode and the reference electrode or standard electrode is measured,
Initially, the potential difference is in a constant ground state, but after a certain period of time, it rapidly increases and shifts to the next equilibrium state.

このときの電位差変化は約0.6ボルトもあり、しかも
その電位差変化は過硫酸イオンの濃度が変化してもほと
んど変わらない。しかし、電流を流してからこの電位差
が変化する変曲点までの時間は、過硫酸ィオオンの濃度
の変化に規則性を示し、しかも過硫酸イオンに対する腸
イオンである金属イオン、例えばナトリウム、カリウム
等のイオンによる差は認められず、単に陰イオンである
過硫酸イオン濃度のみに関係するのである。本発明によ
れば、同一のアルカリ濃度の水溶液に過硫酸塩を溶解し
て数種の過硫酸イオン濃度の異なる標準液を作成し、こ
の標準液について一定温度でもつて金属鋼電極と参照電
極若しくは標準電極との間の電位差の経時変化を測定す
ると、この過硫酸イオン濃度と電流を流してから電位差
が変曲点を示すまでの時間との間には通常次式で表わせ
る関係が成立する。〔C〕=A+Brl/2 但し、〔C〕;過硫酸イオン濃度、t;電流を流してか
ら電位差が変曲点を示すまでの時間、A、B;定数であ
る。
The change in potential difference at this time is about 0.6 volts, and this change in potential difference hardly changes even if the concentration of persulfate ions changes. However, the time from when a current is applied to the inflection point at which this potential difference changes shows regularity in the change in the concentration of persulfate ions, and metal ions that are intestinal ions for persulfate ions, such as sodium and potassium, show regularity. There is no difference in the concentration of persulfate ions, which is an anion. According to the present invention, persulfate is dissolved in an aqueous solution having the same alkaline concentration to prepare several standard solutions having different persulfate ion concentrations, and the standard solutions are connected to a metal steel electrode and a reference electrode or a reference electrode at a constant temperature. When measuring the change over time in the potential difference between a standard electrode and the persulfate ion concentration, a relationship expressed by the following equation is usually established between the persulfate ion concentration and the time from when current is applied until the potential difference reaches an inflection point. . [C]=A+Brl/2 However, [C]: persulfate ion concentration, t: time from when current is applied until the potential difference shows an inflection point, A, B: constants.

A、Bの定数は、アルカリ濃度、溶液温度等によって変
化する因子なので、上記標準液より決定しておくか検査
線を作成しておけば、過硫酸イオン濃度が未知の測定液
は前述の如く電位差が変曲点を示すまでの時間tを測定
すれば、過硫酸イオン濃度〔C〕が上式又は検量線より
求められる。
The constants of A and B are factors that change depending on the alkali concentration, solution temperature, etc., so if you determine them from the above standard solution or create a test line, you can use the measurement solution with unknown persulfate ion concentration as described above. By measuring the time t until the potential difference reaches the inflection point, the persulfate ion concentration [C] can be determined from the above equation or the calibration curve.

尚、電位差変化を微分回路等を通して変曲点を明確化す
る方法や電位差計からの信号を上述の関係式による演算
回路に通して直接濃度として表示する方法等を用いれば
、濃度測定に要する時間を更に短縮し且つ精度よく行な
うことができ好ましい。本発明方法により好適に測定で
きる過硫酸イオン濃度の範囲としては、0.01モル/
夕から0.1モル/その範囲が好ましい。
The time required to measure the concentration can be reduced by using a method that clarifies the inflection point by passing the change in potential difference through a differentiating circuit, or a method that directly displays the concentration by passing the signal from the potentiometer through an arithmetic circuit using the above-mentioned relational expression. This is preferable because it can be further shortened and carried out with high precision. The range of persulfate ion concentration that can be suitably measured by the method of the present invention is 0.01 mol/
It is preferably 0.1 mol/range.

なぜなら、過硫酸イオン濃度が低くなるに従い、電位差
変化までの経過時間が長くなり、一方高濃度の場合は極
端に経過時間が短かくなり誤差を伴い易いからである。
This is because as the concentration of persulfate ions decreases, the elapsed time until the potential difference changes becomes longer, whereas when the concentration is high, the elapsed time becomes extremely short and errors are likely to occur.

被測定後のアルカIJ濃度としては、アルカリ濃度が高
くなるに従い電位差変化までの経過時間が長くなるため
、0.1モル/〆から2.5モル/その範囲であるのが
好ましい。上述のとおり本発明の過硫酸イオン濃度の測
定方法は、金属鋼電極と不溶性の電極と参照電極若しく
は標準電極とを測定溶液に浸潰し、金属鋼電極と不落性
の電極との間に電流を流しながら、金属鋼電極と参照電
極若しくは標準電極との間の電位差が変曲点を示すまで
の時間を測定するのみであるから、測定も簡単であり、
精度もよく短時間のうちに行なうことができるのである
The alkali IJ concentration after being measured is preferably in the range of 0.1 mol/l to 2.5 mol/l because the higher the alkali concentration, the longer the elapsed time until the potential difference changes. As described above, the method for measuring persulfate ion concentration of the present invention involves immersing a metal steel electrode, an insoluble electrode, and a reference or standard electrode in a measurement solution, and applying an electric current between the metal steel electrode and the impregnable electrode. The measurement is simple, as all you have to do is measure the time it takes for the potential difference between the metal steel electrode and the reference or standard electrode to reach an inflection point while flowing
It is highly accurate and can be done in a short amount of time.

したがって本発明測定方法によれば、金属着色溶液の濃
度が簡単且つ短時間に測定できるので、減少過硫酸塩量
の追加、溶液交換等の金属着色溶液の濃度管理が容易に
行なえるのである。
Therefore, according to the measuring method of the present invention, the concentration of the metal colored solution can be measured easily and in a short time, so that the concentration of the metal colored solution can be easily controlled by adding a reduced amount of persulfate, replacing the solution, etc.

次に本発明方法を実施例をもとに説明する。Next, the method of the present invention will be explained based on examples.

実施例12、比較例150夕/その濃度の水酸化ナトリ
ウム水溶液に所定量の過硫酸カリウムを溶解し、第1表
に示した過硫酸イオン濃度を有する試料液を得た。
Example 12, Comparative Example 150/A predetermined amount of potassium persulfate was dissolved in an aqueous sodium hydroxide solution having the same concentration to obtain a sample solution having a persulfate ion concentration shown in Table 1.

20×50×0.3(柳)の銅板の一面に1洲の閉口部
を残し、他の部分をェポキシ樹脂でシールして得られた
金属鋼電極と白金電極(不熔性の電極)と銀一塩化銀電
極(標準電極)を前記試料液に浸潰し、前記白金電極を
前記金属鋼電極の開口部と1側の間隔に設置した。
A metal steel electrode and a platinum electrode (non-melting electrode) were obtained by leaving one closed part on one side of a 20 x 50 x 0.3 (willow) copper plate and sealing the other part with epoxy resin. A silver monochloride electrode (standard electrode) was immersed in the sample solution, and the platinum electrode was placed at a distance from the opening of the metal steel electrode on one side.

次に金属鋼電極がプラス極、白金電極がマイナス極とな
るように設定し、第1表に示す所定量の電流を流し、金
属鋼電極と銀−塩化鉄電極間の露位差の変化を電位差記
録計で測定し、電位差が変曲′点を示すまでの時間を測
定し結果を第1表に示した。
Next, set the metal steel electrode to be the positive pole and the platinum electrode to be the negative pole, and apply the specified amount of current shown in Table 1 to observe the change in the dew level difference between the metal steel electrode and the silver-iron chloride electrode. Measurement was carried out using a potentiometer, and the time required for the potential difference to reach an inflection point was measured, and the results are shown in Table 1.

比較のため金属鋼電極と白金電極間に電流を流さないで
、同様にして、電位差が変曲点を示すまでの時間を測定
し結果を第1表に示した。
For comparison, the time required for the potential difference to reach the inflection point was measured in the same manner without passing any current between the metal steel electrode and the platinum electrode, and the results are shown in Table 1.

又過硫酸イオン濃度と変曲点を示すまでの時間との関係
を第1図に示した。図中1は比較例1(電流0)、2は
実施例1(電流3のA)、3は実施例2(電流5のA)
の結果を示す。第1表 変曲点を示すまでの時間(単位
秒)
Furthermore, the relationship between the persulfate ion concentration and the time required to reach an inflection point is shown in FIG. In the figure, 1 is Comparative Example 1 (current 0), 2 is Example 1 (current 3 A), and 3 is Example 2 (current 5 A).
The results are shown below. Table 1 Time to reach the inflection point (unit: seconds)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は過硫酸イオン濃度と電位差が変曲点を示すまで
の時間との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between persulfate ion concentration and time until the potential difference reaches an inflection point.

Claims (1)

【特許請求の範囲】 1 過硫酸のアルカリ金属塩のアルカリ性水溶液に金属
銅電極、該水溶液に不溶性の電極及び参照電極若しくは
標準電極を浸漬し、前記金属銅電極と前記不溶性の電極
との間に一定電流を流して前記金属銅極と前記参照電極
若しくは標準電極との間の電位差を測定し、電流を流し
てからこの電位差が変曲点を示すまでの時間を測定する
ことを特徴とする過硫酸イオン濃度の測定方法。 2 過硫酸イオン濃度〔C〕が式〔C〕=A+Bt^−
^1/^2(式中tは電流を流してから電位差が変曲点
を示すまでの時間、A、Bは定数)によって求められる
特許請求の範囲第1項記載の測定方法。
[Claims] 1. A metallic copper electrode, an electrode insoluble in the aqueous solution, and a reference or standard electrode are immersed in an alkaline aqueous solution of an alkali metal salt of persulfuric acid, and a metal copper electrode and a reference or standard electrode are immersed in an alkaline aqueous solution of an alkali metal salt of persulfuric acid. The method is characterized in that a constant current is applied to measure the potential difference between the metal copper electrode and the reference or standard electrode, and the time from when the current is applied until the potential difference reaches an inflection point is measured. Method for measuring sulfate ion concentration. 2 Persulfate ion concentration [C] is expressed by the formula [C] = A + Bt^-
The measuring method according to claim 1, which is determined by ^1/^2 (where t is the time from when the current is applied until the potential difference shows an inflection point, and A and B are constants).
JP54063076A 1979-05-21 1979-05-21 How to measure persulfate ion concentration Expired JPS608744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54063076A JPS608744B2 (en) 1979-05-21 1979-05-21 How to measure persulfate ion concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54063076A JPS608744B2 (en) 1979-05-21 1979-05-21 How to measure persulfate ion concentration

Publications (2)

Publication Number Publication Date
JPS55154457A JPS55154457A (en) 1980-12-02
JPS608744B2 true JPS608744B2 (en) 1985-03-05

Family

ID=13218877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54063076A Expired JPS608744B2 (en) 1979-05-21 1979-05-21 How to measure persulfate ion concentration

Country Status (1)

Country Link
JP (1) JPS608744B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533440A (en) * 1983-08-04 1985-08-06 General Electric Company Method for continuous measurement of the sulfite/sulfate ratio
DE10056069B4 (en) * 2000-11-08 2004-04-15 Technische Universität Dresden Method and device for measuring the concentration of peroxodisulfate

Also Published As

Publication number Publication date
JPS55154457A (en) 1980-12-02

Similar Documents

Publication Publication Date Title
JP2759322B2 (en) Control method of electroless plating bath
DE3752278T2 (en) Methods for electrochemical measurements
US4229264A (en) Method for measuring the relative etching or stripping rate of a solution
US4799999A (en) Dynamic precious metal assay method
Beyer et al. Simultaneous polarographic determination of ferrous, ferric, and total iron in standard rocks
JPS61110799A (en) Controller of metal plating cell
JPS608744B2 (en) How to measure persulfate ion concentration
US2409271A (en) Process for cleaning aluminum
US3878059A (en) Method of chelometric titration of metal cations using tungsten bronze electrode
Baraka et al. The use of Ta/Ta2O5 electrode as an indicator electrode in potentiometric acid-base titrations in fused KNO3
US3826971A (en) Determination of sulfate using ferric ion-selective electrode
Frankenthal et al. Coulometric reduction of oxides on tin plate
JPH0798296A (en) Measuring method for concentration of additive in electroless copper plating liquid
Lieu et al. Analysis of hypochlorite in commercial liquid bleaches by coulometric titration
SU1434353A1 (en) Method of potentiometric measurement of hydrocyanic acid concentration in air
Rechnitz et al. Application of cationic-sensitive glass electrodes to the study of alkali metal complexes—I: The sodium-malate system
Liu Electroanalytical Techniques in Molten Lithium Sulfate-Potassium Sulfate Eutectic
US3457145A (en) Liquid and gas analysis
JPS5944657A (en) Quantitatively analyzing method of acid or total iron ion
JP2000193640A (en) Measuring method for metal adsorbing material
Britton et al. CXVII.—The use of the tungsten electrode in potentiometric titrations, and p H measurements
JP2987373B2 (en) Method of measuring chlorine in electrolyte
Tutunji Determination of formation constants of metal complexes by potentiometric stripping analysis
Dick Electroanalytical techniques: principles and applications
RU2062461C1 (en) Electrochemical method of proximate identification of standard of fineness of golden alloys and electrolyte for this method