JPS608744A - Ultrasonic flaw detection of welded part of electric welded tube - Google Patents

Ultrasonic flaw detection of welded part of electric welded tube

Info

Publication number
JPS608744A
JPS608744A JP58115762A JP11576283A JPS608744A JP S608744 A JPS608744 A JP S608744A JP 58115762 A JP58115762 A JP 58115762A JP 11576283 A JP11576283 A JP 11576283A JP S608744 A JPS608744 A JP S608744A
Authority
JP
Japan
Prior art keywords
welded
flaw detection
tube
defects
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58115762A
Other languages
Japanese (ja)
Inventor
Shinichi Fukuda
真一 福田
Masaki Kajiyama
梶山 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58115762A priority Critical patent/JPS608744A/en
Publication of JPS608744A publication Critical patent/JPS608744A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect accurately cold junction defects to discriminate surely whether the welded part of an electric welded tube is good or not, by making the ultrasonic beam having a specific frequency incident on the welded part on the surface of the tube at a specific angle. CONSTITUTION:A probe 3 is set in the direction of a normal 7 of the surface of an electric welded tube 1, and ultrasonic waves 5 are made incident to the depth from the surface of a welded part 2. Ultrasonic waves having a frequency (f) higher than 25MHz and lower than 500MHz are used, and ultrasonic waves are made incident so that an angle (i) of incidence to the normal is wider than 0 deg. and narrower than 12 deg., thereby detecting not only cold junction defects surely but also defects due to Fe, Al, Ca oxides, where mixed oxides are <=10 microns, and a slight penetrator.

Description

【発明の詳細な説明】 本発明は、電縫溶接条件が不適正な場合に発生すること
がある冷接欠陥を検知することのできる超音波探傷法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic flaw detection method that can detect cold weld defects that may occur when electric resistance welding conditions are inappropriate.

(従来技術) 従来、電縫管における溶接部の欠陥を超音波探傷する方
法として、第1図に示すような管周斜角探傷法が一般に
行なわれている。第1図において。
(Prior Art) Conventionally, as a method for ultrasonically detecting defects in welded portions of electric resistance welded pipes, a circumferential angle angle flaw detection method as shown in FIG. 1 has generally been used. In FIG.

探触子3から発振された超音波ビーム5は、水4を介し
て管材1内に入射角りで入射し、屈折角θで屈折し、ジ
グザグに進行して欠陥があればそこで反射してまた同じ
経路をもどり、探触子3にて受信される。
The ultrasonic beam 5 emitted from the probe 3 enters the tube 1 through the water 4 at an incident angle, is refracted at a refraction angle θ, travels in a zigzag pattern, and is reflected at any defect. The signal returns along the same route and is received by the probe 3.

このような管周斜角探傷における探触子は、従来一般に
周波数fが2.25 MHz以上5 MHz以下で。
Conventionally, the frequency f of a probe used in such tube circumferential angle flaw detection is generally 2.25 MHz or more and 5 MHz or less.

第1図の屈折角θが3デ以上9o09、下になるように
設定して、溶接部2の欠陥を探傷している。管材が鋼の
場合は、入射角すが16.0’ 以上27.3゜以下と
なるように設定すれば、屈折角θが前記範囲となる。壕
だ、溶接部2を確実に検査するために、電磁誘導方式、
光学方式、ペイントマーク方式、磁気マーク方式および
目視方式等により浴接部2を検出し、探触子3をm接部
2に倣わせておシ、さらに溶接部2の検出および倣い精
度を考慮して、探触子3を一定の間隔で複数個設置して
いる。
Defects in the welded portion 2 are detected by setting the refraction angle θ in FIG. When the tube material is made of steel, the refraction angle θ will fall within the above range if the incident angle is set to 16.0' or more and 27.3° or less. In order to reliably inspect the welded part 2, an electromagnetic induction method is used.
The bath contact part 2 is detected by an optical method, a paint mark method, a magnetic mark method, a visual method, etc., and the probe 3 is made to follow the m contact part 2, and the detection and tracing accuracy of the weld part 2 is also taken into consideration. A plurality of probes 3 are installed at regular intervals.

従来のこのような超音波探傷法によれば、溶接部2に存
在するベネトレータは確実に検出することができる。ま
た、溶接部2のほが、浴接部近傍の母材部も探傷するた
めに、第2図に示すように。
According to such a conventional ultrasonic flaw detection method, the venetrator present in the welded portion 2 can be reliably detected. In addition, in order to detect flaws in the base metal near the welded part 2 and the bath contact part, as shown in FIG.

溶接部2に存在するベネトレータCと同時に、有再度の
低い介在物AおよびBも検出される。しかし、電縫管の
溶接部にあって、最も有害度の高い冷接欠陥は検出され
ない。
At the same time as Venetrator C present in the weld zone 2, low-level inclusions A and B are also detected. However, the most harmful cold weld defects in the welds of ERW pipes are not detected.

冷接欠陥は、溶接入熱が低いときに発生するもので、数
ミクロン以下の微細なFeOを主とする酸化物が1群を
なして夾雑している欠陥である。冷接欠陥が溶接部に存
在すると、靭性が著しく低下する。このように有害な冷
接欠陥は、従来の超音波探傷法では検出することができ
ず、また、他の非破壊検査法でも検出することができな
い。したがって、従来は抜取りザンプルについて疲労試
験あるいはシャルピー衝撃試験等の破壊試験を行い。
Cold weld defects occur when the welding heat input is low, and are defects in which a group of fine oxides, mainly FeO, of several microns or less are included. The presence of cold weld defects in the weld significantly reduces toughness. Such harmful cold weld defects cannot be detected by conventional ultrasonic flaw detection methods, nor can they be detected by other non-destructive testing methods. Therefore, in the past, sample samples were subjected to destructive tests such as fatigue tests or Charpy impact tests.

破面を顕微鏡観察して冷接欠陥の有無を判断していた。The presence or absence of cold welding defects was determined by observing the fracture surface under a microscope.

(発明の目的) 本発明は、前記従来法の問題点を解決するためになされ
たものであって、従来の非破壊検査法では検出不可能で
あった有害度の高い冷接欠陥を超音波探傷法により的確
に検出し−これによって電縫浴接部の良否を確実に判定
することを目的とず(発明の構成・作用) 本発明は1周波数251J(3以上500 MHz以下
の超音波ビームを、電縫管の外表面法線に対して管周方
向に00以上12°以下の範囲で、該管制の外表面溶接
部に入射することを%労とする。
(Object of the Invention) The present invention was made to solve the problems of the conventional method, and uses ultrasonic technology to detect highly harmful cold welding defects that could not be detected by conventional non-destructive inspection methods. The purpose of the present invention is not to accurately detect flaw detection by the flaw detection method and thereby reliably determine the quality of the ERW bath contact part (Structure and operation of the invention). is incident on the outer surface welding part of the control in the range of 00 to 12 degrees in the pipe circumferential direction with respect to the normal to the outer surface of the ERW pipe.

本発明者は0種々の実験を重ねた結果、筒周波数による
一探パルス反射法で探傷することにより、微細な冷接欠
陥から高S ト1此の反射エコーが得られることを見出
した。第3図に示すように、探触子3を電縫管1の外表
面法線7の方向に設置し、超音波5を溶接部2の夕)表
面側から肉厚方向−\垂直入射した。周波数fは2.2
5〜600MHzの範囲の超音波を使用して、冷接欠陥
から反射上L7−高さとノイズエコー高さを調査した。
As a result of repeated experiments, the present inventor has discovered that a high S.sub.1 reflection echo can be obtained from a minute cold weld defect by performing flaw detection using the one-probe pulse reflection method using a cylinder frequency. As shown in Fig. 3, the probe 3 was installed in the direction of the normal line 7 of the outer surface of the ERW tube 1, and the ultrasonic wave 5 was incident perpendicularly to the wall thickness direction from the surface side of the welded part 2. . Frequency f is 2.2
Ultrasound in the range of 5-600 MHz was used to investigate the L7-height and noise echo height above the reflection from the cold weld defect.

その結果は、第4図に示す如くであった。The results were as shown in FIG.

すなわち5周波数fか20 MHzυ、下のものはほと
んど冷接欠陥から反射して戻ってくることはなかったが
、25MHz以上500 M)Iz以下のものは。
In other words, frequencies below 5 frequencies f or 20 MHz were hardly reflected back from the cold welding defect, but frequencies above 25 MHz and below 500 M) Iz.

SN比が工OdB 以上であり一600MHzのものは
ほとんど冷接欠陥から反射して戻ってくることはなかっ
た。また1周波数fを50 MHzとし、第3図にて超
音波ビーム5が、電縫管1の外表面法線7に対する管周
方向の傾き角・(本発明ではこれを入射角力とする)が
00〜20°の範囲になるよう探触子3の位置を変えて
、冷接欠陥からの反射エコー高さとノイズエコー高さを
調査した。
The signal-to-noise ratio was more than 100 dB, and the frequency of -600 MHz was almost never reflected back from the cold welding defect. Further, one frequency f is set to 50 MHz, and as shown in FIG. The height of the reflected echo from the cold weld defect and the height of the noise echo were investigated by changing the position of the probe 3 so that the angle ranged from 00° to 20°.

結果は、第5図に示すように、入射角おが、0゜以上1
2°以下のものはSN比が10 dB 以上であり、冷
接欠陥が十分検出されることが判明した。
As shown in Figure 5, the results are as follows:
It was found that the S/N ratio of 2° or less was 10 dB or more, and cold welding defects could be sufficiently detected.

SN比が10 dB 以上であれば、従来の管周斜角探
傷と同様に安定した自動超音波探傷が可能であり1分解
能やSN比のことを考慮すると1周波数fが25 MH
z以上500 MH2以下の範囲の超音波を使用し、法
線に対する入射角・2 o’以上12°以下の範囲にな
るように超音波を入射させることによって、冷接欠陥を
確実に検出可能である。
If the S/N ratio is 10 dB or more, stable automatic ultrasonic flaw detection is possible in the same way as conventional angle angle flaw detection, and considering the resolution and S/N ratio, one frequency f is 25 MHz.
Cold welding defects can be reliably detected by using ultrasonic waves in the range of z to 500 MH2 and making the ultrasonic waves incident at an incident angle of 2 o' to 12 degrees with respect to the normal. be.

本発明法によって検出可能な溶接部欠陥には一前述の冷
接欠陥のほか、夾雑する酸化物が]Oミクロン程度以下
のFe−AiL・0.、酸化物からなる欠陥や軽度のベ
ネトレータがある。
Weld defects that can be detected by the method of the present invention include, in addition to the cold weld defects described above, contaminating oxides such as Fe-AiL and 0.0 microns or less are present. , oxide defects and slight venetrator.

(実施例) 以下本発明の実施例を示す。(Example) Examples of the present invention will be shown below.

表1に示すように、試験片としては種々の外径・肉厚の
炭素鋼電縫鋼管で冷接欠陥か発生するような入熱で溶接
したものを用いた。第6図に1本発明を実施するための
装置例を示す。
As shown in Table 1, the test pieces used were carbon steel electrical resistance welded steel pipes of various outer diameters and wall thicknesses that were welded with a heat input that would cause cold welding defects. FIG. 6 shows an example of an apparatus for implementing the present invention.

入射角kを00とし、溶接部2を確実に探傷するために
、第6図に示すように一般的な電磁誘導方式による浴接
部検出器8により、溶接部2を検出し、溶接部倣い制御
装置11.溶接部倣い装置12により探触子3を倣わせ
ているが、その検出及び倣い精度を考慮して、探触子3
を揺動モータ9により管周方向に揺動し、溶接部2の両
側をそれぞれ10市の範囲を探傷した。なお−10は管
材移動方向、13は超音波探傷器、14は記録計を示す
0 探触子3の周波数fは50 MHz 、振動子寸法dは
0.250inφ で焦点距離0.5in、の点焦点型
を使用し、探傷距離L(第3図参照)は3 mmに設定
して、検査速度υは10m/分で探傷した。従来法と1
〜ては、周波数fが5 MHz 、振動子寸法dが]、
Qmmφ、焦点距離60nIn+のフラット型探触子を
、屈折角0が45°となるように設定し、その他不発明
例と同様の条件で探傷した。
In order to reliably detect the weld 2 by setting the incident angle k to 00, the weld 2 is detected by a bath contact detector 8 using a general electromagnetic induction method as shown in Fig. 6, and the weld is traced. Control device 11. The probe 3 is traced by the welding part copying device 12, but considering the detection and tracing accuracy, the probe 3
was swung in the tube circumferential direction by a oscillating motor 9, and flaws were detected in a range of 10 areas on both sides of the welded portion 2. Note that -10 indicates the direction of tube material movement, 13 indicates the ultrasonic flaw detector, and 14 indicates the recorder.0 The frequency f of the probe 3 is 50 MHz, the transducer dimension d is 0.250 inφ, and the focal length is 0.5 inch. A focusing type was used, the flaw detection distance L (see Fig. 3) was set to 3 mm, and the inspection speed υ was 10 m/min. Conventional method and 1
~, the frequency f is 5 MHz, the transducer size d is ],
A flat type probe with Qmmφ and focal length of 60nIn+ was set so that the refraction angle 0 was 45°, and flaw detection was conducted under the same conditions as in the non-inventive example.

表1 その結果、表1に示すように従来法では、冷接欠陥は検
出不可能であるが、本発明法では全てSNN130 d
B 以上で探傷することができた。第7図は、−例とし
てM5の試験片の探傷結果(ブラウン管図形)を示すも
ので、管材外表面から9. ’7 mm(L)の位置に
冷接欠陥からの反射エコーが認められる。
Table 1 As a result, as shown in Table 1, with the conventional method, cold welding defects cannot be detected, but with the method of the present invention, all SNN130 d
Flaw detection was possible with B or higher. FIG. 7 shows the flaw detection results (cathode ray tube diagram) of an M5 test piece as an example. A reflected echo from the cold welding defect is observed at a position of '7 mm (L).

以上の実施例は炭素鋼電縫管についてであるか、その他
低合金鋼、ステンレス鋼、さらに非鉄金属の溶接部につ
いても同様の欠陥の検出が1本発明法によって可能であ
った。捷だ、形状は管に限らず、角パイプ等の溶接部に
ついても同様であった。
The above-mentioned examples relate to carbon steel electric resistance welded pipes, and similar defects can be detected by the method of the present invention in welded parts of other low-alloy steels, stainless steels, and non-ferrous metals. The shape is not limited to pipes, but the same applies to welded parts such as square pipes.

(発明の効果) 以上詳述したように、本発明の電縫管溶接部の超音波探
傷方法によれば、従来の非破壊検査法では検出不可能と
されていた冷接欠陥の検出が確実に可能となり、寒冷地
のような特に厳しい環境下で使用される管材の検査に寄
与すること犬であり、電縫管の品質保証度を大幅に向上
することができる。従って、従来継目無管し7か使用さ
れていなかった分野にも電縫管の使用が可能となった。
(Effects of the Invention) As detailed above, according to the ultrasonic flaw detection method for welded parts of ERW pipes of the present invention, cold welding defects, which were considered undetectable by conventional non-destructive testing methods, can be reliably detected. This allows the dog to contribute to the inspection of pipe materials used in particularly harsh environments such as cold regions, and can significantly improve the quality assurance of ERW pipes. Therefore, it has become possible to use ERW pipes in fields where seamless pipes have not been used previously.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の管周斜角探傷の説明図、第2図は電縫管
に発生する欠陥の説明図、第3図は本発明方法による冷
接欠陥を検出する場合の探触子と管材の配置の説明図、
第4図は周波数を変えた場合の冷接欠陥の検出特性の図
表、第5図は超音波入射角を変えた場合の冷接欠陥の検
出特性の図表。 第6図は本発明の一実施例に使用される装置構成を示す
ブロック図、第7図は本発明法による探傷結果(ブラウ
ン管図形)を示す写真である。 1;肯利 2;浴接部 3;探触子 4;水 5;超音波ビーム 7;外表面法線 8;溶接部検出器 9;揺動モータ 10;Illl堅材方向 11;溶接部倣い制御装置2
;溶接部倣い装置 置 13;超音波探傷器 14;記録計 、;入射角 U;屈折角 A、B ;介在物 C;ペネトレータ L;探傷距離 S;表面エコー F;冷接欠陥エコー 第1図 第2図 第3回 ml Y駅f (Mfh) 第6図
Fig. 1 is an explanatory diagram of conventional pipe circumference angle flaw detection, Fig. 2 is an explanatory diagram of defects that occur in ERW pipes, and Fig. 3 is an illustration of a probe for detecting cold welding defects by the method of the present invention. An explanatory diagram of the arrangement of pipe materials,
FIG. 4 is a chart of cold weld defect detection characteristics when changing the frequency, and FIG. 5 is a chart of cold weld defect detection characteristics when the ultrasonic incident angle is changed. FIG. 6 is a block diagram showing the configuration of an apparatus used in an embodiment of the present invention, and FIG. 7 is a photograph showing the flaw detection results (braun tube pattern) according to the method of the present invention. 1; Advantage 2; Bath contact part 3; Probe 4; Water 5; Ultrasonic beam 7; Outer surface normal 8; Welding part detector 9; Swing motor 10; Illll hardwood direction 11; Welding part copying Control device 2
; Weld spot tracing device 13; Ultrasonic flaw detector 14; Recorder, ; Incident angle U; Refraction angles A, B; Inclusions C; Penetrator L; Detection distance S; Surface echo F; Cold weld defect echo Figure 1 Figure 2 3rd ml Y station f (Mfh) Figure 6

Claims (1)

【特許請求の範囲】[Claims] 周波数25 MHz以上500 MHz以下の超音波ビ
ームを、電縫管の外表面法線に対して管周方向に06以
上12°以下の範囲で、該管材の外表面溶接部に入射す
ることを特徴とする電縫管溶接部の超音波探傷方法。
An ultrasonic beam with a frequency of 25 MHz or more and 500 MHz or less is incident on the welded portion of the outer surface of the ERW tube in a range of 06 or more and 12 degrees or less in the tube circumferential direction with respect to the normal to the outer surface of the ERW tube. Ultrasonic flaw detection method for welded parts of ERW pipes.
JP58115762A 1983-06-29 1983-06-29 Ultrasonic flaw detection of welded part of electric welded tube Pending JPS608744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58115762A JPS608744A (en) 1983-06-29 1983-06-29 Ultrasonic flaw detection of welded part of electric welded tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58115762A JPS608744A (en) 1983-06-29 1983-06-29 Ultrasonic flaw detection of welded part of electric welded tube

Publications (1)

Publication Number Publication Date
JPS608744A true JPS608744A (en) 1985-01-17

Family

ID=14670410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58115762A Pending JPS608744A (en) 1983-06-29 1983-06-29 Ultrasonic flaw detection of welded part of electric welded tube

Country Status (1)

Country Link
JP (1) JPS608744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076129A (en) * 2006-09-20 2008-04-03 Hitachi Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2009229064A (en) * 2008-03-19 2009-10-08 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076129A (en) * 2006-09-20 2008-04-03 Hitachi Ltd Ultrasonic inspection method and ultrasonic inspection device
JP2009229064A (en) * 2008-03-19 2009-10-08 Hitachi-Ge Nuclear Energy Ltd Ultrasonic inspection method and ultrasonic inspection device
US8250923B2 (en) 2008-03-19 2012-08-28 Hitachi-Ge Nuclear Energy, Ltd. Ultrasonic inspection method and ultrasonic inspection apparatus

Similar Documents

Publication Publication Date Title
CN103336055B (en) Method for ultrasonically detecting weld quality of main loop pipeline of nuclear power plant by phased array
US4627289A (en) Method for the ultrasonic flaw detection of an electric welded pipe
US7168322B2 (en) Method for ultrasonic control of weld joints
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
WO2007058391A1 (en) Pipe ultrasonic flaw detecting apparatus and ultrasonic flaw detecting method
JP5420525B2 (en) Apparatus and method for ultrasonic inspection of small diameter tube
Matsui et al. Development of an ultrasonic phased array testing system that can evaluate quality of weld seam of high-quality ERW pipes
JPS608744A (en) Ultrasonic flaw detection of welded part of electric welded tube
CN112326798B (en) Ultrasonic detection method for crane T-shaped weld joint region defects
Yoneyama et al. Ultrasonic testing of austenitic stainless steel welds False indications and the cause of their occurence
JP2682390B2 (en) Ultrasonic flaw detector for welds
Burhan et al. A guideline of ultrasonic inspection on butt welded plates
Fujita et al. Ultrasonic evaluation of spot welding nugget diameter with a line-focused probe
JP4614219B2 (en) Inspection method and inspection apparatus for laser welded joint
JPH07198685A (en) Inspection of welded part by eddy current method
Prabhakaran et al. Time of flight diffraction: an alternate non-destructive testing procedure to replace traditional methods
Lopez Weld inspection with EMAT using guided waves
Iizuka et al. Ultrasonic inspection for scattered oxides in ERW pipe welds.
Murugaiyan Time of flight diffraction (TOFD), an advanced non-destructive testing technique for inspection of welds for heavy walled pressure vessels
JPH04366761A (en) Method for ultrasonic inspection
JPS6197565A (en) Ultrasonic flaw detection of metal sheet
Piazza et al. Integration of Data From Multiple In-Line Inspection Systems to Improve Crack Detection and Characterization
Lantukh Acoustic inspection of austenitic butt welded joints in pipelines in electric power stations
JPH02102450A (en) Flaw detecting method for pressure container or the like
Lantukh Acoustic inspection of austenitic welded fillet joints in pipelines of electric power stations