JPS608714A - Absolute position detection type optical shaft encoder - Google Patents

Absolute position detection type optical shaft encoder

Info

Publication number
JPS608714A
JPS608714A JP11617283A JP11617283A JPS608714A JP S608714 A JPS608714 A JP S608714A JP 11617283 A JP11617283 A JP 11617283A JP 11617283 A JP11617283 A JP 11617283A JP S608714 A JPS608714 A JP S608714A
Authority
JP
Japan
Prior art keywords
light
waveform
track
absolute position
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11617283A
Other languages
Japanese (ja)
Inventor
Shigeo Seki
関 重夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP11617283A priority Critical patent/JPS608714A/en
Publication of JPS608714A publication Critical patent/JPS608714A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34776Absolute encoders with analogue or digital scales
    • G01D5/34784Absolute encoders with analogue or digital scales with only analogue scales or both analogue and incremental scales

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To reduce the control error without being influenced by temperature and secular change by using a code disc where a position detection code consisting of the bright part of a triangular waveform and a discrimination code consisting of the dark part and the bright part of a square waveform are recorded. CONSTITUTION:A code disc 25A is provided with the first track T1 where the position detection code which increases or reduces linearly the quantity of transmitted light from a collimator lens 12 in accordance with the rotation angular position and consists of a bright part C of the triangular waveform is recorded, the second track T2 where the discrimination code consisting of a dark part D of the square waveform through which a parallel light is not transmitted at all and a bright part C of the square waveform through which all of the parallel light is transmitted is recorded for the purpose of discriminating the direction of the inclination of the bright part C of the triangular waveform, and the third track T3 for compensation of light quantity consisting of only the bright part C of the square waveform. An absolute position is detected by the first photodetector 42, the rotation angular position is discriminated by the second photodetector 43, and the quantity of light is compensated by the third photodetector 44 and a light quantity compensating circuit 13. If the same type photodetectors are used for all photodetectors, the control error is reduced.

Description

【発明の詳細な説明】 この発明は,絶対位置検出形光単式シャフトエンコーダ
,特に3角波形間部かも成る位置検出符号並びに方形波
形の暗部および明部から成る判別符号が記録された符号
円板を備える絶対位置検出形光単式シャフトエンコーダ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absolute position detection type optical single shaft encoder, and in particular to a code disc in which a position detection code consisting of the portion between the triangular waveforms and a discrimination code consisting of the dark and bright portions of the square waveform are recorded. The present invention relates to an absolute position detection type optical single shaft encoder.

従来技術 従来の絶対位置検出形光単式シャフトエンコーダは、2
進符号の論理値″7″.″θ”を、このシャフトエンコ
ーダの符号円板上にそれぞれ6光を透過する部分”(以
下,明部と呼ぶ。)、1光を透過しない部分”(以下,
暗部と呼ぶ。)。
Prior art A conventional absolute position detection type optical single shaft encoder has two
Logical value of decimal code ``7''. ``θ'' is defined as the part on the code disk of this shaft encoder that transmits 6 lights (hereinafter referred to as bright part) and the part that does not transmit 1 light (hereinafter referred to as bright part).
It's called the dark side. ).

として記録している。そのために、符号円板には、記録
する一進符号のビット数に等しい数の符号トランクが必
要だった。加えて,符号読み取りに使用される光源ちよ
び受光素子も2進符号のビット数と等しい数だけ必要だ
った。
It is recorded as. To do this, the code disk required a number of code trunks equal to the number of bits of the unary code to be recorded. In addition, the number of light sources and light-receiving elements used to read the code was required to be equal to the number of bits of the binary code.

発明の目的 この発明は,絶対位置を検出するために、従来装置にお
けるようなλ進符号の論理値″′7″。
OBJECTS OF THE INVENTION The present invention uses a logical value ``'7'' of a λ-adic code as in conventional devices to detect an absolute position.

0″に対応するそれぞれ明部,暗部が記録された符号円
板を使用せず、その代りに3角波形間部かも成る位置検
出符号並びに方形波形の暗部および明部から成る判別符
号が記録された符号円板を使用する絶対位置検出形光単
式シャフトエンコーダを提供することを目的とする。
Instead of using a code disk on which bright and dark areas corresponding to 0'' are recorded, a position detection code consisting of the area between the triangular waveforms and a discrimination code consisting of the dark and bright areas of the square waveform are recorded instead. An object of the present invention is to provide an absolute position detection type optical single shaft encoder using a code disk.

この発明の他の目的は,光源の発光出力および受光素子
の受光出力が温度および経時変化によって変動するのを
補償するときである。
Another object of the present invention is to compensate for variations in the light emission output of a light source and the light reception output of a light receiving element due to changes in temperature and over time.

発明の構成 従って、この発明は、平行光を発する光学系と,符号円
板であって、その回転角度位置に応じて平行光の透過光
量を直線的に増減させる3角波形間部かも成る位置検出
符号が記録された第1のトラック並びに3角波形間部の
傾きの方向を判別するために平行光を全く透過しない方
形波形暗部および平行光を全て透過する方形波形明部か
も成る判別符号が記録された第一のトラックを有する前
記符号円板と、第1のトラックを透過した光量を検出し
て第7の電気信号に変換する第1の受光素子および第2
のトラックを透過した光量を検出して第2の電気信号に
変換する第一の受光素子を有する受光部と、第1および
第一の電気信号を電子的に処理して符号円板の絶対位置
を示すアナログ出力信号才たはデジタル出力信号を発生
する絶対位置信号発生手段とを備え、絶対位置検量形光
学式シャフトエンコーダの入力軸従ってこの入力軸に取
り付けられた符号円板の絶対位置を検出することが出来
る。更に、方形波形明部のみから成る光量補償用の第3
トラツクを符号円板に設け、この第3トラツクを透過し
た平行光のlrrの変化を検出して第3の電気信号に変
換する第3の受光素子を受光部に設け、そして第3の電
気信号が常に一定となるように光量を調節する光量補償
回路を光学系に設けることにより、温度および経時変化
に依存しないシャフトエンコーダを得ることが出来る。
Structure of the Invention Accordingly, the present invention provides an optical system that emits parallel light, and a code disk whose position also includes a portion between triangular waveforms that linearly increases or decreases the amount of transmitted light of the parallel light according to its rotational angular position. In order to determine the direction of the inclination of the first track in which the detection code is recorded and between the triangular waveforms, there is a discrimination code consisting of a rectangular waveform dark area that does not transmit any parallel light and a rectangular waveform bright area that transmits all parallel light. the code disk having a recorded first track; a first light-receiving element that detects the amount of light transmitted through the first track and converts it into a seventh electric signal;
a light receiving section having a first light receiving element that detects the amount of light transmitted through the track and converts it into a second electrical signal; and electronically processing the first and first electrical signals to determine the absolute position of the code disk. and an absolute position signal generating means for generating an analog output signal or a digital output signal indicating the absolute position of the input shaft of the absolute position calibration type optical shaft encoder and thus detecting the absolute position of the code disk attached to this input shaft. You can. Furthermore, a third waveform for light intensity compensation consisting only of square waveform bright areas is provided.
A track is provided on the code disk, a third light-receiving element is provided in the light-receiving section for detecting a change in lrr of the parallel light transmitted through the third track, and converting the detected change into a third electrical signal. By providing the optical system with a light amount compensation circuit that adjusts the amount of light so that the amount of light is always constant, it is possible to obtain a shaft encoder that is independent of temperature and changes over time.

その上、第1と第一と第3の受光素子に同種の素子を使
用することにより。
Furthermore, by using the same type of elements for the first, first, and third light receiving elements.

制御誤差を少なくすることが出来る。Control errors can be reduced.

発明の実施例 以下、この発明の一実施例を添付図面について詳しく説
明する。
EMBODIMENT OF THE INVENTION Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図はこの発明の一実施例を示し、光学系10は光源
//、この光源//の発した光を平行光にするコリメー
タレンズノコおよび後で詳しく説明する光量補償回路/
3がら成る。符号円板、20Aは、シャフトエンコーダ
の入力軸30に取り付けられ、その詳細が第、2図およ
び第3図に示されているように符号円板2OAの回転角
度位置に応じてコリメータレンズノコからの平行光の透
過光M:を直線的に増減させる3角波形の明部Cから成
る位置検出符号が記録された第1のトラックT/、この
第1のトラックT/における3角波形の明部0の傾きの
方向を判別するために平行光を全(透過しない方形波形
の暗部りおよび平行光を全て透過する方形波形の明部C
から成る判別符号が記録された第2のトラックT、2.
並びに方形波形の明部Cのみから成る光量補償用の第3
のトラックT3を有する。第一図および第3図は符号円
板の第1のトラックTIに唯一の3角波形間部Cが記録
された例であるが、第4図および第5図に示すように第
1のトラックTIにλつの3角波形間部Oを記録しても
良いし或は図示しないが3つ以上の3角波形間部を記録
しても良い。要は、符号円板に゛要求される分解能に応
じて3角波形間部の数を決めれば良い。詳しく説明すれ
ば、第9図および第5図に示す符号円板、20Bは、二
つの3角波形間部Cかも成る位置検出符号が記録された
第1のトラックT/、各3角波形明部Cの傾きの方向に
それぞれ応じて方形波形暗部り、方形波形明部Oが記録
されている一方のトラックT2Aおよび一つの3角波形
間部のうちの一方に対応して方形波形暗部りが記録され
かつ他方の3角波形間部に対応して方形波形明部Cが記
録されている他方のトラックT、2Bから成る第一のト
ラック、並びに方形波形明部Cのみから成る第3のトラ
ンクT3を有する。なお。
FIG. 1 shows an embodiment of the present invention, in which an optical system 10 includes a light source //, a collimator lens saw that converts the light emitted from the light source // into parallel light, and a light amount compensation circuit (to be described in detail later).
It consists of 3 parts. The code disc, 20A, is attached to the input shaft 30 of the shaft encoder, and the code disc, 20A, is attached to the input shaft 30 of the shaft encoder and is rotated from the collimator lens saw according to the rotational angular position of the code disc, 2OA, the details of which are shown in FIGS. A first track T/ on which a position detection code consisting of a bright part C of a triangular waveform that linearly increases/decreases the transmitted light M: of the parallel light M: is recorded. In order to determine the direction of inclination of part 0, the dark part of the square waveform that does not transmit all the parallel light (C) and the bright part C of the square waveform that transmits all the parallel light.
A second track T, on which a discrimination code consisting of 2.
and a third beam for light amount compensation consisting only of the bright part C of the square waveform.
It has a track T3. 1 and 3 are examples in which the only triangular waveform interval C is recorded on the first track TI of the code disk, but as shown in FIGS. 4 and 5, the first track TI λ triangular waveform intervals O may be recorded in the TI, or three or more triangular waveform intervals O may be recorded, although not shown. In short, the number of triangular waveform intervals may be determined depending on the resolution required of the code disk. To explain in detail, the code disk 20B shown in FIGS. 9 and 5 is a first track T/ on which a position detection code consisting of an area C between two triangular waveforms is recorded, and each triangular waveform light. A square waveform dark area is formed depending on the direction of the slope of the section C, and a square waveform dark area is formed corresponding to one track T2A in which the square waveform bright area O is recorded and one of the inter-triangular waveform areas. The other track T, in which a square waveform bright portion C is recorded corresponding to the other triangular waveform interspace, a first track consisting of 2B, and a third trunk consisting only of a square waveform bright portion C. It has T3. In addition.

第1のトラックに記録された3角波形間部の数が−個の
場合に、第2のトランクは(n+/)本のトラックから
成り(たソし、nはθまたは正の整数である)かつ方形
波形暗部と方形波形明部が交互に記録される。
If the number of triangular waveform segments recorded on the first track is -, the second trunk consists of (n+/) tracks, where n is θ or a positive integer. ) and the square waveform dark areas and square waveform bright areas are recorded alternately.

説明を第1図に戻せば、符号円板20kを透過した平行
光は、符号円板、20Aをはさんで光学系7′0に対向
するように配置された受光部グOに達する。この受光部
り0は、開口(図示しない)が設けられた固定スリンl
−4’/、第1の受光素子11.2.第一の受光素子/
/3および第3の受光素子2<2から成る。第1の受光
素子11.2は、絶対位置検出用受光素子であり、符号
円板20Aの第1のトラックTIを透過しかつ固定スリ
ットlIlの開口を通過した平行光の光量を検出し、ひ
いてはシャフトエンコーダの入刃軸30従ってこの入力
軸301c取り付けられた符号円板2OAの絶対位置を
検出して第1の電気信号に変換する。第2の受光素子+
!3は、第1のトラックT/に記録された3角波形明部
の傾きの方向を判別する判別用受光素子であり。
Returning to FIG. 1, the parallel light transmitted through the sign disk 20k reaches the light receiving section OG which is arranged to face the optical system 7'0 with the sign disk 20A in between. This light receiving part 0 is a fixed sill l provided with an opening (not shown).
-4'/, first light receiving element 11.2. First light receiving element/
/3 and a third light receiving element 2<2. The first light-receiving element 11.2 is a light-receiving element for absolute position detection, and detects the amount of parallel light that has passed through the first track TI of the code disk 20A and through the opening of the fixed slit lIl. The absolute position of the input shaft 30 of the shaft encoder, that is, the code disk 2OA attached to this input shaft 301c, is detected and converted into a first electrical signal. Second light receiving element +
! 3 is a light receiving element for discrimination that discriminates the direction of inclination of the bright portion of the triangular waveform recorded on the first track T/.

符号円板20Aの第一のトラックT2を透過しかつ固定
スリン)l/の開口を通過した平行光の光漏sを検出し
て第一の電気信号に変換する。
The light leakage s of the parallel light transmitted through the first track T2 of the code disk 20A and through the fixed aperture 20A is detected and converted into a first electrical signal.

第3の受光素子クダは、光源/l従ってコリメータレン
ズ/2からの平行光の光量補償用受光素子であり、符号
円板コθAの第3のトラックT3を透過しかつ固定スリ
ット4/の開口を通過した平行光の光量の、温度または
経時変化による変化を検出して第3の電気信号に変換す
る。
The third light-receiving element Kuda is a light-receiving element for compensating the amount of parallel light from the light source /1, that is, from the collimator lens /2, and transmits the light through the third track T3 of the sign disk θA and the opening of the fixed slit 4/. Changes in the amount of parallel light that has passed through due to temperature or changes over time are detected and converted into a third electrical signal.

こ\で、第1の受光素子グコ、’7$2の受光素子t3
で検出されて変換されたそれぞれ第7の電気信号S/、
第2の電気信号Sコ(例えば電圧)と、符号円板20A
の回転角度との関係は第6図に示すとおりになる。第1
の電気信号Sノにおけるaとa+の点は同一電圧(mV
)であり、これらの点a、a’は符号円板2OAのそれ
ぞれ回転角度位置x 6 、 y Oに相当する。そこ
で、回転角度位置X0とYoの判別を第一の受光素子り
3で行う。つまり、第一の受光素子q3の発生する第一
の電気信号S2において、電圧を発生している部分を論
理値″/”、電圧を発生していない部分を論理値″0”
とすれば、回転角度位置X0は論理値”θ”の位置とし
てかつ回転角度位置Y0は論理値”/”の位置として判
別出来る。
Here, the first photodetector element t3 of '7 $2
respective seventh electrical signals S/, detected and converted by
A second electrical signal S (for example, voltage) and a code disk 20A
The relationship between the rotation angle and the rotation angle is as shown in FIG. 1st
Points a and a+ in the electric signal S of are at the same voltage (mV
), and these points a and a' correspond to the rotational angular positions x 6 and y O of the code disk 2OA, respectively. Therefore, the first light receiving element 3 discriminates between the rotational angular positions X0 and Yo. In other words, in the first electrical signal S2 generated by the first light receiving element q3, the part where voltage is generated is given the logical value "/", and the part where no voltage is produced is given the logical value "0".
Then, the rotational angular position X0 can be determined as the position of the logical value "θ", and the rotational angular position Y0 can be determined as the position of the logical value "/".

このことは、第9図および第5図の符号円板スOBを使
用した場合も同様である。なお、この発明における符号
体系は例えば2nの符号とする時、符号円板コθAを使
用した場合にはコ1の位を第一のトランクT2に記録さ
れた方形波が表わしかつコ 以後、2°までの位を第1
のトランクT/に記録された3角波が表わす。
This also applies when the code disks OB shown in FIGS. 9 and 5 are used. The coding system in this invention is, for example, when a code of 2n is used, and when the code disk θA is used, the square wave recorded in the first trunk T2 represents the digit 1, and ko.Hereinafter, 2 1st place up to °
This is represented by the triangular wave recorded on trunk T/.

同様に、符号円板コθBを使用した場合には、2nの位
を第二のトラックの他方のトラックテコBに記録された
方形波が表わし、−の位を一方のトラックT、2Aに記
録された方形波が表わしかつsn!以後2°までの位を
第1のトラックT/に記録された3角波が表わす。
Similarly, when the sign disk θB is used, the 2n digit is represented by the square wave recorded on the other track lever B of the second track, and the - digit is recorded on one track T, 2A. represents a square wave and sn! Thereafter, the triangular wave recorded on the first track T/ represents the digit up to 2 degrees.

説明をもう一度第1図に戻せば、絶対位置信号発生手段
!Oは、第1の受光素子lI2へ電気的に接続されかつ
第1の電気信号S/を直線的に増幅して符号円板−θA
の絶対位置を示すアナログ出力信号を発生するリニア増
幅器S/、第一の受光素子lI3へ電気的に接続されか
つ第一の電気信号Sコを波形整形して論理値″/”とO
″′の符号に変換する波形整形回路52、およびリニア
増幅器S/のアナログ出力信号と波形整形回路左λの論
理値符号とを結合して符号円板20Aの絶対位置を示す
アナログ出力信号を発生する論理回路!3を有する。必
要ならば、絶対位置信号発生手段Sθは、リニア増幅器
5/のアナログ出力信号をアナログ/デジタル変換して
符号円板、2OAの絶対位置を示すデジタル出力信号を
発生するアナログ/デジタル(A/D)コンバータSり
を有していても良い。
Returning the explanation to Figure 1 again, it is an absolute position signal generating means! O is electrically connected to the first light receiving element lI2 and linearly amplifies the first electric signal S/ to generate a sign disk -θA.
A linear amplifier S/, which generates an analog output signal indicating the absolute position of , is electrically connected to the first light-receiving element lI3 and shapes the waveform of the first electric signal S to produce a logical value "/" and O.
A waveform shaping circuit 52 converts the sign into a sign of ``'', and combines the analog output signal of the linear amplifier S/ with the logic value sign of the left λ of the waveform shaping circuit to generate an analog output signal indicating the absolute position of the sign disk 20A. If necessary, the absolute position signal generating means Sθ converts the analog output signal of the linear amplifier 5/ from analog to digital to generate a digital output signal indicating the absolute position of the code disk, 2OA. It may also include an analog/digital (A/D) converter S.

光学系lO中の光量補償回路13は第3の受光素子lI
りへ電気的に接続されている。光源l/の発光出力並び
に第1の受光素子lユ、第一の受光素子+!3および第
3の受光素子<19の受光出力が温度または経時変化に
よって変動するので、光源//従ってコリメークレンズ
12の平行光の光量変化のみを第3の受光素子lIりで
検出して第3の電気信号に変換し、この第3の電気信号
を光量補償回路13ヘフイードバツクすることにより光
源l/の光量を調節して第3の受光素子グlの出力すな
わち第3の電気信号が常に一定となるように制御する。
The light amount compensation circuit 13 in the optical system lO is connected to the third light receiving element lI.
electrically connected to the The light emitting output of the light source l/ and the first light receiving element l, the first light receiving element +! Since the light receiving output of 3 and the third light receiving element <19 varies depending on the temperature or changes over time, the third light receiving element 11 detects only the change in the light amount of the parallel light from the light source//therefore, the collimating lens 12. This third electrical signal is fed back to the light intensity compensation circuit 13 to adjust the light intensity of the light source l/ so that the output of the third light receiving element group l, that is, the third electrical signal is always constant. Control so that

なお、第1の受光素子クコと第一の受光素子l13と第
3の受光素子++に同種の素子を使用すると、制御誤差
を少なくすることが出来る。
Note that if the same type of elements are used for the first light-receiving element Kuko, the first light-receiving element l13, and the third light-receiving element ++, control errors can be reduced.

発明の効果 この発明によれば、3角波形明部から成る位置検出符号
並びに方形波形の暗部および明部かも成る判別符号が記
録された符号円板を使用することにより符号円板の絶対
位置をアナログ信号またはデジタル信号として出力でき
、しかもR1度または経時変化に左右されず、制御1誤
差も少ないという効果が得られる。
Effects of the Invention According to the present invention, the absolute position of the code disk can be determined by using a code disk on which a position detection code consisting of a bright portion of a triangular waveform and a discrimination code consisting of dark and bright portions of a square waveform are recorded. It can be output as an analog signal or a digital signal, is not affected by R1 degree or change over time, and has the advantage of having a small control error.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示すブロック図、第2図
は第1図に示した実施例で使用される符号円板の平面図
、第3図は第一図に示した符号円板における各符号を直
線的に表現した図、第グ図は他の符号円板の平面図、第
S図は8gグ図の符号円板の各符号を直線的に表現した
図、第6図は受光部が発生する電気信号と符号円板の回
転角度との関係を示すグラフ図である。 10は光学系、llは光源、/:lはコリメータレンズ
、/3は光量補償回路1.20Aと一〇Bは符号円板、
T/は第1のトラック、T、2は第2のトラック、 T
コAは第一のトランクの一方のトラック、 T2Bは第
一のトラックの他方のトランク、T3は第8のトランク
、Cは明部。 Dは暗部、3θはシャフトエンコーダの入力軸。 lIOは受光部、り/は固定スリット、クユは第1の受
光素子、473は第一の受光素子、4tりは第3の受光
素子、goは絶対位置信号発生手段、31はリニア増幅
器% タコは波形整形回路。 よ3は論理回路、左lはA/Dコンバータである。 特許出願人 多摩川精機株式会社 鳥6※ 伽 第2図 台 第4図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a plan view of a code disk used in the embodiment shown in FIG. 1, and FIG. 3 is a block diagram of the code disk shown in FIG. Figure 6 is a linear representation of each symbol on the board. Figure 6 is a plan view of another code disk. Figure S is a linear representation of each symbol on the code disk of the 8g diagram. FIG. 2 is a graph diagram showing the relationship between the electric signal generated by the light receiving section and the rotation angle of the code disk. 10 is an optical system, 11 is a light source, /:1 is a collimator lens, /3 is a light amount compensation circuit 1.20A and 10B are sign disks,
T/ is the first track, T, 2 is the second track, T
Core A is one track of the first trunk, T2B is the other trunk of the first truck, T3 is the eighth trunk, and C is the light section. D is the dark area, and 3θ is the input axis of the shaft encoder. lIO is a light receiving unit, ri/ is a fixed slit, Kuyu is a first light receiving element, 473 is a first light receiving element, 4t is a third light receiving element, go is an absolute position signal generating means, 31 is a linear amplifier% tacho is a waveform shaping circuit. 3 is a logic circuit, and 1 on the left is an A/D converter. Patent applicant: Tamagawa Seiki Co., Ltd. Tori 6* Figure 2, Figure 4

Claims (1)

【特許請求の範囲】 / 平行光を発する光学系と、符号円板であって、その
回転角度位置に応じて前記平行光の透過光量を直線的に
増減させる3角波形明部から成る位置検出符号が記録さ
れた第1のトラック並びに前記3角波形明部の頓首の方
向を判別するために前記平行光を全く透過しない方形波
形暗部および前記平行光を全て透過する方形波形明部か
ら成る判別符号が記録された第2のトランクを有する前
記符号円板と、この符号円板をはさんで前記光学系に対
向するように配置されかつ前記第1のトラックを透過し
た光量を検出して第1の電気信号に変換する第1の受光
素子および前記第2のトランクを透過した光量を検出し
て第一の電気信号に変換する第一の受光素子を有する受
光部と、前記第1の電気信号および前記第一の電気信号
を電子的に処理して前記符号円板の絶対位置を示す出力
信号を発生する絶対位置信号発生手段とを備えたことを
特徴とする絶対位置検出形光挙式シャフトエンコーダ。 二 光学系は、光を発する光源および前記光を平行光に
するコリメータレンズを有する特許請求の範囲第1項記
載の絶対位置検出形光挙式シャフトエンコーダ。 3 絶対位置信号発生手段は、第1の受光素子からの第
1の電気信号を直線的に増幅して符号円板の絶対位置を
示すアナログ出力信号を発生するIJニア増幅器、第一
の受光草子からの第2の電気信号を波形整形して論理値
″/”と”θ”の符号に変換する波形整形回路、および
前記アナログ出力信号と前記論理値符号を結合する論理
回路を有する特許請求の範囲第1項または第2項記載の
絶対位置検出形元学式シャフトエンコーダ。 乞 絶対位置信号発生手段は、リニア増幅器と論理回路
の間に挿入されて符号円板の絶対位置を示すデジタル出
力信号を発生するアナログ/デジタル令コンバータを有
する特許請求の範囲第3項記載の絶対位置検出形光単式
シャフトエンコーダ。 ! 第7のトラックに唯一の3角波形間部が記録され、
そして第一のトラックは7本のトラックから成りかつ前
記3角波形間部の傾きの方向にそれぞれ対応して方形波
形暗部、方形波形明部が記録されている特許請求の範i
!Ill第1項ないし第7項のいずれか記載の絶対位置
検出形光単式シャフトエンコーダ。 に 第1のトラックにλつの3角波形間部が記録され、
そして第一のトラックは一本のトラックから成り、これ
らのトラックのうちの一方のトラックには前記3角波形
間部の傾きの方向にそれぞれ応じて方形波形暗部、方形
波形明部が記録されるが、他方のトラックには前記2つ
の3角波形間部のうちの一方に対応して方形波形暗部が
記録されかつ前記一つの3角波形間部の他方に対応して
方形波形明部が記録されている特許請求の範囲第1項な
いし第7項のいずれか記載の絶対位置検出形光単式シャ
フトエンコーダ。 2 第1のトラックに:1n個の3角波形間部が記録さ
れ、そして第一のトラックは(n+/)本のトラックか
ら成り(たYL、nはOまたは正の整数である)かつ方
形波形暗部と方形波形明部が交互に記録されている特許
請求の範囲第1項ないし第7項のいずれか記載の絶対位
置検出形光単式シャフトエンコーダ。 と 符号円板は方形波形明部のみから成る光量補償用の
第3のトラックを有し、受光部は光学系から前記第3の
トラックを透過した平行光の光量の、温度または経時変
化による変化を検出して第3の電気信号に変換する第8
の受光素子を有し、そして前記光学系は前記第3の電気
信号が常に一定となるように前記光景を調節する光量補
償回路を有する特許請求の範囲第7項ないし第6項のい
ずれか記載の絶対位置検出形元学式シャフトエンコーダ
。 タ 第1と第一と第3の受光素子が同種の素子である特
許請求の範囲第g項記載の絶対位置検出形光単式シャフ
トエンコーダ。
[Claims] / Position detection consisting of an optical system that emits parallel light, and a triangular waveform bright portion that is a sign disk and linearly increases or decreases the amount of transmitted light of the parallel light according to its rotational angular position. A first track on which a code is recorded, and a determination comprising a rectangular waveform dark part that does not transmit any of the parallel light and a square waveform bright part that transmits all the parallel light in order to determine the direction of the inclination of the triangular waveform bright part. the code disc having a second trunk on which a code is recorded; a first light receiving element that detects an amount of light transmitted through the second trunk and converts the detected amount of light into a first electrical signal; an absolute position signal generating means for electronically processing the signal and the first electric signal to generate an output signal indicating the absolute position of the code disk. encoder. 2. The absolute position detection type optical shaft encoder according to claim 1, wherein the optical system includes a light source that emits light and a collimator lens that converts the light into parallel light. 3 The absolute position signal generating means is an IJ near amplifier that linearly amplifies the first electric signal from the first light receiving element to generate an analog output signal indicating the absolute position of the code disk, and a first light receiving element. A waveform shaping circuit that shapes the second electrical signal from the output signal and converts it into a logic value "/" and "θ" sign, and a logic circuit that combines the analog output signal and the logic value sign. An absolute position detection type scientific shaft encoder according to the first or second range. The absolute position signal generating means according to claim 3 has an analog/digital command converter inserted between the linear amplifier and the logic circuit to generate a digital output signal indicating the absolute position of the code disk. Position detection type optical single shaft encoder. ! The only triangular waveform interval is recorded on the seventh track,
The first track is composed of seven tracks, and rectangular waveform dark areas and rectangular waveform bright areas are recorded corresponding to the direction of inclination of the inter-triangular waveform areas, respectively.
! 11. The absolute position detection type optical single shaft encoder according to any one of items 1 to 7. In the first track, λ triangular waveform interparts are recorded,
The first track consists of one track, and a rectangular waveform dark part and a rectangular waveform bright part are recorded in one of these tracks, respectively, depending on the direction of the slope of the inter-triangular waveform part. However, in the other track, a square waveform dark part is recorded corresponding to one of the two triangular waveform intervals, and a square waveform bright part is recorded corresponding to the other of the one triangular waveform interval. An absolute position detection type optical single shaft encoder according to any one of claims 1 to 7. 2 In the first track: 1n triangular waveform interstices are recorded, and the first track consists of (n+/) tracks (YL, n is O or a positive integer) and has a rectangular shape. An absolute position detection type optical single shaft encoder according to any one of claims 1 to 7, wherein dark waveform portions and square waveform bright portions are recorded alternately. The code disk has a third track for light intensity compensation consisting only of square waveform bright areas, and the light receiving section detects changes in the light intensity of the parallel light transmitted through the third track from the optical system due to temperature or changes over time. an eighth that detects and converts it into a third electrical signal;
Claims 7 to 6 have a light receiving element, and the optical system includes a light amount compensation circuit that adjusts the scene so that the third electric signal is always constant. Absolute position detection type scientific shaft encoder. The absolute position detection type optical single shaft encoder according to claim 7, wherein the first, first and third light receiving elements are of the same type.
JP11617283A 1983-06-29 1983-06-29 Absolute position detection type optical shaft encoder Pending JPS608714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11617283A JPS608714A (en) 1983-06-29 1983-06-29 Absolute position detection type optical shaft encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11617283A JPS608714A (en) 1983-06-29 1983-06-29 Absolute position detection type optical shaft encoder

Publications (1)

Publication Number Publication Date
JPS608714A true JPS608714A (en) 1985-01-17

Family

ID=14680572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11617283A Pending JPS608714A (en) 1983-06-29 1983-06-29 Absolute position detection type optical shaft encoder

Country Status (1)

Country Link
JP (1) JPS608714A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250521A (en) * 1987-04-07 1988-10-18 Fanuc Ltd Pulse encoder
WO1989008239A2 (en) * 1988-02-29 1989-09-08 Allied-Signal Inc. Method to decode relative spectral data
EP0419956A2 (en) * 1989-09-25 1991-04-03 Aerospace Controls Corporation Encoder disc
US5773820A (en) * 1995-06-12 1998-06-30 Motorola, Inc. Rotary position sensor with reference and grey scales
CN102483336A (en) * 2009-09-09 2012-05-30 斯图加特大学 Device and method for optically compensating for the measuring track decentralization in rotation angle sensors
CN105444792A (en) * 2015-12-23 2016-03-30 宁波微科光电有限公司 Sine wave encoder encoding disc
DE102014220214A1 (en) * 2014-10-07 2016-04-07 Baumer Hübner GmbH Optical position sensing device, rotary encoder with an optical position sensing device and method for position detection with increased reliability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878959A (en) * 1972-01-22 1973-10-23
JPS50113250A (en) * 1974-02-14 1975-09-05
JPS5658024A (en) * 1979-10-15 1981-05-20 Toray Industries Fiber material for fiber reinforsed resin
JPS57163726A (en) * 1981-03-16 1982-10-08 Gen Electric Composite with improved bearing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878959A (en) * 1972-01-22 1973-10-23
JPS50113250A (en) * 1974-02-14 1975-09-05
JPS5658024A (en) * 1979-10-15 1981-05-20 Toray Industries Fiber material for fiber reinforsed resin
JPS57163726A (en) * 1981-03-16 1982-10-08 Gen Electric Composite with improved bearing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250521A (en) * 1987-04-07 1988-10-18 Fanuc Ltd Pulse encoder
WO1989008239A2 (en) * 1988-02-29 1989-09-08 Allied-Signal Inc. Method to decode relative spectral data
WO1989008239A3 (en) * 1988-02-29 1989-09-21 Allied Signal Inc Method to decode relative spectral data
EP0419956A2 (en) * 1989-09-25 1991-04-03 Aerospace Controls Corporation Encoder disc
US5773820A (en) * 1995-06-12 1998-06-30 Motorola, Inc. Rotary position sensor with reference and grey scales
CN102483336A (en) * 2009-09-09 2012-05-30 斯图加特大学 Device and method for optically compensating for the measuring track decentralization in rotation angle sensors
DE102014220214A1 (en) * 2014-10-07 2016-04-07 Baumer Hübner GmbH Optical position sensing device, rotary encoder with an optical position sensing device and method for position detection with increased reliability
DE102014220214B4 (en) * 2014-10-07 2020-06-04 Baumer Hübner GmbH Optical position detection device, rotary encoder with an optical position detection device and method for position detection with increased operational reliability
CN105444792A (en) * 2015-12-23 2016-03-30 宁波微科光电有限公司 Sine wave encoder encoding disc

Similar Documents

Publication Publication Date Title
US4621256A (en) Apparatus for measuring rate of angular displacement
US5241172A (en) Variable pitch position encoder
CA2006107C (en) Method and apparatus for determining the position of a mobile body
US7326919B2 (en) Optical encoder
US5483059A (en) Signal processing method using comparator level adjustment in a displacement measuring device
US4654636A (en) Displacement measuring apparatus
JPS60243514A (en) Photoelectric measuring device
JPS63234729A (en) Encoder
US7262714B2 (en) Interpolating encoder utilizing a frequency multiplier
JPH0157292B2 (en)
IE56671B1 (en) Noncontact shaft angle detector
US5012238A (en) Absolute encoder
JPS608714A (en) Absolute position detection type optical shaft encoder
US5042157A (en) Fiber optic angular orientation sensor digital serial encoding
US3500449A (en) Electronic encoder index
JPH06300635A (en) Radiation measuring instrument
JPS60100015A (en) Rotary encoder
JPH06347292A (en) Optical absolute rotary encoder
JPH0861990A (en) Encoder
JPH063162A (en) Photoelectric absolute encoder
JPS60113107A (en) Optical encoder
SU731283A1 (en) Photoelectric automatic collimator
US6122132A (en) Disk drive head position encoder
JPS6232312A (en) Range finding device
JP2540113B2 (en) Encoder